Civic engagement in urban neighborhoods
Dekker, K.K.; Völker, B.; Lelieveldt, H.; Torenvlied, R.

Published in:
Journal of Urban Affairs

DOI:
10.1111/j.1467-9906.2010.00524.x

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
CIVIC ENGAGEMENT IN URBAN NEIGHBORHOODS: DOES THE NETWORK OF CIVIC ORGANIZATIONS INFLUENCE PARTICIPATION IN NEIGHBORHOOD PROJECTS?

KARIEN DEKKER
ICS Utrecht University

BEATE VÖLKER
ICS Utrecht University

HERMAN LELIEVELDT
Roosevelt Academy in Middelburg

RENÉ TORENVLIED
ICS Utrecht University

ABSTRACT: This article aims to explain variations in the participation of civic organizations in neighborhood projects. In particular, we inquire into the impact of the social networks of more than 400 local civic organizations on their participation in neighborhood projects in two Dutch cities. Two strands of literature constitute the basis for our arguments. First, there is much research on the determinants of individual participation showing that tenure, social-economic status, and being a member of the majority matter considerably. Second, network studies demonstrate that the structure and content of one’s relationships substantially influences successive actions. Our expectations are based on both bodies of knowledge. We survey the civic organizations in eight neighborhoods and analyze the impact of their social networks using multinomial logistic regression models. The results show that the actual number of relations in the network and the density of the networks are positively associated with participation in neighborhood projects. Furthermore, we show that organizations with high proportions of ethnic minorities provide less support, despite their networks. Finally, organizations with many professionals working for them participate more if their networks are taken into consideration.
INTRODUCTION

The quality of urban neighborhoods is generally seen as an indicator of the quality of urban life: safe and clean public spaces, a healthy environment, sufficient parking lots, shops providing high-quality consumer goods, schools, playgrounds, public transport and health services, no graffiti, and places for youngsters to meet. Alongside scientific scholars, national policymakers in both the United States and North-West Europe have been trying for many years to find out how urban quality can be guaranteed and improved. Local residents’ participation in neighborhood policy and all other neighborhood matters are among the key conditions for socially desirable neighborhood development and the “functioning” of the neighborhood in general (see, for example, Belmessous et al., 2004; Droste & Knorr-Siedow, 2004). Moreover, participation in all kinds of local activities and events is expected to help citizens in developing skills and attitudes that can be useful for further activities (Hays, 2007); it helps to develop democratic competence (Warren, 2001) and to counterbalance the power of the economic elite in the city (Dowding, Dunleavy, King, & Margetts, 1995; Hunter, 1953).

Much of the current research focuses on the determinants of individual participation, that is, the conditions under which citizens are active in local school activities (Marschall, 2001); work to bring about changes (Kang & Kwak, 2003); work as a volunteer in the neighborhood (Shirlow & Murtagh, 2004); or become members of a voluntary association (Maloney, Van Deth, & Roßteutscher, 2008). The results are rather consistent. Greater participation tends to be explained by individuals’ higher socioeconomic status and belonging to the majority ethnic group. In addition, residence tenure substantially contributes to the explanation of participation (Conway & Hachen, 2005; Dekker & Van Kempen, 2008; Hays & Kogl, 2007). However, it is frequently overlooked that most individuals do not take part in policy-making as individuals themselves. Rather, they do so via membership in groups such as residents’ organizations, tenants’ organizations, neighborhood committees, schools, churches, and the like.

Another important strand of the literature on explaining participation is related to the pattern of social networks an actor maintains. For a number of different settings such as participation in voluntary work, voting attitudes, or deviant behavior, it has been convincingly shown that the structure and content of a person’s relationships influence the actions a person undertakes (Arrow, 2000; Dekker, 2007; Lelieveldt, 2004; Oldfield, 2004). Indeed, social network studies have pointed out that the opportunities for meeting others and being embedded in a network positively influence collective action and activities (Lelieveldt, Dekker, Völker, & Torenvlied, 2009; Völker, Flap, & Lindenberg, 2007).

Although both strands of literature provide important insights into the conditions of individual actor participation, we know less about the conditions for participation of corporate actors, that is, organizations, and the impact of organizational networks on these activities. Although it is assumed that individual participation in civic organizations is an indication of political participation, there is little empirical evidence on the involvement of civic organizations in local activities. This assumption, among others, is criticized by Sampson, McAdam, MacIndoe, and Weffer-Elizondo (2005, p. 675), who suggest that we “reframe the civil society debate in terms of collective, rather than individual action.” Compared to the vast amount of individual-level analyses, the lack of insight into the determinants of organizational activity is rather striking. While the conditions for individual participation in the neighborhood are well established, there is little attention given to the study of the conditions for activity and participation of collective actors, that is, civic organizations, schools, churches, sports clubs, and tenant’s organizations. An exception is the work by Smith, Maloney, and Stoker (2004), who use the concept of social capital to investigate the relations between organizations in cities and city councils.
Our article seeks to add to the understanding and explanation of organizational participation by examining the involvement of civic organizations in eight neighborhoods in two cities (Utrecht and Dordrecht) in the Netherlands. In particular, we will inquire into the role of social networks of civic organizations, assuming that, given the evidence for the relevance of networks for individual action, networks will also matter for organizational activities. We argue that not only do the characteristics of organizations and neighborhoods matter, but that social ties to other organizations are an important condition in explaining the participation of organizations in neighborhood projects. Therefore, the questions we want to address here are the following:

- What is the relative influence of an organization’s social network on participation in neighborhood projects?
- Which network characteristics matter more, being embedded in a densely connected network or having a large network?

Drawing from the literature on civic participation and social network analysis, we aim to identify the conditions that can account for variations among civic organizations in their participation in neighborhood projects. Our arguments and analyses are at the level of organizations, which also constitute our units of analysis. Activities undertaken by these organizations are considered organizational characteristics. Our theoretically informed expectations are tested using data collected in 2007 from more than 400 organizations in eight neighborhoods in two Dutch cities.\(^1\)

**DETERMINANTS OF ORGANIZATIONAL PARTICIPATION IN NEIGHBORHOOD PROJECTS**

Cooperation—particularly cooperation among organizations—occurs when a problem is too complex to be solved alone. We define a neighborhood project accordingly: a situation of cooperation between public, private, and voluntary sectors in a neighborhood (Dekker & Van Kempen, 2004, 2009). It differs from traditional government by including actors representing not only the public sector but also the private and voluntary sectors (Elander & Blanc, 2001; Imrie & Raco, 1999). Civic organizations typically refer to collective action as taking control of neighborhoods to realize a higher level of services, to involve particular groups in social activities (youth, elderly, etc.), to protest and clean up environmental problems, or to organize a festive celebration (Wandersman & Florin, 1990). This definition is generally consistent with the community development literature (Capraro, 2004; Gittell, Ortega-Mustamante, & Steffy, 2000; Vidal & Keating, 2004). In line with public-choice theory, it is assumed that people have sufficient prior knowledge and fixed preferences. Public-choice theory expects organizations to act coherently and consistently, as if they were rational individuals (Dunleavy, 1991). The organizations on which we focus are not part of the state, the market, or the family. Put differently, these organizations have come into being voluntarily, based on people using their freedom to associate. They operate on a not-for-profit basis and are thus noncommercial. They go beyond primordial, familial bonds, and bring together “strangers,” thus constituting secondary associations. All these organizations in some way or another bring citizens together and are not part of the state.

**Under Which Conditions Do Organizations Become Involved and Participate Actively in Neighborhood Projects?—Arguments and Expectations**

The Dutch concept of *poldermodel* assumes that civic organizations traditionally have a strong position in policy-making processes. At the national level, employers, employees, and national
politicians discuss salaries. At the local level, the same occurs with respect to, for example, design and changes of community facilities or services. In the present study, predictors of organizational participation are formulated. We divide these into organizational and neighborhood characteristics. Below, we will explore how each of these characteristics may affect participation in neighborhood projects.

First, demographic conditions characterize an organization’s capability of being involved in neighborhood projects. Demographic conditions influence the degree of control people feel, which influences their participation levels (Almond & Verba, 1989 [1963]; Perkins, Brown, & Taylor, 1996; Zimmerman, 1990). In particular, ethnic heterogeneity of the organization, measured as the share of members from an ethnic minority group, is expected to matter here. The evidence on the impact of ethnicity is inconsistent. Some individual-level studies of participation indicate that ethnic minority individuals participate as much as natives (Dekker, 2007). On the other hand, as Almond and Verba (1989 [1963]) and Verba and Nie (1972) have pointed out, participation among African Americans in the United States is often found to be related to group consciousness. Organizations that aim to strengthen the ethnic identity are often also politically active. However, qualitative studies on organizational involvement tend to conclude that ethnic minority organizations are often not included due to cultural and organizational differences between the predominantly white municipal authorities and the ethnic organizations (Dekker & Van Kempen, 2009), or that the share of ethnic minorities does not matter (Swindell, 2002). It could be that ethnic minority organizations are excluded from projects because of other characteristics (i.e., little professional support or a lack of networks) rather than ethnicity per se. It is therefore difficult to formulate a one-sided hypothesis on the impact of ethnicity. Hence, our hypothesis here is not conclusive; we do expect an effect of the share of ethnic minorities as members of the organization on participation, but are undecided about its direction (Hypothesis 1).

Another factor relevant for predicting organizational participation is the share of neighborhood residents in the organization, given that residents tend to be more concerned about their neighborhood than outsiders (e.g., football players from another area that happen to play football here). The interest of an organization in an issue explains to a large extent the willingness and need to become involved in the solution (Laumann, Galaskiewicz, & Marsden, 1978; Laumann, Marsden, & Galaskiewicz, 1977; Laumann & Pappi, 1976). Some organizations tend to have the neighborhood as their sole focus (like community organizations), whereas others focus on related topics independent of locale (like sports or health). We expect that organizations having an explicit stake in the neighborhood are particularly active, whereas others only occasionally become involved in neighborhood projects. There may also be a group that never feels the urge to become active in neighborhood projects because they have no connection whatsoever with it (like the stamp collectors’ society). We expect that organizations with a high share of residents as members will participate more in neighborhood projects (Hypothesis 2).

Furthermore, available resources influence the perceived chance that actions are successful (Blau & Rabrenovic, 1991; Guest & Oropesa, 1986; Hunter & Staggenborg, 1988; Kriesi, 2007; McAdam, McCarthy, & Zald, 1988). Hence, the resources available in an organization will also have an impact on the involvement of the organization in neighborhood matters. Professionals in an organization can provide resources from which an organization might draw for planning, activities, and other operational actions. The number of professionals in an organization is logically closely related to financial resources, since professionals are paid staff. Paid staff can provide more continuity than volunteers; they can build up expertise and hence boost participation (Maloney, Smith, & Stoker, 2000, 2008; McAdam et al., 1988). We expect that organizations with more professionals are better able to have a voice in local decision making (Hypothesis 3).

The number, or supply, of potential organizations that one can contact and that can also be members of each other’s network also matters. Networks can be seen as a way to assess
II Civic Engagement in Urban Neighborhoods

the influence of corporate actors on decision making (Knoke, Pappi, Broadbent, & Tsujinaka, 1996). Others use networks to examine power and influence at the local level (Galaskiewicz, 1979; Laumann & Pappi, 1976). The importance of the numerical distribution of certain social categories for meeting chances and hence for the prospects of further association has been stressed by Blau (1992). It is a prerequisite for the emergence of social networks that there are other potential network members present. However, the impact of the number of organizations present in a neighborhood can work in two directions with regard to its influence on participation. On the one hand, it can be expected that if more organizations are present, they will be better prepared to involve themselves in local decisions and participation is thus high. On the other hand, larger numbers of organizations can also stimulate free-rider effects: members in each organization wait until another organization takes action (Olson, 1965, 1971). In this case, the effect of a large number of organizations for potential connections can be negative on participation. Hence, our hypothesis here is not conclusive; we do expect an effect of the number of organizations in a neighborhood on participation, but are undecided about its direction (Hypothesis 4).

Furthermore, the number of issues of importance to the organizations will influence the participation of organizations in neighborhood projects. As Sampson et al. (2005) show, organizations often act in a neighborhood “as a demand for either a change in society or an avowed desire to resist a proposed change” (p. 684). We therefore expect that in neighborhoods with many issues that are experienced as a problem, more organizations will be involved in neighborhood projects (Hypothesis 5).

Alternatively, decisions to undertake voluntary activities and join organizations are influenced by institutional contexts; there are numerous studies describing which measures empower individuals (Docherty, Goodlad, & Paddison, 2001; Fitzpatrick, Hastings, & Kintrea, 2000; Peterson, Lowe, Aquilino, & Schneider, 2005) or stimulate associations (Warren, 2001). One of the important actions a government can undertake is to provide funding for the financial support of community or neighborhood workers and to enable activities and participation processes to take place. Government regulation can also influence civic engagement, although too many rules and regulations can discourage participation in public policy-making (Berry, 2005; Fung & Wright, 2001). We therefore expect that in neighborhoods with many projects that aim to involve civic organizations through empowerment, participation will be higher (Hypothesis 6).

Then, as already mentioned, we will study an organization’s network. The network of an organization is particularly important for providing access to resources, for example, information unavailable through other channels or only at much higher costs (Bueno de Mesquita & Stokman, 1994; Laumann & Knoke, 1987; Laumann & Pappi, 1976; Stokman, 1994). Larger networks between organizations are associated with more opportunities to access resources and influence others. Thus, in order to have influence in the policy network (and thus be actively involved) actors must have large networks (Nohria & Eccles, 1992). In the terminology of social network analysis, this is called “high centrality”: the number of direct adjacent links to or from an actor. Freeman (1979) used this measure as a measure of activity, but it may also represent the number of alternatives available to an actor, and hence the relative power within the network (Nohria & Eccles, 1992). We therefore expect that organizations with large networks will participate more often in neighborhood projects (Hypothesis 7).

The connections among the network members also matter. Support, trust, and cooperation are highly pronounced in densely connected networks (Coleman, 1990). Furthermore, through dense networks behavior is much better controlled and sanctioned. Accordingly, we expect that dense networks of organizations enhance participation. However, and as argued by Burt (1982), open networks that provide many bridges to other social circles are better able to provide new information. Having an open network can enhance getting new information quickly, and information can in turn lead to more participation. However, our issue to be explained here is
TABLE 1

Determinants for Explaining Variations in the Degree of Organizational Participation in Neighborhood Projects

<table>
<thead>
<tr>
<th>Determinant</th>
<th>Participation in projects: gave advice, co-decided, or co-produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Many members of ethnic minority background</td>
<td>?</td>
</tr>
<tr>
<td>2. Many members that live in the neighborhood</td>
<td>+</td>
</tr>
<tr>
<td>3. Many professionals in organization</td>
<td>+</td>
</tr>
<tr>
<td>4. Many organizations in the neighborhood</td>
<td>?</td>
</tr>
<tr>
<td>5. Many problems in the neighborhood</td>
<td>+</td>
</tr>
<tr>
<td>6. Many projects in the neighborhood</td>
<td>+</td>
</tr>
<tr>
<td>7. Large network of organization</td>
<td>+</td>
</tr>
<tr>
<td>8. Dense network of organization</td>
<td>+</td>
</tr>
</tbody>
</table>

not related to attaining news or information but involves undertaking collective action. For this kind of action, mutual control is also of importance, for example, members of a network monitor and sanction their actions. This happens much more in closed, dense networks than in open ones. Therefore, we expect that network density of an organization is positively related to participation (Hypothesis 8).

The expectations are summarized in Table 1.

DATA, MEASUREMENTS, AND ANALYTIC STRATEGY

The empirical analysis for this article draws upon a survey conducted in 2007 within the project, “With or Without Civil Society,” funded by the Netherlands Institute of City Innovation Studies (NICIS, in cooperation with the National Dutch Scientific Foundation, NWO). The study explores the participation of civil society organizations in eight neighborhoods in the cities of Utrecht (300,000) and Dordrecht (120,000), The Netherlands. Utrecht is the fourth-largest city in The Netherlands (after Amsterdam, Rotterdam, and The Hague), whereas Dordrecht is a medium-sized city.

The eight neighborhoods in this research were selected according to a two-by-two design that combined age of the neighborhood (young vs. old) with the relative amount of policy attention received from the local government (little attention vs. much attention).

- Staart (Dordrecht) and Lombok (Utrecht) are both older neighborhoods with a mixed tenure housing composition. Lombok was built between 1910 and 1930, and Staart just after WWII. In Lombok 49% are native Dutch residents, and in Staart, 62% (data from local council publications, 2007). Policymakers and politicians are heavily involved in regeneration activities in these areas, although there is little incidental project-funding available. The
problems are complex and reinforce each other: social, economic, and physical problems exist.
Characteristics: Old area and much policy attention.
• Buurt Stadspolder (Dordrecht) and Parkwijk (Utrecht) are relatively young neighborhoods, also with a mixed tenure housing composition, mostly single-family homes but also a few apartment blocks (approx. 20%). In Buurt Stadspolders 40% is social housing, and in Parkwijk, 20%. Buurt Stadspolders is predominantly inhabited by native Dutch people; in Parkwijk 40% of the residents are of non-native-Dutch origin. In these neighborhoods, experiments with tenure mix take place. There are some (new) problems in these neighborhoods, and policymakers and politicians are interested to learn from the experimental design of the areas.
Characteristics: New area and much policy attention.
• Noordflank (Dordrecht) and Lunetten (Utrecht) are older neighborhoods (built in the 1970s) with medium high-rise buildings (approximately 65%) both in the slightly more expensive social sector and the medium-priced home-owned sector (47% and 65%, respectively). There are few problems in these areas and policymakers and politicians pay little attention to them.
Characteristics: Old area and little policy attention.
• Oudelandshoek (Dordrecht) and Voordorp (Utrecht) are new areas with little policy attention. Most dwellings are in the owner-occupied sector (90%), and are a mixture of low-rise apartment blocks and single-family homes. About 85% of the residents are of native Dutch origin. Voordorp was voted as “the best Dutch neighborhood” for several years in a row because of the quality of the social, physical, and economic environment.
Characteristics: New area and little policy attention.

We deliberately excluded the neighborhoods that are part of urban regeneration policies because both the intensity of the policy process and the accumulation of neighborhood problems and policy interventions makes them a very specific type of neighborhood. By excluding these troubled neighborhoods and including a variety of “regular” neighborhoods, we aim to enhance the degree to which the findings can be generalized to other “regular” neighborhoods.

For each neighborhood, we engaged in a comprehensive mapping of all civic organizations: nonpublic, nonprofit-oriented organizations residing in the research neighborhoods. We first obtained names and addresses of all the associations and foundations that were based in the neighborhood and registered with the Chamber of Commerce. This registration is required for all foundations and all associations with a legal status. In addition, we consulted address lists of the city’s neighborhood managers for each of the neighborhoods, we checked phone and online directories, and we browsed local and neighborhood newspapers for items that might reveal the existence of groups that might have gone unnoticed. Our list of 942 organizations includes social clubs, self-help groups, neighborhood groups, community-based organizations, schools, community centers, tenant organizations, housing corporations, churches and other religious institutions, child-care facilities, homes for the elderly, youth centers, and kindergartens. All organizations received a questionnaire by ordinary mail and 409 of these were returned, a response rate of 43%. We asked the daily management board of the organization to fill in the questionnaire. The response rate was highest among organizations concerned with housing and neighborhood development (N = 73; 56% of all housing and neighborhood organizations), and lowest among cultural organizations (N = 89; 37% of all cultural organizations). Table 2 shows more detailed information on the types of organizations and the response rates. The largest portion of the organizations in the population focuses on culture or leisure, or housing and neighborhood, sports, and education. Yet, because of the high absolute numbers in the population, a large part of our respondents (22%) represent organizations in the culture/leisure sector.
TABLE 2

Types of Organizations and Response Rates

<table>
<thead>
<tr>
<th>Types of Organizations</th>
<th>Population of Organizations</th>
<th>Response Absolute</th>
<th>Response %</th>
<th>Share of Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health and care</td>
<td>65</td>
<td>33</td>
<td>51</td>
<td>8</td>
</tr>
<tr>
<td>Well being</td>
<td>85</td>
<td>35</td>
<td>41</td>
<td>9</td>
</tr>
<tr>
<td>Housing, neighborhood development</td>
<td>131</td>
<td>73</td>
<td>56</td>
<td>18</td>
</tr>
<tr>
<td>Education</td>
<td>117</td>
<td>56</td>
<td>48</td>
<td>14</td>
</tr>
<tr>
<td>Social rights</td>
<td>96</td>
<td>36</td>
<td>38</td>
<td>9</td>
</tr>
<tr>
<td>Culture, leisure</td>
<td>240</td>
<td>89</td>
<td>37</td>
<td>22</td>
</tr>
<tr>
<td>Sports</td>
<td>130</td>
<td>53</td>
<td>41</td>
<td>13</td>
</tr>
<tr>
<td>Entrepreneurs</td>
<td>32</td>
<td>14</td>
<td>44</td>
<td>3</td>
</tr>
<tr>
<td>Religion</td>
<td>46</td>
<td>20</td>
<td>44</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>942</td>
<td>409</td>
<td>43</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Database of organizations; Survey “With or Without Civil Society?” (2007).

Based on this approach to data collection, our data have a two-level structure, that is, organizations nested in neighborhoods.

Measuring Participation in Neighborhood Projects

Participation in neighborhood projects—the dependent variable—is based on the following question: “The local council of Utrecht/Dordrecht occasionally cooperates with residents and organizations with the aim of improving the quality of the neighborhood. Please indicate whether your organization is acquainted with the projects listed below, and whether your organization had been actively involved in the projects.” The projects were listed based on being mentioned in local publications, in policy documents, or by one of the key experts that were interviewed in the first phase of the project. Depending on the neighborhood, between two and 11 projects were listed. The possible answers to the question were as follows: (1) not acquainted with the project; (2) we were informed; (3) we gave advice; (4) we codecided; or (5) we coproduced. The highest score on any of the projects is used to indicate the degree of participation in the policy-making processes. For the analyses, the dependent variable was recorded into three classes: (1) not acquainted with the project; (2) informed; or (3) we gave advice, codecided, or coproduced. The last category is in fact participation in neighborhood projects. We found that 49% of the organizations are not acquainted with any of the projects, 29% state they are informed about at least one project, and 22% participate in neighborhood projects. Between neighborhoods, there is some variation, with the lowest participation rates of 11% in Oudelandshoek and the highest of 41% in Stadspolders (both in Dordrecht). There has been very little other research into participation of organizations in coproduction, so it is unclear whether these figures are high or low.

Independent Variables

Table 3 summarizes the variables included in the analysis and provides descriptive statistics for each variable. The means and standard deviations are given for the ratio variables; the percentages of respondents per category are given for the nominal and ordinal variables.

The characteristics of the members of the organization are measured in three different ways. The share of members from an ethnic minority group is measured as a ratio variable. Because
TABLE 3

Description of Variables in the Analyses

<table>
<thead>
<tr>
<th>Variables</th>
<th>%</th>
<th>N</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower or medium education respondent</td>
<td>30</td>
<td>121</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Higher education respondent</td>
<td>70</td>
<td>288</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Years respondent has been active (ln function)</td>
<td>–</td>
<td>366</td>
<td>0</td>
<td>5.18</td>
<td>2.76</td>
<td>1.16</td>
</tr>
<tr>
<td>Age of the organization (ln function)</td>
<td>–</td>
<td>409</td>
<td>1</td>
<td>2</td>
<td>1.70</td>
<td>0.46</td>
</tr>
<tr>
<td>Participation in coproduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project unknown</td>
<td>49</td>
<td>202</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Organization was informed but did not participate</td>
<td>29</td>
<td>117</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>The organization did participate (i.e., gave advice, codecided or cooperated)</td>
<td>22</td>
<td>90</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Characteristics of the organization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% nonnatives among members (ln function)</td>
<td>–</td>
<td>352</td>
<td>0</td>
<td>4.61</td>
<td>2.74</td>
<td>0.91</td>
</tr>
<tr>
<td>% of members that live in the neighborhood</td>
<td>–</td>
<td>409</td>
<td>0</td>
<td>100</td>
<td>51.48</td>
<td>28.27</td>
</tr>
<tr>
<td>Number of professionals that work for the organization</td>
<td>–</td>
<td>409</td>
<td>0</td>
<td>1500</td>
<td>20.82</td>
<td>85.08</td>
</tr>
<tr>
<td>Characteristics of the neighborhood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of problems in the neighborhood</td>
<td>–</td>
<td>409</td>
<td>4.81</td>
<td>7.31</td>
<td>6.10</td>
<td>0.70</td>
</tr>
<tr>
<td>Number of coproduction processes in the neighborhood</td>
<td>–</td>
<td>409</td>
<td>2</td>
<td>11</td>
<td>7.71</td>
<td>1.99</td>
</tr>
<tr>
<td>Number of organizations in the neighborhood</td>
<td>–</td>
<td>409</td>
<td>21</td>
<td>99</td>
<td>66.21</td>
<td>27.18</td>
</tr>
<tr>
<td>Network variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network size</td>
<td>–</td>
<td>409</td>
<td>0</td>
<td>21</td>
<td>1.28</td>
<td>2.88</td>
</tr>
<tr>
<td>Network density</td>
<td>–</td>
<td>409</td>
<td>0</td>
<td>100</td>
<td>7.18</td>
<td>19.56</td>
</tr>
</tbody>
</table>

Source: Survey “With or Without Civil Society?” (2007).

this variable is skewed (most organizations have only a few members from an ethnic minority group), we calculated the natural logarithm of this variable for the regression models. The share of members of the organization that live in the neighborhood is also measured as a ratio variable. The professional capacity within the organization (i.e., the number of paid employees) is measured in full-time equivalents (FTEs). The missing variables were imputed in SPSS.

We have used three indicators to measure the impact of the neighborhood context. First, the number of projects in the neighborhood is considered. We base this figure on data collected in interviews with key experts in the neighborhoods and desk research in policy documents. Of course, some interpretations have to be made cautiously because an enthusiastic key expert may list many small projects, whereas other key experts may be more hesitant in doing so.

Second, we included an index of problems experienced in the neighborhood. This index is the result of a list of 15 items that refer to serious problems that have been experienced by the organization in the neighborhood (Cronbach’s $\alpha = 0.89$). The problems are various: noise pollution from traffic, other forms of noise pollution, graffiti, trouble with youth, dirt in the streets, dog droppings in the streets, vandalism, stench because of traffic, other forms of stench, lack of parking space, problems due to neighbors, problems due to drug abuse, problems due to bars, air pollution, and aggressive driving. Third, the number of organizations in the neighborhood is used as an independent variable. We base this figure on the number of organizations that were identified in the first phase of the research while building the database of organizations per neighborhood.

To measure the network of each organization we asked with which organization or institute the respondent’s organization has been in contact or has cooperated. The question was asked twice: first as an open question and then using a list of civic organizations that was presented. In both
cases, the possible answers were (1) daily, (2) weekly, (3) monthly, or (4) less frequently. The data were recoded (1) at least monthly contact/cooperation or (0) less or no contact/cooperation. We used Ucinet 6.187 (Borgatti, Everett, & Freeman, 2002) for the calculation of two popular network parameters, that is, size and density.

We will first explain more about network size of the organization. Network size is calculated as the total number of ties with other organizations (Marsden, 1987). We considered a tie between two organizations as present if it is mentioned by at least one organization. The smallest network is zero and the largest network of an organization consists of 21 organizations. Note that many organizations, that is, 63%, have no network at all. An example of an organization with a large network is found in Figure 2 at the bottom: the Neighborhood Council West has many ties. In Ucinet, the number of ties is measured as the degree, while a distinction can be made between in- and out-degree. We applied a standardized measurement for degree that takes into account the number of organizations that could possibly have been mentioned. Statistically, outcomes do not significantly differ according to the measurement of size.

The second network characteristic is density: the number of actual relations between network members, divided by the number of possible relations (Marsden, 1987). It can range between 100, where all network members in a neighborhood know one another, and zero, where no network member in a neighborhood knows any other. A high network density means that most organizations in the neighborhood are connected to each other, which may facilitate information flows and cooperation. An example of a neighborhood with a low network density is Voordorp (Figure 4), which has many one-sided relationships and three nonconnected subnetworks.

In the analyses, we control for the number of years the respondent has been active in the organization (positively correlated to age of the respondent), and education of the respondent (1 = higher professional education; 0 = lower or medium professional education). Among the respondents, women tend to be less educated than men. We also control for the age of the organization (again we use the natural logarithm), the age of the neighborhood (1 = new; 0 = old) and the degree of political attention for the neighborhood (1 = little policy attention; 0 = much policy attention).

### Analytic Strategy

A general expectation in this article is that network patterns influence activities of organizations. We are aware, however, that the reverse argument might also be true, that is, the activity of organizations influences their network patterns. To account for this endogeneity problem, we applied multivariate regression modeling to estimate instrumental variables. We followed Heckman and Robb (1986) and Foster (1997) and estimated two models, where in the first step an instrumental variable is estimated, which is used as a predictor in the second step. We applied this technique for the network parameters size and density; for both, we estimated two instrumental variables: one for each network parameter. It is assumed that the instrumental variable is less endogenous than the original one. In the final analyses, the instrumental variables have been used rather than the original ones.

The following models are estimated: First, we estimate two models explaining variations in the social networks of the organization and save the predicted value for the network parameters in these analyses. Then we estimate two models explaining variations in participation of organizations in neighborhood projects and include the instrumental variables in the last model. The models are:

1. (network size) = α + β(characteristics of members) + β(number of professionals) + β(number of organizations in the neighborhood) + controls
2. (network density) = \( \alpha + \beta(\text{characteristics of members}) + \beta(\text{number of professionals}) + \beta(\text{number of organizations in the neighborhood}) + \text{controls} \)

3. (participation in neighborhood projects) = \( \alpha + \beta(\text{characteristics of members}) + \beta(\text{number of professionals}) + \beta(\text{neighborhood characteristics}) + \text{controls} \)

4. (participation in neighborhood projects) = \( \alpha + \beta(\text{characteristics of members}) + \beta(\text{number of professionals}) + \beta(\text{neighborhood characteristics}) + \beta(\text{estimated network characteristics as instrumental variables; two models, one for predicted value of network size and one for predicted value of network density}) + \text{controls} \)

The dependent variables for Models 1 and 2 are measured on a ratio scale from 0 to 21 (size) and from 0 to 100 (density). We therefore apply multiple regression analysis. The dependent variable for Models 3 and 4 is measured on an ordinal scale and indicates whether an organization (1) is not acquainted with the project; (2) is informed; or (3) participates in the neighborhood project. Because the dependent variable contains several classes but is not normally distributed, we apply multinomial regression analyses here. By applying these multivariate models, we are able to determine whether, for instance, the networks would still be significant when they were analyzed jointly with the background of the members. This analysis enables us to find out to what extent networks influence participation in neighborhood projects, independent of the characteristics of the organization and the neighborhood. For reasons of clarity, we only show the results of the model measuring the chance that an organization participates in neighborhood projects.6

We are aware of two limitations of our analysis. First, data on organizations and their networks are nested in neighborhoods. This violates the assumption of independence among observations made in Ordinary Least Squares (OLS) regression analysis. However, we have information on only eight neighborhoods; hence, multilevel analyses would reveal too few cases at the highest level. We control for the most important neighborhood characteristics in our analyses in order to check for variation in the outcomes that can be attributed to these neighborhoods.

The second obstacle is the problem of causality: do networks influence participation in projects, or the other way around? The influence of networks on participation in neighborhood government might not be an endogenous process. Rather, causality may be reversed, implying that participation enhances network size or density. Ruling out this obstacle without experimental or longitudinal data is hard, but we applied instrumental variable (IV) techniques to inquire into the direction of causality. In the Results Section, we will explain the indications that causality is not reversed. In particular, we found that the share of members living in the neighborhood relates to both enhanced networking and participation. However, the share of members living in the neighborhood fails to have an effect on participation if network density is included, and is very small if network size is included. In addition, the share of ethnic minorities among the members does not influence participation. Yet, once network size and density are taken into consideration, it appears that the larger the share of ethnic minorities in the organization, the lower the chances for participation. We take this as an indication—though not a proof—that causality in general might not be reversed.

DESCRIPTIVE RESULTS

This section describes the characteristics of the civic organizations, neighborhoods, and networks presented in Table 3.

Characteristics of Civic Organizations

In order to know what kind of organizations are involved in neighborhood projects, let us examine their characteristics. The actors that comprise the organization differ (Table 3). Although
the variables are measured at the interval level, we have recoded them into classes to render interpretable results. We differentiate the organizations based on ethnicity of the members and the share of the members who live in the neighborhood. Beginning with ethnicity, we see that more than half of the organizations do not have any members from an ethnic minority group. Only 14% of the organizations have more than 25% ethnic minority members; examples are the Muslim Youth, Alkevit community, and the Turkish Elder Committee. Clearly, ethnic minorities tend to be concentrated in a few organizations.

A few organizations (about 12%) consist solely of members from the neighborhood; usually these are tenants’ or residents’ organizations. Other organizations with high shares of neighborhood residents are religious institutions (e.g., mosques, the “Child and religion” group, the Protestant Church) and educational organizations. A small number of organizations (16%) have a majority (76–99%) of members who live in the neighborhood. The majority of the organizations (72%) have fewer members living in the neighborhood (0–75%).

Moreover, the majority of the organizations in our database (77%) have no professional support, whereas 12% have up to 10 professionals and 11% have more than 10 full-time professionals working in or for the organization. The organizations with many professionals are usually in the educational or social and health sectors. Examples are schools, the Salvation Army, and a shelter for the homeless.

**Description of the Neighborhood Characteristics**

The number of organizations differs greatly between neighborhoods. On an average, there are 66 organizations in each neighborhood, with a maximum of 99 (Noordflank, Dordrecht) and a minimum of 21 (Buurt Stadspolders, Dordrecht).

The perception of problems in the neighborhood was measured by asking the organization a list of 15 standardized items about levels of crime, traffic noise, pollution, and so forth. On an average, 6 of these items were considered problematic, with a minimum of 4.81 and a maximum of 7.31.

Finally, organizations can only participate if there are projects in which to participate (see Hypothesis 6). The expectation is that the more projects there are the higher are participation rates. Table 2 shows that the average number of projects in the neighborhood is 7.7. The minimum is 2 (Voordorp, Utrecht) and maximum 11 (Staart, Dordrecht).

**Description of the Networks of the Organizations**

The organizations maintain networks of different sizes and patterns. Interestingly, most organizations are not connected to other organizations in the neighborhood (76% have no ties). The highest number of ties of one organization is 21. The average number of contacts is very low (1.28). Among the organizations with large networks are a welfare organization, a social housing corporation, and a health care institution. Examples of organizations with small networks are a philately club, a big band, the Go! club (Go! is a table game), a tax advisory office with liaisons to the labor union, and a dog training club.

Density shows whether the organizations that are members of a network know one another or not. A high network density means that most organizations in the network are also connected with each other, which may facilitate information flows and cooperation. A lower density means that the organization members of a network do not know each other. The average density score is 7.18, which is rather low. The minimum density is 0, the maximum 100. We expect that a high density of the network is positively related to participation (see Hypothesis 8).
The two network measures, size and density, are positively correlated \( (r = 0.409, \text{sig} < 0.000, \text{analyses not shown}) \), which implies that usually a large network is also dense, whereas other networks are small and fragmented.

To illustrate what these networks look like, we will examine them more closely at the neighborhood level (Figures 1–3). These neighborhood networks are made up of several organizational networks tied together. In some neighborhoods, the organizational networks are larger and/or denser than in others. Basically, three types of neighborhood networks are found: First, highly intensive networks where many organizations mention each other, with quite a few organizations that are mentioned by many others (Figure 1). Second, medium intensive networks in which many organizations mention one or two other organizations, and some organizations are mentioned frequently (Figure 2). Third, less intensive networks where many organizations do not mention any other organization, and only a few mention one or two others (Figure 3).

The first type—highly intensive networks—is found in the neighborhoods of Lombok (Figure 1), Noordflank, and Lunetten. In Lombok, a few networks can be discerned: the housing corporation Mitros is in contact with the residents’ organizations. The same holds true for the neighborhood council. It is easily understood that Mitros is in contact with many residents’ organizations because these often are tenants’ associations. The residents’ council should have a broader network because they are said to represent all residents in the neighborhood. Unfortunately, they are not in contact with organizations that organize “nice things” (art exhibitions, social events, street parties) like organizations called “Lombox” or “Maanzaad.” The residents’ organizations have very few connections between them. Some organizations have a brokerage position, such as the welfare organization Portes (supports civic organizations), Windmill the Star (physically houses many civic organizations), and entrepreneurs Lombok and the neighborhood information center (a new information point run by some of the “neighborhood mayors”).
The second type—medium intensive networks—is found in only one neighborhood, namely Parkwijk Zuid (Figure 2). This newly built (2001 and later) neighborhood was purposely designed with 30% social housing and 70% owner-occupied housing; single- and multiple-family housing is mixed, although single-family housing prevails. There are a fair number of “big city problems” due to the residential composition. The network is not characterized by several dense networks, as in Lombok. On the contrary, some organizations are connected to a few others, who are again in some cases also connected.

The third type—less intensive networks—is found in four neighborhoods: Staart, Voordorp (Figure 3), Stadspolders, and Oudelandshoek. In Voordorp, most organizations do not mention any other organization in the neighborhood they have contact with. Voordorp is a recently built neighborhood, with high shares (approximately 80%) of native Dutch, and most houses are in the owner-occupied sector. There are very few facilities in the neighborhood itself. We see three separate networks in the neighborhood: one of the primary schools, one of the garden organizations, and one of the sports clubs.

In this section, we described the characteristics of the organization, the neighborhoods, and the networks that we expect to have an impact on participation in neighborhood projects by civic organizations. Below, we will turn to the explanations and show that social networks are important explanatory variables for participation in neighborhood projects.

RESULTS: EXPLAINING PARTICIPATION OF CIVIC ORGANIZATIONS IN NEIGHBORHOOD PROJECTS

We start by assessing the conditions influencing network size and density. We want to establish these conditions because we search for conditions that can function as instrumental variables
that theoretically predict network characteristics but are not—in theory—directly related to participation. However, finding variables that satisfy this condition is usually very difficult, so for practical purposes the exogenous variables from the original equation are added as instruments in the next estimation. In this way, we deal with causality problems. This is a preparatory step toward the final model in Table 5, which explains participation of civic organizations in neighborhood projects.

**Social Networks**

Table 4 shows the results from the models examining the impact of organizational characteristics and the number of other organizations in the neighborhood on the networks of the organizations. The multiple regression model shows that the size of the network is influenced by the characteristics of the members of the organization, but not by those of the neighborhood. The higher the number of ethnic minorities among the members, the larger is the network. Additionally, organizations with a very high share of members that live in the neighborhood have larger networks. Neighborhood characteristics, however, do not influence the size of the network. Network size is thus not different in neighborhoods with many other organizations, problematic neighborhoods, or in neighborhoods with many projects.

The density of the network—indicating how many of the network members of an organization are also connected directly—is explained by characteristics of the members of the organization and the number of other organizations in the neighborhood. More precisely, the share of ethnic minorities among the members positively influences the density of the network. If the number of ethnic minorities in the organization rises, the density of the network also rises. This indicates that
TABLE 4

Explanations for Variation in Network Size and Network Density of Civic Organizations
(Multiple Regression; Standardized Coefficients)

<table>
<thead>
<tr>
<th></th>
<th>Model 1 Network Size</th>
<th>Model 2 Network Density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beta^a</td>
<td>Sign^b</td>
</tr>
<tr>
<td>(Constant)</td>
<td>0.011</td>
<td>0.011</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respondent has high education level</td>
<td>0.21***</td>
<td>0.000</td>
</tr>
<tr>
<td>Years respondent active (ln)</td>
<td>0.068</td>
<td>0.278</td>
</tr>
<tr>
<td>Age of organization (ln)</td>
<td>0.143**</td>
<td>0.025</td>
</tr>
<tr>
<td>Organizational characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% nonnatives among members (ln)</td>
<td>0.16***</td>
<td>0.006</td>
</tr>
<tr>
<td>% residents as members</td>
<td>0.138**</td>
<td>0.016</td>
</tr>
<tr>
<td>Number of professionals</td>
<td>0.015</td>
<td>0.790</td>
</tr>
<tr>
<td>Neighborhood characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of organizations</td>
<td>-0.087</td>
<td>0.133</td>
</tr>
<tr>
<td>N</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>df</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Sign</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Nagelkerke R^2</td>
<td>0.095</td>
<td></td>
</tr>
</tbody>
</table>

Source: Database of organizations; Survey “With or Without Civil Society?” (2007)
^aThe standardized Beta indicates the size of the effect. The + or − indicates the direction of the effect.
^b*** p < 0.01; ** p < 0.05; * p < 0.10.

ethnic minority organizations have tighter networks among themselves than do predominantly “white” organizations.

Of course, our aim is not to explain variations in networks of organizations but rather variations in the participation in neighborhood projects, and to find out what impact these networks have. The multinomial regression in Table 5 lists some very interesting findings (only the models “participation” vs. “nonparticipation” are shown for reasons of clarity).

Organizational Characteristics

Our first hypothesis was that we expected the share of ethnic minorities to have an impact on participation, but we did not know which direction the relationship would take. Initially, there does not seem to be an association: the share of ethnic minorities among the members of the organization is not related to participation in Model 3 (Table 5). However, when controlling for network size and density, the hypothesis is in fact accepted, as Models 4a and 4b in Table 5 show. In such a multivariate model the robust explanatory variable is significant (social network size and density), and the relationship with the share of ethnic minorities also becomes significant. When including the networks of the organization, we see that the share of ethnic minorities among the members has a negative effect on participation of organizations in neighborhood projects. Clearly, the network size of ethnic organizations is large and the density of the network is high, but this leads to lower participation rates in neighborhood projects.

Our second hypothesis was that the higher the share of members that live in the neighborhood, the higher the chance of participation by the organization in neighborhood projects. This hypothesis can be partially accepted. Indeed, even after including the size of the networks of the organization, organizations with more residents participate more. This confirms the theory of Laumann and Pappi (1976) and Laumann et al. (1977, 1978), which states that the interest of an
TABLE 5

Explanations for Variation in the Degree of Participation* in Coproduction Processes by Civic Organizations (Multinomial Regression)

<table>
<thead>
<tr>
<th></th>
<th>Model 3 Participation without Predicted Network</th>
<th>Model 4a Participation with Predicted Network Size</th>
<th>Model 4b Participation with Predicted Network Density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Sig.</td>
<td>B</td>
</tr>
<tr>
<td>Intercept</td>
<td>−1.948</td>
<td>0.502</td>
<td>0.001</td>
</tr>
<tr>
<td><strong>Control variables</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln years respondent active in organization</td>
<td>0.406**</td>
<td>0.033</td>
<td>0.245</td>
</tr>
<tr>
<td>Ln age of the organization</td>
<td>−0.075</td>
<td>0.640</td>
<td>−0.348*</td>
</tr>
<tr>
<td>Lower or medium education respondent</td>
<td>−1.041***</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>Higher education respondent (= ref cat)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Much policy attention for neighborhood</td>
<td>0.310</td>
<td>0.623</td>
<td>0.310</td>
</tr>
<tr>
<td>Little policy attention for neighborhood (= ref cat)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relatively old neighborhood</td>
<td>0.644</td>
<td>0.244</td>
<td>0.644</td>
</tr>
<tr>
<td>Relatively new neighborhood (= ref cat)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Organizational characteristics</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln share of non-natives among members</td>
<td>−0.028</td>
<td>0.874</td>
<td>−0.397*</td>
</tr>
<tr>
<td>Share of residents among members</td>
<td>0.027***</td>
<td>0.000</td>
<td>0.016**</td>
</tr>
<tr>
<td>Number of professionals (full time equivalents)</td>
<td>0.002</td>
<td>0.362</td>
<td>0.002</td>
</tr>
<tr>
<td><strong>Neighborhood characteristics</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of problems in the neighborhood</td>
<td>−0.079</td>
<td>0.863</td>
<td>−0.079</td>
</tr>
<tr>
<td>Number of coproduction projects in the neighborhood</td>
<td>−0.111</td>
<td>0.448</td>
<td>−0.111</td>
</tr>
<tr>
<td>Number of organizations in the neighborhood</td>
<td>0.004</td>
<td>0.799</td>
<td>0.011</td>
</tr>
<tr>
<td><strong>Network (predicted)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted network size</td>
<td>0.679***</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>Predicted network density</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| N   | 290  | 290  | 290  |
| Df  | 22   | 22   | 22   |
| Sign | 0.000 | 0.000 | 0.000 |
| Nagelkerke R² | 0.249 | 0.249 | 0.249 |

Source: Database of organizations; Survey “With or Without Civil Society?” (2007).

*The dependent variable consists of three categories: Project unknown; organization was informed about the project; or the organization gave advice, codelided, or coproduced with the local administration in that project. Since the interest is in the latter category, we don’t show the results of the category “were informed” to enhance clarity. Please contact the authors for the full tables.

b***p < 0.01; **p < 0.05; *p < 0.10.

organization in an issue explains to a large extent the willingness and need to become involved in the solution. However, the effect is only small and disappears once network density is taken into consideration. This implies that the networks of the residents, rather than their stake in the neighborhood, influence their organizations’ chances of participation. Residents tend to meet
others in the supermarket, at schools, and at other facilities, which generates larger and denser networks that facilitate participation.

The third hypothesis (the larger the number of professionals in an organization, the higher the chance that the organization participates in neighborhood projects) can be accepted. This is a direct but small effect that is not visible in Model 3 (Table 5), but the effect appears in Model 4b when network density is included. In other words, if an organization has many professionals, this has a small positive effect on participation—but only if the organization also has a dense network. The share of professionals by itself (without the network) does not relate to participation. The findings show that organizations comprising many professionals with dense networks are more involved in participation projects. The literature (Maloney et al., 2000, 2008; McAdam et al., 1988) tends to overlook these qualities of professionals.

Neighborhood Characteristics

Now, let us consider the hypotheses that focus on neighborhood characteristics. The fourth hypothesis was that we expected some kind of impact (we could not predict the direction) from the number of organizations in the neighborhood. We must reject this hypothesis because this variable is not significant in the models in Table 5. Clearly, it does not matter how many other organizations are present in the neighborhood in explaining the chances of participation of the organization. A further specification is needed, however. When calculating the network density, the number of organizations in a neighborhood positively influenced network density. Therefore, we conclude that Blau’s (1992) hypothesis, that there must be other organizations to cooperate with, as well as the expected free-rider effect (Olson, 1965, 1971), was confirmed.

We also expected the number of problems to positively influence participation of organizations in neighborhood projects (Hypothesis 5). The argument was that one needs a problem to act upon, otherwise action is not needed. This hypothesis is rejected, because the relationship is not significant. This is not in line with what Galaskiewicz (1979) and Laumann and Pappi (1976) state, namely, that one needs a problem to act upon before action is taken.

A final hypothesis (Hypothesis 6) to test at the neighborhood level is that we expected a positive impact of the number of coproduction processes on participation by organizations in neighborhood projects. However, this hypothesis is rejected (Table 5, all models). It is likely that there are only projects if there are problems to act upon (Sampson et al., 2005). The explanation for rejecting Hypotheses 5 and 6 is the same. The reader may remember that Voordorp was voted the most livable neighborhood in the Netherlands for several years in a row. The findings here explain why civic organizations in unproblematic neighborhoods such as Voordorp are involved in neighborhood projects: they do not need a problem to act upon, nor do they need a project to become involved in, but they are intrinsically motivated to act.

Predicted Networks

What happens if we investigate the impact of network characteristics of the organizations on the chances to participate? First, Models 4a and 4b (Table 5) show that the explained variance remains exactly the same, nearly 25%, if the network variables are included. This implies that no extra variance is explained by the characteristics of the predicted networks. Instead, the network characteristics are strongly positively related to participation, and provide us additional insight into the impact of organizational characteristics on participation. Hypothesis 7, the larger the network of the organization the higher the chances of participation, is accepted. The B is large, which indicates a strong impact of the size of the network on the chances of participation. A large
number of contacts implies a large number of available alternatives, which enhances influence in the policy network (Nohria & Eccles, 1992). Similarly, Hypothesis 8, which focused on the density of the network of the organization, is accepted because this variable is significant in Model 4b (Table 5). This supports the findings of Coleman (1990) that cooperation is pronounced in densely connected networks.

In sum, the results reveal some interesting patterns in the conditions for participation. The actual number of relations in—and the density of—the network positively influence participation of civic organizations in neighborhood projects. The impact of organizational characteristics—share of members from an ethnic minority group, or that live in the neighborhood, and the number of professionals—of an organization changes once we include network characteristics to explain participation. One of the great contributions of this study is that we show that the share of ethnic minorities and the number of professionals does influence the likelihood of participation, although this does not seem to be the case at first sight. Despite the networks of these organizations, those with ethnic minorities participate less and those with many professionals participate more. This says something about the participation of ethnic minority organizations (poor) and professional organizations (good). The impact of the share of residents on participation remains significant, even when network size is taken into consideration. However, it appears to be spurious once network density is included in the model. This indicates that it is not the fact of many members living in the neighborhood but the density of their network that positively influences participation of residents’ organizations. Neighborhood variables—number of projects, organizations, and problems—do not influence participation.

The findings are summarized in Figure 4.

**CONCLUSION**

The purpose of this article was to study the relative influence of an organization’s social network on participation in neighborhood projects, and to find out which network characteristics matter more, being embedded in a densely connected network or having a large network. To answer these questions, the impact of organizational characteristics, neighborhood characteristics,
social network patterns were analyzed. The unit of analysis was the organization, while the kinds of local activities undertaken were taken as attributes of a given organization. To answer the research question we used data collected in 2007 from more than 400 organizations in eight neighborhoods in two Dutch cities.

First, the networks among organizations in each neighborhood were illustrated in figures. It became clear that out of the eight research neighborhoods, three (Lombok, Lunetten in Utrecht, and Noordflank in Dordrecht) held highly intensive networks, along with many organizations that mention other organizations. In one neighborhood, a medium intensive network existed (Parkwijk in Utrecht). In four of the neighborhoods, hardly any networks existed between organizations (Voordorp in Utrecht; Staart, Stadspolders, and Oudelandshoek in Dordrecht). Organizations that have high scores on the network indicators are welfare associations, housing corporations, neighborhood councils, residents’ organizations, and primary schools.

The analysis shows that organizational characteristics, neighborhood characteristics, and network variables together explain about 25% of the variation in participation of civic organizations in neighborhood projects, and network characteristics have high explanatory value for participation. Neighborhood characteristics measured as the number of problems, number of organizations, and the number of projects is not significant. Organizations with high numbers of professionals working in them have higher chances to be actively involved, despite the density of the networks of these organizations. Clearly, participation in neighborhood projects does not so much depend on the characteristics of the neighborhood as on the number of organizations in, and the density of, the network of the organization.

One important contribution of this article has been to show that ethnic minority organizations participate less than other organizations. It is the size and density of the network of the organizations with many ethnic minority members that negatively influences the organization’s chance of participation in neighborhood projects. We do not wish to suggest, of course, that the work of Verba and Nie (1972) is useless. They suggest that ethnic minorities participate more because of higher levels of group consciousness. We suggest that the dense and large networks among ethnic minority organizations do not support becoming involved in more general, mainstream government-led projects in the neighborhoods.

A second contribution of this article has been to show that organizations with many professionals participate slightly more than other organizations, but only if the network density of these organizations is taken into consideration. We agree with Maloney et al. (2000) that paid staff can indeed provide more expertise than volunteers.

Differences between neighborhoods hardly account for variations in participation. This finding clearly suggests that it is incorrect for policymakers to claim that generating participation in certain types of neighborhoods is a hopeless task. The municipal authorities can help civic organizations to be more actively involved in neighborhood projects by building networks among the organizations. Extra attention is needed for organizations with high shares of ethnic minorities; they do have large and dense networks but are less involved in neighborhood projects. Perhaps they do not have the right networks, or lack the capacities to become involved. All kinds of civic organizations function as intermediaries between individuals and administrative entities, and a deeper understanding of their activities is therefore essential in the study of neighborhoods.

For urban geographers and sociologists interested in studying the functioning of civic organizations, many underexplored applications of theory and research remain. First, individuals behave differently in organizations; that is, organizations are the result of the sum of activities, attitudes, values, and rules of individuals. We cannot guarantee that the most important representative of the organization has filled in the questionnaire from the point of view of the organization, or from his or her own point of view, even though we asked them to do so. Moreover, we do not know from this study to what extent these organizations represent the opinion of
the residents. Questions of representation and legitimacy of civic organizations still need to be addressed.

Second, it would be relevant to investigate the extent to which the self-reported participation of the organizations is similarly perceived by municipal authorities. Do they agree that the organizations participate in these publicly managed projects or not? An important aspect of power in policy networks is the relational aspect. Only if those with power agree that those with less power have influence, is this influence real (Stokman, 1994). In the present study, the network position of local administrators and politicians was not included.

Third, we measured networks of organizations within neighborhoods, but did not construct supra-neighborhood-level networks. Our findings therefore indicate neither the impact of ties external to the neighborhood nor their impact on participation in neighborhood projects. It is certainly possible that some organizations, such as the Welfare Organization or the Housing Corporation, are active in several neighborhoods and are well acquainted with local-level politicians. Future research may focus on the relative impact of neighborhood networks as compared to city-level networks.

A possible policy recommendation would be that in order to improve the active participation of organizations in neighborhood projects, investments in the networks of civic organizations would be wise. Second, some organizations play an important role in the neighborhood and can be used as contacts. Local policymakers are often in need of one contact, rather than contacting every individual organization in the neighborhood. Welfare organizations, the neighborhood council, primary schools, and in some cases residents’ organizations have excellent networks and can provide easy-to-access information for local politicians.

ENDNOTES

1 An organization is located “in a neighborhood” if it has an address in the neighborhood as registered by the Chambers of Commerce or listed in the telephone directory, or because it is mentioned in the local newspapers, or by key informants (see also the section on data collection).

2 All organizations received a questionnaire; we did not draw a sample of the organizations in our database. We reminded the organizations up to three times to fill in the questionnaire if they had not done so yet. After three reminders we considered the organization as a nonresponse.

3 The new third category (“advice, codecide, or coproduce”) was created because each of these activities refers to participation in neighborhood projects as defined in the theoretical section.

4 The professional capacity of the organization is correlated with the financial resources available to the organization. Because such a correlation would be problematic in the analyses, we decided to include the number of professionals active in the organization as an indicator of financial and management capacity.

5 We compared the experience of the organizations to that of the residents in the neighborhoods because the same questions are presented biannually to a sample of residents. The outcome is highly comparable: the same problems were experienced by the organizations and by the residents. This does not prove that these problems exist. However, it does indicate that organizations can be regarded as representatives of residents. See Dekker and Lelieveldt (2006) for more details, or contact the authors if readers do not read Dutch.

6 To obtain the full models, please contact the authors.

REFERENCES


