Chapter 3

Effect of Temperature on the Selection of Semiconducting Single-Walled Carbon Nanotubes

We report on the investigation of the temperature effect on the selective dispersion of single-walled carbon nanotubes (SWNTs) by Poly(3-dodecylthiophene-2,5-diyl) wrapping. The interaction mechanism between polymer chains and SWNTs is studied by controlling the polymer aggregation via variation of the processing temperature. Optical absorption and photoluminescence measurements including time resolved photoluminescence spectroscopy are employed to study the degree of interaction between the polymer in different aggregation states and the carbon nanotubes. At low processing temperatures, results are consistent with the planarization of the polymer chains and with SWNTs working as seeds for polymer aggregation. The formation of small clusters is due to the inter-digitation of alkyl tails between neighboring polymer-wrapped SWNTs, as experimentally evidenced and investigated by molecular dynamics simulations. The interaction between the tubes within the clusters, which is reflected in the variation of the photoluminescence dynamics of the polymer, can be suppressed by warming up the sample.

3.1 Introduction

Polymer wrapping of SWNTs is preferable to the other techniques due to the high selectivity, easy availability of conjugated polymers and simplicity of processing.\cite{1} It is important to note that the effectiveness of the selectivity strongly depends not only on the structure of the conjugated polymer, but also on many other parameters such as solvent,\cite{2} polymer molecular weight,\cite{3} polymer concentration as well as the duration of sonication and centrifugation.\cite{4} All these parameters have been found to have a significant influence on the effectiveness of the s-SWNT selection, and their effects can be detected in the optical properties of the sample (absorption and photoluminescence) and transport properties (i.e. charge carrier mobility). Knowledge of how the different preparation parameters influence the selection mechanism is fundamental for understanding the polymer-wrapping mechanism and also to improve it.

To date, the most unexplored parameter with respect to its effect on the selectivity for semiconducting SWNT species is the temperature. Lee et al. reported carbon nanotube selection using Poly(3-dodecylthiophene-2,5-diyl) (P3DDT), where the best P3DDT-SWNT dispersion was achieved by sonication of the mixture at 50 °C, which corresponds to the melting temperature of the polymer side-chains.\cite{5} In contrast, in some other reported protocols it is stated that the sonication process should be done at low temperature.\cite{1} These inconsistencies point to the necessity to systematically investigate the influence of temperature in the nanotube selection process.

In this chapter, a systematic investigation on the effect of temperature during different steps of the s-SWNT selection process using P3DDT is reported. The interaction between polymer chains and SWNTs is investigated by optical absorption, steady-state and time resolved photoluminescence measurements. First, we study the effect of the polymer aggregation, which is indicated by the appearance of a new feature in the absorption spectrum of the polymer at 600 nm, during the s-SWNT purification process. We found the polymer aggregation can be stabilized by the interaction with the carbon nanotubes. The shorter lifetime of the polymer PL evidences the formation of small SWNT clusters in samples which originate from aggregated P3DDT solutions, these clusters can be destroyed with a mild temperature treatment. The formation of SWNT clusters by interdigitation of alkyl chains is supported by molecular dynamics simulations.

In addition, we performed experiments varying the sonication temperature to understand the effect on the nanotubes individualization. Optimal dispersions are
found for temperatures ranging from 10 °C to 20 °C. Optical investigations provide
evidence of the formation of small clusters for sonication performed at 0 °C, which also
in this case, are destroyed by heating the sample to 50 °C.

3.2 Effect of polymer solubilization to SWNT wrapping mechanism

One important aspect in the sample preparation procedure is the solubility of the
polymer. When polymers such as polyfluorene are solubilized in very “good” solvents
such as chloroform or tetrahydrofuran, no s-SWNT selectivity is observed.[1,2] The best
selectivity for s-SWNT has been observed only when the dispersion is carried out using
“poor” solvents, such as toluene or xylene.[3] Nevertheless, if the polymer cannot be
well dissolved, its interaction with the nanotubes will be obstructed, thus it is
important to control the polymer solubility to obtain a good SWNT dispersion.
Polyfluorene, which is one of the most selective conjugated polymers for s-SWNTs, is
known to display a small feature in the absorption spectrum at 437 nm. This is the
fingerprint of the so-called beta phase, which is due to the interaction of the alkyl side
chains when the polymer is in a poor solvent. The formation of the beta phase is
typically observed in Poly(9,9-di-n-dodecylfluorenyl-2,7-diyl) (PFO), but not in
polyfluorenes with longer alkyl side chains.[6]

Polythiophenes are known to exhibit high crystallinity (polymer aggregates)
because of the planarization of the thiophene rings. This kind of polymer aggregation
can be destroyed either by applying thermal energy to the solution,[7] or by dissolving
the polymer in a superior solvent.[8] The importance of the polymer solubilization in
the selection of s-SWNTs is investigated. Figure 3.1a shows the absorption of pristine
P3DDT in two forms, with- (red curve) and without-aggregation (orange curve). The
aggregation level is controlled by varying the thermal energy used in the solubilization
of the polymer chains. Solutions prepared at 50 °C have an orange color, while those
prepared at 10 °C are red, indicating the presence of polymer aggregates.[9–11]
The color change derives from the red shift of the main absorption peak from 450 nm to 470 nm
(corresponding to the π-π* transition of the thiophene ring) and by the increased
prominence of the feature appearing between 580 nm and 600 nm (corresponding to
the vibronic side-band transition and 0-0 transition) (See Figure 3.1a).[12] which
indicates polymer planarization. Importantly, by increasing the temperature, the
aggregation of the polymer can be totally suppressed.
Both forms of the polymer show similar ability to select single walled carbon nanotubes as displayed in Figure 3.1b. The absorption features in the spectra ranging from 700 to 900 nm and 1000 to 1600 nm correspond to $E_{22}$ and $E_{11}$ transitions of semiconducting tubes, respectively. While the metallic nanotubes have absorption in the range 500 to 600 nm, which cannot be observed because overlap with the polymer absorption. Small differences in the absorption of these two samples can be observed: first, the polymer peak in the sample produced with polymer without aggregation (orange solution) is blue shifted, similar to the pristine polymer solution...
(without SWNTs), as can be seen in Figure 3.1a. Second, the dispersion prepared with the orange solution shows an enhanced absorption peak at 600 nm (gray area in Figure 3.1b).

Interestingly, the aggregation signature, i.e. the 600 nm peak, cannot be avoided even when using the non-aggregated polymer form for the dispersion (Figure 3.1b). This observation is in contrast with the findings obtained with the pristine P3DDT polymer solution, in which the 580 - 600 nm peak can be completely removed by heating the solution to 50 °C. In the case of the sample prepared with the non-aggregated form, this peak indicates the planarization of the polymer chains due to the adsorption on the nanotube wall. For samples prepared with the aggregated polymer, the high intensity of the absorption feature indicating the aggregation originates from two contributions: the aggregation already presents in the pristine polymer, and the planarization of the polymer due to the interaction with the SWNT walls (vide supra).

As a further check of this interpretation, steady state and time resolved photoluminescence were performed on the samples with- and without- polymer aggregates. The photoluminescence of the solution shows two peaks, corresponding to the vibronic transitions of the polymer. However, due to the strong luminescence from the free polymer chains that are still present in the solution, and the strong self-absorption of the polymer, it is difficult to extract useful information from these measurements. Therefore, it is important to completely remove the free polymer

![Normalized absorption spectra of polymer-wrapped SWNT dispersions after complete free polymer removal prepared with P3DDT with- and without-aggregation. The assignment of the chiralities follow previously reported literature data.](image)

Figure 3.2 Normalized absorption spectra of polymer-wrapped SWNT dispersions after complete free polymer removal prepared with P3DDT with- and without-aggregation. The assignment of the chiralities follow previously reported literature data. [5]
chains still present in the solution to understand the difference between the samples with- and without- aggregation. The removal process is equally effective for both samples as shown in Figure 3.2. Here, the \(\pi-\pi^*\) transition peak completely disappears and as replacements, the two peaks at 580 and 600 nm become prominent, indicating a higher planarization of the polymer chains interacting with the SWNT walls. The intensity of the polymer peaks in both samples is similar, proving that the higher intensity peak at 600 nm in the samples with aggregation (before free polymer removal, red spectra in Figure 3.1b) originated mainly from aggregates of the free polymer in solution.

The PL spectra of these super-clean samples are identical as shown in Figure 3.3a. Figure 3.3b shows the PL decays (measured at 580 nm) of the P3DDT-SWNT hybrids, prepared from polymer solutions with- and without-aggregation. The P3DDT-SWNT

Figure 3.3 (a) Photoluminescence spectra (polymer component) of P3DDT-wrapped SWNT dispersions after complete free polymer removal, obtained from polymer solutions with- and without-aggregation. (b) Time resolved photoluminescence of the samples as in (a) measured at 580 nm. The dashed black lines are the fittings of the experimental data.
dispersion prepared with the orange solution shows similar behavior as the free polymer chains and is well fitted with a mono-exponential function with lifetime $\tau = 481 \pm 10$ ps, while the P3DDT-SWNT hybrid prepared with the red solution containing aggregated polymer, shows a bi-exponential behavior with time decays $\tau_1 = 53 \pm 5$ ps and $\tau_2 = 436 \pm 10$ ps. A similar behavior has been observed by Gao et al., in PFO/SWNT hybrids.\[14] However, what appears peculiar in the P3DDT-SWNT case is that only the lifetime of the two samples differs while both the absorption and the steady state PL are identical.

It is important to note that the lifetime of the pristine polymer with-aggregation is also shorter (520 ps) than the non-aggregated one (400 ps; averaged from tri-exponential), and this is due to the opening of non-radiative channels provided by the inter-chain interactions.\[10] Since in our samples the free polymer has been fully removed, as proven by the absorption and PL spectra, it is unlikely that inter-chain interactions between free polymer chains could occur. We propose therefore, that in the SWNT wrapped with the aggregated polymer, the polymer conformation around the SWNT wall is different from that in the samples fabricated with the non-aggregated solution. This different conformation could favor the formation of small carbon nanotube clusters, which could also be induced by interdigitation of the P3DDT alkyl side chains. Once formed, these clusters increase the probability of excitation transfer from the polymer to the SWNTs and inter-nanotube transfers.

To verify the plausibility of the depicted mechanism we have performed a control experiment. The sample obtained with the red-form of the polymer (at 10 °C) was measured just after centrifugation, while a second fraction of the sample was heated with a hot plate at 20 °C (about room temperature) and a third fraction at 50 °C. After heating the PL intensity increases and the lifetime becomes longer and mono-exponential as shown in Figure 3.4a and Figure 3.4b, respectively. The fitting of the PL decay gives for the 10 °C sample lifetimes $\tau_1 = 34$ ps and $\tau_2 = 406$ ps; for the 20 °C sample $\tau_1 = 33$ ps and $\tau_2 = 436$ ps; and for the 50 °C sample $\tau = 498$ ps. It is important to notice that the phenomena are not reversible by cooling the solutions which have been treated at higher temperature. This finding provides very strong evidence for the formation of small clusters of nanotubes by interdigitation of the alkyl side chains of P3DDT.
3.3 The carbon nanotubes twins

Molecular dynamics simulations are a powerful tool to investigate the precise microscopic mechanism leading to these surprising experimental observations. Therefore, our collaborators, the group of Prof. Maria Christina dos Santos, evaluated the possible wrapping geometries of this system using MD simulations. P3DDT polymer chains possess characteristics leading to an efficient wrapping on nanotubes: a relatively flexible backbone, aromatic rings in the main chain, and long lateral alkyl tails. The last feature also facilitates the wrapping around larger diameter nanotubes.[15] As we show below, the P3DDT-SWNT suspensions present more absorption peaks than the suspensions prepared with PFO,[14] and a similar selectivity as that obtained with dodecyl-polyfluorenes,[15] including species from the large
diameter side of the typical HiPCO diameter distribution. For this reason, we chose nanotubes having diameters ~1.3 nm for the simulations, which are also more difficult cases for polymer wrapping.

The assembly of polymer chains around a single nanotube was carried out by allowing the chains to approach the nanotube, through impulse dynamics, until the total coverage of the nanotube surface was reached. The calculations showed that up to three chains can attach to nanotubes having diameters close to 1 nm, as shown in Figure 3.5a. This figure also evidences the tendency of P3DDT to adopt a helical conformation, the interdigitation of alkyl tails and the crowding of alkyl groups on the nanotube surface (at the left end) prevents the thiophene rings from fully adhering to the surface. These segments of chains not attached to the nanotube and the long alkyl tails that point outwards can easily bind to other polymer chains, provoking the growth of polymer aggregates around the nanotube, or they can bind to another nanotube.

![Figure 3.5 Assembly of P3DDT polymers on nanotubes in toluene solutions (toluene not shown for clarity). Carbon nanotubes are represented by the blue structures, and the polymers by overlapping spheres: yellow=S, gray=C, white=H. (a) (12,7) nanotube wrapped by 3 polymer chains; (b) a dyad of (12,10) and (10,9) SWNTs wrapped by 7 polymer chains.](image-url)
Figure 3.5b shows a pair of nanotubes wrapped by seven polymer chains in which more than one chain binds to the two tubes at the same time. This is made possible by the alkyl tail length being long enough so as to hold small diameter nanotubes efficiently and at the same time to provide some degree of conformational disorder, offering another example of the efficiency of long saturated carbon chains in dispersing carbon nanotubes.[16] Interestingly, in these dyads the nanotubes are not coaxially aligned and there is at least one polymer layer between them, which can explain the variation in the dynamics of PL reported in Figure 3.3b.

3.4 Influence of temperature during the sonication process

In addition to the investigation of the temperature effects on the polymer aggregation and the resulting selectivity, we performed further experiments to investigate the effect of the temperature during the sonication process, which can play an important role in the final SWNT dispersion quality. In particular, when we aim at obtaining a dense network of s-SWNTs for fabrication of electronic devices, it is important to increase the SWNT concentration in the final solution without damaging the purity of the sample.[17,18] Figure 3.6a depicts absorption spectra of P3DDT–dispersed carbon nanotubes at various sonication temperatures, ranging from 0 °C to 80 °C, from which the s-SWNT concentration can be determined (Table 3.1). It is important to note that these are not super-clean samples (obtained with extensive removal of the excess polymer) but are samples as reported in Figure 3.1. Here, the highest SWNTs concentration are obtained by sonicating the P3DDT–SWNT solutions between 10 °C - 20 °C. Furthermore, the concentration of selected SWNT drastically drops when the sonication is performed at temperatures higher than 50 °C. This behavior, which is highly reproducible by careful control of the sonication bath temperature, is in marked contrast to what was previously reported.[5] This result is in agreement with a previous report showing that by long sonication a lower SWNTs concentration is obtained, due to the temperature increase.[19]

The important feature evidenced by these measurements is that the peak at 600 nm, attributed to polymer aggregation, is proportional to the concentration of carbon nanotubes and is independent of the sonication temperature. To quantify it, we calculate the relative intensity of the polymer aggregation absorption peak and the strongest SWNT absorption at 1147 nm, which corresponds to the (7,6) nanotube. The
Figure 3.6 (a) Absorption, (b) normalized absorption spectra (to (7,6) tube), and (c) photoluminescence spectra of P3DDT-wrapped SWNTs with different sonication temperatures, starting from a polymer solution without-aggregation. (d) Normalized PL yield of P3DDT-SWNTs sonicated at different temperature. Data for 5 different SWNT species [(7,5), (7,6), (8,6), (9,5), (10,6)] are shown in the figure.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>s-SWNT concentration (μg/mL)</th>
<th>Relative peak intensity 600 nm / 1147 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.23</td>
<td>2.04</td>
</tr>
<tr>
<td>10</td>
<td>21.86</td>
<td>1.66</td>
</tr>
<tr>
<td>20</td>
<td>19.43</td>
<td>1.65</td>
</tr>
<tr>
<td>30</td>
<td>16.20</td>
<td>1.62</td>
</tr>
<tr>
<td>40</td>
<td>18.18</td>
<td>1.54</td>
</tr>
<tr>
<td>50</td>
<td>16.54</td>
<td>1.59</td>
</tr>
<tr>
<td>60</td>
<td>4.35</td>
<td>1.64</td>
</tr>
<tr>
<td>70</td>
<td>2.27</td>
<td>1.59</td>
</tr>
<tr>
<td>80</td>
<td>1.14</td>
<td>1.58</td>
</tr>
</tbody>
</table>

Table 3.1 Estimation of the s-SWNTs concentration obtained using the C absorption cross-section ($\alpha(E,\nu) \approx 1 \times 10^{-18}$/atom)\(^{[20]}\) and relative peak intensity of polymer and (7,6) nanotube at different sonication temperature as reported in Figure 3.6a.
relative intensity is constant for almost all samples, ~1.6 (Table 3.1), except for samples sonicated at 0 °C where relative intensity is doubled, showing that at this temperature there is more polymer aggregation in the solution. Figure 3.6b, shows the absorption spectra of Figure 3.6a normalized to the (7,6) tubes intensity. The increasing of the sonication temperature results in higher selectivity toward small diameter SWNTs, while the selectivity to the large diameter ones decreases. A deep microscopic understanding of this temperature dependent population variation would require a separate study.

The photoluminescence spectra of the nanotube samples are shown in Figure 3.6c and the normalized PL yield (integrated PL / absorption) of several tube chiralities are shown in the Figure 3.6d. Individualized SWNTs are expected to have higher PL yields than bundles. The PL yield shows that P3DDT individualizes smaller diameter nanotubes better than larger ones. However, if the temperature changes there is no big variation of the quantum yield. Only the sample prepared at 0 °C is an exception, showing higher PL yield at small diameter tubes. With the exception for 0 °C, we conclude that the variation of temperature affects final concentration and selectivity to smaller diameter SWNTs, with similar quality of individualization.

![Absorption spectra](image)

Figure 3.7 Absorption spectra after centrifugation of P3DDT-SWNTs obtained from polymer solutions without-aggregation sonicated at 0 °C with and without thermal treatment at 50 °C before centrifugation.

To explain this variation at 0 °C, we propose that the polymer aggregation leads to inter-chain interaction between neighboring polymer-wrapped SWNTs, that could induce them to precipitate during the centrifugation due to their larger mass. This gives rise to a lower nanotube concentration in solution, but with a higher quality of individualization (higher PL yield). Also in this case the formation of small wrapped-SWNT clusters can be clarified by performing a heating treatment (50 °C, 5 minutes).
right after the sonication of the solution at 0 °C and before the ultracentrifugation process. Through this thermal treatment, we obtain 50% higher carbon nanotube content than the solutions that did not undergo any treatment, as shown in Figure 3.7. This indicates that the post-preparation thermal treatment effectively destroys the polymer-polymer interaction in the cluster, leaving high quality individually dispersed carbon nanotubes in the supernatant.

3.5 Conclusion

In conclusion, we have systematically investigated the effect of temperature toward s-SWNTs selectivity by P3DDT polymer wrapping. The interaction of the polymer chains with the SWNT walls stabilizes planarization of the polymer chains, which becomes very evident in super-clean samples where the excess polymer has been fully removed. These samples display different PL features depending on the state of aggregation of the polymer, despite of their identical absorption spectra. The shorter lifetime measured in super-clean samples prepared from the aggregated polymer solution results from the formation of small clusters and opening of new non-radiative channels. The formation of these clusters is confirmed by molecular dynamics simulations and by the fact that the interaction between tubes is suppressed when thermally treating the solution at 50 °C. Furthermore, we demonstrate that increasing the temperature during sonication results in higher level of bundling and precipitation of SWNTs thus lowering the final concentration, and at the same time selects better smaller diameter tubes. The optimal sonication temperature for obtaining dispersion of high concentration containing individualized s-SWNT is 10 °C – 20 °C. Sonication at lower temperature (0 °C), gives rise to small bundles of polymer-wrapped SWNTs which can be destroyed upon annealing.

3.6 Methods

Preparation of the semiconducting SWNT dispersion. Poly(3-dodecylthiophene-2,5-diyl) was synthesized via GRIM method.[21] The molecular weight (M_n = 26,800 g/mol, M_w = 29,000 g/mol) was determined by gel permeation chromatography (GPC) (using polystyrene standards, and THF as eluent). HIPCO SWNT were purchased from Unidym Inc. and used as received. To investigate the effect of polymer aggregation, dispersions with 1 mg SWNT, 3 mg polymer in 10 mL toluene were prepared. First, the polymer was dissolved in toluene and then the solution was sonicated with cup horn bath (Misonix 3000) at 15 W, 50 °C to fully
dissolve the polymer. This gives rise to a non-aggregated polymer solution of orange color. A second type of sample is obtained by sonication of the polymer solution at low temperature (10 °C), resulting in a red colored solution that shows the signature of polymer aggregation in the absorption spectrum. After preparation of the two types of polymer solutions, SWNTs were added, then the samples were sonicated with an ultrasonicator (Misonix 3000, output power 65 W) with cup horn bath for 2 h at 10 °C, followed by ultracentrifugation at 40,000 rpm (196,000 g) for 1 h in an ultracentrifuge Beckman Coulter Optima XE-90 (rotor: SW55Ti) to remove all the remaining bundles and impurities. The ultracentrifugation is performed always at 10 °C to reduce solvent evaporation. To investigate the effect of the sonication temperature on the selectivity of the nanotubes, the SWNT-P3DDT solution was prepared from non-aggregated (orange) polymer solutions. The temperature of the bath used during sonication was varied between 0 °C - 80 °C with a close circuit chiller. To keep similar cavitation with increasing temperature, we increase the output power of the ultrasonicator to keep the same power in the cup horn bath. The supernatant was carefully separated from the pellet for further measurement. Free polymer removal is obtained using a previously described procedure, in which the precipitation of the polymer-wrapped SWNTs is provoked by a sequence of ultracentrifugation steps. The obtained pellet is subsequently washed and re-dispersed in toluene. The procedure is repeated several times until no changes in the absorption spectra are observed.

**Optical characterization of the semiconducting SWNT dispersion.**

Optical measurements were performed to check the concentration of the carbon nanotubes selected by the polymers. Absorption spectra were recorded by a UV-Vis-NIR spectrophotometer (Shimadzu UV-3600). Photoluminescence (PL) measurements were conducted exciting the polymer solutions at 380 nm by the second harmonic of a Kerr mode-locked Ti-sapphire laser, delivering 150 fs pulses with repetition frequency of ~76 MHz. SWNTs were excited at a wavelength of 760 nm. Steady state photoluminescence spectra were recorded in transmission mode by a Si-CCD from Hamamatsu and InGaAs photodetector array from Andor, while the time-resolved PL measurements were recorded by a streak camera with a visible- and a NIR-sensitive photocathode (Hamamatsu Photonics) working in synchroscan mode (time resolution around 2 ps). All measurements were carried out at room temperature and the spectra were corrected for instrumental response.

**Molecular dynamics simulation.** The binding of P3DDT polymer chains to SWNTs was studied through a molecular modeling technique involving alternate steps
of energy minimizations and molecular dynamics. Nanotubes of diameters close to 1 nm and near-armchair chiral indices were chosen, as they are the one evidenced by the experiments. The classical CVFF950 force field was used.[22] Forces include bond stretching, bond angle and torsion angle potentials, van der Waals interactions and Coulomb interactions between atomic charges internally stored in this force field, as implemented in the package Cerius 2.[23] Polymer chains contain 20 repeat units and the nanotube lengths are 100 to 200 Å, with open ends. Simulations were run in the micro canonical NVE ensemble at T = 300 K. The initial atom velocities were set according to Maxwell-Boltzmann distribution plus an impulse at a given direction to mimic the effect of an ultrasound wave. The integration time step was 1 fs and the dynamics cycles lasted 50 ps. Energy minimizations and 50 ps dynamic cycles were repeated to a total of 1 ns simulation time. A toluene layer was included to cover the superstructures following a procedure previously described.[14,15]
3.7 References