Development of sucking patterns in preterm Infants
Costa, Saakje Petronella da

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
3 The reliability of the Neonatal Oral-Motor Assessment Scale

SAAKJE P. DA COSTA BH
CEES P. VAN DER SCHANS, PHD, PT, CE

Research and Innovation Group in Health Care and Nursing, Hanze University, Applied Sciences, Groningen, the Netherlands.

Abstract

Objectives Sucking problems in preterm infants can be specified by means of visual observation. The Neonatal Oral-Motor Assessment Scale (NOMAS) is the visual observation method most commonly used to assess the non-nutritive sucking (NNS) and nutritive sucking (NS) skills of infants up to approximately eight weeks post term. During the first two minutes of a regular feeding the infant’s sucking skill is assessed, either immediately or on video. Although NOMAS has been used since 1993, little is known about the method’s reliability. The aim of our study was to determine the intra-rater agreement and inter-rater reliability of NOMAS.

Methods The 75 infants included in this study were born at 26 to 36 weeks’ postmenstrual age (PMA). Four observers participated in the study. They were trained and certified to administer NOMAS in the Netherlands by M.M. Palmer between 2000 and 2002.

Results We found the intra-rater agreement of NOMAS to be ‘fair’ to ‘almost perfect’ (Cohen’s Kappa (κ) between 0.33 and 0.94), while the inter-rater agreement with respect to the diagnosis was ‘moderate’ to ‘substantial’ (Cohen’s κ, between 0.40 and 0.65). As a diagnostic tool, however, the current version of NOMAS cannot be used for both fullterm and preterm infants. For a measuring instrument such as NOMAS one should aim at reliability coefficients for inter-rater and test re-test agreement of at least 0.8. A Cohen’s κ of 0.6 or less we find unacceptable. Nonetheless, by observing sucking and swallowing according to a protocol much useful information can be gathered about the development of an infant’s sucking skills. For instance, whether the infant is able to co-ordinate sucking and swallowing, whether the infant can maintain sucking, swallowing and breathing during the
continuous phase and whether the infant is able to suck rhythmically with equally long bursts. In addition, NOMAS offers useful aids for intervention.

Conclusions NOMAS should be re-adjusted in order to improve inter-rater agreement and at the same time current insights into the development of sucking and swallowing should be incorporated in the method.

Introduction

Feeding problems occur frequently in preterm infants during their first year of life, particularly in infants of gestational age (GA) of 32 wks or less. However, the exact prevalence of feeding problems in preterm infants is unknown. In the case of preterm infants feeding difficulties usually have a medical cause (gastrointestinal, neurological or pulmonary) due to immaturity and diseases of one or more organ systems and often painful, but medically necessary interventions in the infant's face, mouth and throat region related to these problems. Infants born prior to 34 weeks' gestational age suffer more gastrointestinal and oral sensory problems, such as abnormal oral reflex activity.

Most feeding difficulties in preterm infants are caused by immature or inadequate coordination of the sucking, swallowing and breathing sequence. In cases of impaired coordination, liquid may be aspirated into the trachea and so into the lungs. Aspiration may occur with no observable signs. In some cases infants may choke, be short of breath or disorders of the respiratory tract, a decrease in oxygen saturation, apnoea and bradycardia may occur. In case of low birthweight in addition to prematurity these problems are often more serious and longer lasting, particularly in the case of gastrointestinal disorders and if medical interventions like artificial ventilation had been necessary. Difficulties during feeding may also lead to insufficient intake. Insufficient intake, especially in the case of a newborn that is ill, may lead to tension on the part of the caregiver. And tense interactions between the infant and his environment could be a breeding ground for behavioural and parent-related feeding problems in the long run. For these reasons it is important to intervene as quickly as possible and to find out whether feeding problems persist over time, or recover.

Sucking and swallowing movements of newborns can be assessed in different ways. In the case of direct assessment, sucking and swallowing can be described by means of various measures such as measuring saturation, heart rate, pharyngeal pressure, breathing pattern and the duration of inhaling and exhaling. On the basis of these assessments conclusions may be drawn regarding the coordination of breathing and swallowing, sucking pressure, efficiency, frequency and duration, and the respiratory
<table>
<thead>
<tr>
<th>Assessment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Neonatal Oral-Motor Assessment Scale (NOMAS), Palmer, Crawley and Blanco, 1993 (10)</td>
<td>Checklists of behaviours in categories of normal, disorganised and dysfunctional tongue and jaw movements. From birth up to 8 weeks' corrected age.</td>
</tr>
<tr>
<td>3. Preterm Infant Breast-feeding Behaviour Scale (PIBBS), Nyqvist et al., 1996 (12)</td>
<td>Diary kept by mother: rooting, amount of breast in mouth, latching, sucking, sucking bursts, swallowing state, letdown and time.</td>
</tr>
<tr>
<td>6. Infant Feeding Evaluation, Swigert, 1998 (15)</td>
<td>Non-standardised evaluation: means of documenting a variety of observations, including infants’ responses to attempted interventions. Devised for birth to four months, components for preterm or ill infants not specified.</td>
</tr>
<tr>
<td>7. Semi-demand Feeding Method for Healthy Preterm Infants, McCain, 2003 (16)</td>
<td>The method combines the use of non-nutritive sucking to promote waking behaviour for feeding, use of behavioural assessment to identify readiness for feeding, and systematic observation of and response to infant behavioural cues to regulate frequency, length, and volume of oral feedings.</td>
</tr>
<tr>
<td>8. Early Feeding Skills Assessment for preterm infants (EFS), Thoyre, Shaker and Pridham, 2005 (17)</td>
<td>A checklist for assessing infant readiness for and tolerance of feeding and for profiling the infant's developmental stage regarding specific feeding skills. By placing markers on the lateral angle of the eye, tip of the jaw and throat during sucking while the face of the infant is recorded in profile, the jaw and throat movements are calculated using the direct linear transformation (DLT) procedure.</td>
</tr>
<tr>
<td>9. Analysis of feeding behaviour with direct linear transformation, Mizuno et al., 2005 (18)</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Rogers and Arvedson, 2005 5(10)
phase in which swallowing occurs. A drawback of these invasive measuring techniques is the impact they have on the ill newborn, like tubes down the infant’s throat to measure pressure, and the complex measuring and analysing instruments necessary to generate the data.

Problems with sucking and swallowing can also be specified by means of indirect observation. We can distinguish between clinical feeding assessment and swallowing assessment. The standardised assessment methods available to assess nutritive sucking (NS) or oral feeding skills are presented in Table 1. Most of these methods can be used either for observing bottle-fed infants or for breast-feeding. Five methods, including the Neonatal Oral-Motor Assessment Scale (NOMAS) and the Analysis of Feeding Behaviour with Direct Linear Transformation (DLT), can be used for observing both breast-feeding and bottle-feeding infants. The fact that the markers on the infant’s face have to be placed very carefully and the fact that a DLT procedure is used, is probably the main reason why the latter method is still little used.

The NOMAS, a visual observation method, is a much used, non-invasive instrument to assess the NS and NNS skills of infants up to the age of about eight weeks post term Table 2. NOMAS allows infant sucking to be divided into three categories on the basis of the 28 items on the scale.

- A normal sucking pattern is displayed by infants who can coordinate sucking, swallowing and breathing properly during both NS and NS.
- A disorganised sucking pattern can be observed in infants who are unable to coordinate sucking, swallowing and breathing. This pattern is displayed by newborns who suffer from breathing problems, infants with a heart condition or infants with gastrointestinal problems. Before reaching term, preterm infants usually display an immature sucking patterns that matches their age. If this sucking pattern is seen after term it is considered abnormal. Therefore, the infant’s age is an important element to take into account before diagnosing a sucking pattern as disorganised.
- A dysfunctional sucking pattern is displayed by infants whose motor reactions and jaw and tongue movements are abnormal and therefore inadequate, as is the case in infants with neurological (or anatomical) disorders.

The infant’s sucking skill is assessed during NS and during the first two minutes of a regular feeding, either immediately or recorded on video for assessment later on.

Many authors indicate that fullterm infants have a continuous sucking phase during the first two to three minutes. In this phase the oral reflex activity is present most strongly and the sucking...
Table 2 Neonatal Oral-Motor Assessment Scale (NOMAS) original 1993 revision

Jaw

Normal
- consistent degree of jaw depression
- rhythmical excursions
- spontaneous jaw excursions occur upon tactile presentations of the nipple up to 30 minutes prior to feed
- jaw movement occurs at the rate of approximately one per second (1/2 the rate of NNS)
- sufficient closure on the nipple during the expression phase to express fluid from the nipple

Disorganization
- inconsistent degree of jaw depression
- arrhythmical jaw movements
- difficulty initiating movements *
- inability to latch on
- small, tremor-like start-up movements noted
- does not respond to initial cue of nipple until jiggled
- persistence of immature suck pattern beyond appropriate age
- under 40 weeks PC

Dysfunction
- excessively wide excursions that interrupt the intra-oral seal on the nipple
- minimal excursions; clenching
- asymmetry; lateral jaw deviation
- absence of movement (% of time) **
- lack of rate change between NNS and NS (NNS = 2/sec; NS = 1/sec)

Tongue

Normal
- cupped tongue configuration (tongue groove) maintained during sucking
- extension-elevation-retraction movements occur in anterior-posterior direction
- rhythmical movements
- movements occur at the rate of one per second
- liquid is sucked efficiently into the oro-pharynx for swallow

Disorganization
- excessive protrusion beyond labial border during extension phase of sucking without interruption sucking rhythm
- arrhythmical movements
- unable to sustain suckle pattern for two minutes due to *
- habituation
- poor respiration
- fatigue
- incoördination of suck/swallow and respiration which results in nasal flaring, head turning, extraneous movements *

Dysfunction
- flaccid; flattened with absent tongue groove
- retracted; humped and pulled back into oro-pharynx
- asymmetry; lateral tongue deviation
- excessive protrusion beyond labial border before/after nipple insertion with out/down movement **
- absence of movement (% of time) **

* Two items are subdivided into three subitems each
** Item transferred from category ‘disorganized’ to ‘dysfunctional’
* Redefined item
** One item is added to the category ‘dysfunction’

Development of Sucking Patterns in Preterm Infants
bursts are most stable (the sucking-swallowing-breathing rhythm). After two minutes, due to gastrointestinal influences - the stomach filling up so the infant feels less hungry and a reduction of the oral reflex activity - the continuous sucking phase is replaced by the intermittent phase. This phase is characterised by bursts of sucking and a few swallows followed by a three to five seconds pause. Therefore, sucking becomes less stable and more difficult to assess. In the case of preterm infants (approximately until fullterm age), the continuous phase only lasts about 30 seconds, influenced by neurologic function and cardiorespiratory control 2.

During observation by using NOMAS the researcher does not touch the infant nor is the infant attached to any measuring apparatus. If the infant is too sleepy or does not want to drink for another reason (such as stomach cramps or distractions in its surroundings), the attempt is postponed to a next feeding time. The number of sucking movements during one sucking burst is counted and the duration of the pauses between bouts of sucking are noted. Jaw and tongue movements, like the degree and rhythm of jaw lowering and tongue cupping, are analysed on the basis of 28 items and entered on the NOMAS form Table 2. Even though NOMAS may be used during breast-feeding as well as bottle-feeding, it may be more difficult to administer during breast-feeding because of the flow: infants adjust their way of swallowing to the flow of their mother’s milk 11, 20. This results in jaw movements of varying speed and magnitude. As a consequence, our clinical observation was that the infants’ jaw movements could erroneously be scored as disorganised.

Method

In 2004 we started a study on the development of swallowing in preterm infants. Seventy-five infants were included in the study: 15 were at risk for bronchopulmonary dysplasia, 17 were extremely low birthweight preterms and 20 were healthy preterms. The control group comprised 23 healthy fullterm infants. The preterm infants were born at 26 - 36 week GA. We excluded infants from the study who suffered severe multiple congenital disorders, severe predispositional cerebral disorders and periventricular echo densities with cysts. In addition, infants of drug addicted mothers were also excluded. We examined each infant 10 to 12 times: once a week between the ages of 34 and 40 weeks PMA and once a fortnight between 40 and 50 weeks PMA. The reliability study was part of the first phase of a research project on the development of sucking patterns in preterm infants and its relationship with neurodevelopmental outcome at two and five years of age.

Four NOMAS observers participated in our study. They had been trained and certified by M.M. Palmer in the Netherlands between 2000 (observers A and B) and 2002 (observers C and D). In order to qualify for a certificate the
Jaw

Normal
- consistent degree of jaw depression
- rhythmical excursions
- spontaneous jaw excursions occur upon tactile presentations of the nipple up to 30 minutes prior to feed
- jaw movement occurs at the rate of approximately one per second (1/2 the rate of NNS)
- sufficient closure on the nipple during the expression phase to express fluid from the nipple

Disorganization
- inconsistent degree of jaw depression
- arrhythmical jaw movements
- difficulty initiating movements
- persistence of immature suck pattern beyond appropriate age
 - under 40 weeks PC
 - lack of rate change between NNS and NS
 - (NNS = 2/sec; NS = 1/sec)

Dysfunction
- excessively wide excursions that interrupt the intra-oral seal on the nipple
- minimal excursions; clenching
- asymmetry; lateral jaw deviation
- absence of movement (% of time)

Tongue

Normal
- cupped tongue configuration (tongue groove) maintained during sucking
- extension-elevation-retraction movements occur in anterior-posterior direction
- rhythmical movements
- movements occur at the rate of one per second
- liquid is sucked efficiently into the oropharynx for swallow

Disorganization
- excessive protrusion beyond labial border during extension phase of sucking without interruption sucking rhythm
- arrhythmical movements
- unable to sustain suckle pattern for two minutes
- incoördination of suck/swallow and respiration which results in choking, sputtering, gagging

Dysfunction
- flaccid; flattened with absent tongue groove
- retracted, humped and pulled back into oropharynx
- asymmetry; lateral tongue deviation
- absence of movement (% of time)
assessor is required to correctly assess all three the diagnoses on five NOMAS
video recordings (i.e. a 100 % correct classification into the categories normal,
disorganised or dysfunctional) and to obtain 80% agreement on all 28 items
per recording 22. Due to practical reasons (illness or pressure of work) the
four observers were unable to all perform the same number of assessments.
Although A observed 54 recordings and B 126, they observed 50 of the same
recordings together. Observer C observed 71 recordings and D 42, and they
observed 20 recordings together. The four observers together assessed a total
of 293 recordings.

Following Palmer’s method, a video recording was made of the
infants at different ages during the first two minutes of NS. We stored the
recordings on a digital videodisc and two NOMAS assessors assessed each
recording. Subsequently, we determined the intra-rater agreement and inter-
observer reliability. In contrast to Palmer, we determined the reliability of the
diagnoses and not that of the items. On average, the four assessors assessed
70 recordings twice with an interval of three months between assessments.
The data of the first assessment were not available to them on the occasion
of the second assessment.

Statistical analysis

Assessor agreement is defined by Palmer as ‘sameness of classification’
23. According to Popping, Cohen’s Kappa (κ), that is ‘the proportion of
agreement after chance agreement is removed from consideration’ 24,
is the best measure to determine agreement between assessors in case
of the a posteriori method of coding nominal data. As shown in Table 3 a
reliability coefficient of 0.60 is considered the minimum for acceptable
assessor agreement, while κ = 0.80 or higher is considered ‘almost perfect’
or ‘satisfactory’ (24, 25, 26). While no absolute definitions are possible,
the following guidelines should help: Cohen’s κ is determined between
two observers and between two viewings of the same recording by each
assessor.

Results

For test re-test agreement Table 4 there was a considerable difference
between assessor A with the highest score (κ = 0.948) and D with the lowest
score (κ = 0.331). Thus intra-rater agreement ranged from ‘fair’ to ‘almost
perfect’. With an average reliability coefficients of 0.67 the intra-rater
agreement of assessors B and C was ‘substantial’.
Table 3 Interpretation of Cohen's Kappa (κ) values between 0 and 1 (Landis & Koch, 1977)

<table>
<thead>
<tr>
<th>Value of κ</th>
<th>Strength of agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 – 0.20</td>
<td>Slight</td>
</tr>
<tr>
<td>0.21 – 0.40</td>
<td>Fair</td>
</tr>
<tr>
<td>0.41 – 0.60</td>
<td>Moderate</td>
</tr>
<tr>
<td>0.61 – 0.80</td>
<td>Substantial</td>
</tr>
<tr>
<td>0.81 – 1.00</td>
<td>Almost perfect</td>
</tr>
</tbody>
</table>

Table 4 A comparison of the intra-rater agreement between recordings of preterm and fullterm infants (number of observations).

<table>
<thead>
<tr>
<th>Assessors</th>
<th>Total</th>
<th>Preterm infants</th>
<th>Fullterm infants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kappa</td>
<td>Number of</td>
<td>Kappa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>observations</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.948</td>
<td>54</td>
<td>1.00</td>
</tr>
<tr>
<td>B</td>
<td>0.694</td>
<td>126</td>
<td>0.685</td>
</tr>
<tr>
<td>C</td>
<td>0.659</td>
<td>71</td>
<td>0.752</td>
</tr>
<tr>
<td>D</td>
<td>0.331</td>
<td>42</td>
<td>na</td>
</tr>
</tbody>
</table>

Table 5 A comparison of the inter-rater agreement between recordings of preterm and fullterm infants (number of observations).

<table>
<thead>
<tr>
<th>Assessors</th>
<th>Total</th>
<th>Preterm infants</th>
<th>Fullterm infants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kappa</td>
<td>Number of</td>
<td>Kappa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>observations</td>
<td></td>
</tr>
<tr>
<td>A vs. B</td>
<td>0.406</td>
<td>50</td>
<td>0.484</td>
</tr>
<tr>
<td>C vs. D</td>
<td>0.652</td>
<td>20</td>
<td>0.714</td>
</tr>
</tbody>
</table>

na = not available
We were curious to know whether there was a difference in reliability between the assessments of recordings of preterm infants as compared to those of fullterm infants. The reason being that it is perhaps easier to assess a mature sucking pattern than it is to assess an immature sucking pattern (see Table 4). Although the number of the observations was incomplete, making it impossible to do a comparison based on figures, we found no indication that there was a difference between the intra-rater agreement of the preterm infants and that of the fullterm infants. In the case of inter-rater agreement Table 5, assessors C and D had assessed less than half of the recordings together due to the practical reasons mentioned above. Our results in Table 4 show that assessors A and B agreed with each other less often than did C and D. The interpretation of the reliability coefficients ranged from ‘moderate’ to ‘substantial’.

Discussion

We found the intra-rater agreement of NOMAS with respect to the diagnosis to be ‘fair’ to ‘almost perfect’ Table 4 while the inter-rater agreement with respect to the diagnosis was ‘moderate’ to ‘substantial’ Table 5. The reason for the ‘moderate’ inter-rater agreement possibly lay in the lack of agreement in scoring the separate items and/or in the interpretation of some items belonging to the diagnosis ‘disorganization’. It is remarkable that the items that score lowest in Palmer’s study are the same items that caused confusion and disagreement in our study. What struck us was that one assessor would attach a different diagnosis to the same score than would the other assessor. In particular, this was the case for the items ‘inconsistent jaw degree’ and ‘arrhythmic jaw/tongue movements’.

Inconsistent jaw degree

The degree of jaw opening that occurs during the suction component can be noted to vary each time, causing jaw excursions to be of unequal size’ (Palmer, 1993 b, p. 74).

During different courses Palmer issued different statements on this point. During the course she offered in the Netherlands in May 2006, she stated that the diagnosis ‘disorganization’ might not be given in the presence of this item alone (pers. comm.).

Arrhythmic jaw movements

During a 2-minute timed segment of sucking, the jaw movements that occur are jerky, inconsistent, irregular, and do not flow in a co-ordinated way. Sucking bursts are of unequal length, and the number of sucks per burst continues to vary throughout the duration of sucking. There may also be
intra-burst variability as the sucking-swallowing-breathing ratio changes’ (Palmer, 1993b, p. 74).

In case of a segment of sucking counting less than ten sucking-swallowing-breathing movements it is classified as ‘arrhythmic jaw movement’ also if it occurs towards the end of the 2-minute observation segment. In the meantime it has become clear, however, that in the case of preterm infants it is not realistic to take a 2-minute observation segment as point of departure before they have reached term age because a continuous phase in these infants only lasts 30 seconds. Some assessors diagnose such situations as normal since the overall impression of sucking is normal.

One of our concerns about using NOMAS as a diagnostic tool is that since NOMAS was developed in 1993 many studies have been published that describe the nutritive and non-nutritive aspects of sucking. We compared Palmer’s findings as set out in NOMAS with recent studies on sucking and the development of sucking, swallowing and sucking patterns. Four questions arose regarding several aspects of NOMAS.

1. Palmer indicates that NOMAS ought to be administered during at least two minutes 10. More recently she suggested that NOMAS be administered during at most two minutes because the continuous phase of sucking lasts two minutes 23. Mizuno et al. found a continuous phase of 30 seconds in preterm infants 2. Does this imply that for the assessment of sucking pattern in preterm infants NOMAS should only be administered during 30 seconds?

2. Palmer mentions ‘10-30 suck/swallows per burst’ as being part of a mature sucking pattern (Palmer, 1993a, p. 28). She states that:

• ‘The inter-burst variation should be stable’.
• ‘Ten or more sucks per burst means a mature sucking pattern, less than ten sucks per burst is abnormal and is not part of a mature sucking pattern’.

Palmer does not mention a development in the number of sucking movements per sequence nor does she specify whether there is a quantitative difference between the number of movements an infant shows in its sucking pattern. Recently, Qureshi et al. spoke of an average of ten sucking movements per sequence at term and of 20 sucking movements per sequence at one month post term 7. It seems advisable to consider the results of the study by Qureshi et al. when using NOMAS.

3. Palmer only speaks of a 1:1:1 rhythm when considering bottle-feeding and indicates a non-rhythmic intra-burst as abnormal and one that should be scored as disorganised. In breast feeding rhythm depends on the flow and a non-rhythmic intra-burst (e.g. suck-swallow-breath suck-suck-swallow-breath) is not abnormal and should not be diagnosed as ‘disorganization’ 11, 20.
Qureshi et al. concluded that during the first month of life infants develop from a 1:1:1 suck-swallow-breath rhythm to a 2:1:1 or 3:1:1 rhythm, thus displaying their increased skill to collect a larger amount of food in the valleculae that is swallowed at once.

Palmer does not mention the infant’s ability to collect food from a number of sucking movements as part of the maturation process. It signifies the first step towards developing a new way of feeding. We advise to note the number of sucking movements per burst when using Nomas 11, 20. And, in accordance with Qureshi, we advise to not regard a rhythm different from 1:1:1 as abnormal.

4. In her publications Palmer points out that Nomas informs us about the jaw and tongue movements during sucking, about the coordination of sucking-swallowing-breathing and about the difference between nutritive and non-nutritive sucking. She also suggests noting the bolus volume the infant ingests during the two minutes of Nomas administration 23. According to Qureshi, during the first month of life, the amount of cm3 per swallow doubles and the number of swallowing movements increases to 46-50 a minute 7. We recommend counting the number of swallowing movements per minute as a measure of swallowing efficiency.

Palmer states that Nomas has predictive value 22. She bases this statement on the finding that nine infants out of 34 who had a dysfunctional sucking pattern in infancy had developed abnormally when they were re-examined at two years of age. The follow-up study included only 18 of the original 34 children and the result does not specify the degree of abnormal functioning at the age of two. In our opinion to say that Nomas has predictive value on the basis of this evidence, is insufficient. Nevertheless, it appears that practitioners set great store by the value the diagnosis ‘dysfunction’ may have regarding expectations of neurodevelopmental outcome at a later age.

Nomas is used mainly for fullterm infants with sucking and swallowing difficulties. Even though it has been in use since 1993, little is known about the instrument’s intra-rater and intra-rater agreement. Palmer 11 studied inter-rater agreement of each Nomas item in 35 infants aged 35 to 49 weeks and weighing more than 1900 gram at the time of assessment (23 to 42 weeks’ gestational age). Palmer did not study the reliability of the method with regards to the diagnosis as was our aim. The inter-rater agreement of all 26 items, i.e. 13 items dealing with the functioning of the tongue and 13 items dealing with the functioning of the jaw, is expressed in percentage agreement and ranges between 63% and 100%. The score on 17 of the 26 items is 80% or higher. Subsequently, Palmer revised Nomas. She added one items category ‘dysfunction’, she subdivided two items into three sub items each, she transferred one item from category ‘disorganized’ to
‘dysfunctional’ and she redefined one item. (Table 2 and 2 a). The reliability of the revised version was not investigated. The large range in agreement between the assessors made it impossible to say anything about the reliability of the classifications by the instrument as a whole. Moreover, Palmer’s study did not take into account agreement based on chance as determined by, for instance, Cohen’s κ.

In conclusion, the following issues need to be addressed: NOMAS requires adjustment as far as the instructions about the interpretation of the items is concerned. At present the interpretation and/or classification of the items (especially with regard to the diagnosis ‘disorganization’) is not consistent. In addition, a clear distinction should be made between the interpretation in the case of bottle-feeding and breast-feeding.

As far as the diagnosis ‘disorganization’ is concerned the emphasis should lie on the fact that breathing is not coordinated with sucking and swallowing. Taking into account the extent to which sucking behaviour is diagnosed as disorganised seems meaningful when assessing preterms. In so doing it is possible during follow-up to better assess the development of sucking behaviour and the necessity of intervention.

The length of the time segment to be measured, either preterm or postterm, should be determined on the basis of Mizuno’s recent data on the continuous phase prior to term age 2.

According to Qureshi, NOMAS should be extended with the fact that at term an infant should be able to do ten sucking-swallowing-breathing movements per burst and at four weeks of age this should have increased to approximately twenty 7. If an infant is unable to do this, this fact should be incorporated in the diagnosis. The number of swallowing movements per minute should count as a measure for increased efficiency of sucking and swallowing.

Moreover, Qureshi recommends that the diagnosis ‘disorganization’ should not be based on intra-burst arrhythmicity. In the case of this diagnosis care should be taken with inter-burst arrhythmicity 7. Until such adjustments come into effect, NOMAS can be used for detailed observation of an infant’s sucking pattern for purposes of intervention but not for diagnoses because especially in the case of preterm infants, the differentiation into three diagnoses is not sufficiently reliable if the assessment is performed by different observers. We recommend testing the intra-observer reliability of NOMAS observers. In addition, we advise against involving more than one assessor in the longitudinal follow-up of one and the same infant.

In case NOMAS is used as a means to measure neurodevelopmental outcome for research purposes, we recommend:
• that each measurement be assessed by two reliable assessors, and
• to reach a consensus in case of absence of agreement.

Because the intra-rater agreement is not sufficient for everyone, the individual observer should be tested regularly and receive extra training if need be. We expect the inter-rater agreement to improve when the intra-rater agreement increases, and when the instrument is adjusted. Our point of departure is that the intra-rater agreement- and inter-rater agreement of measures such as NOMAS should have a Cohen’s κ of at least 0.8. As far as we are concerned a Cohen’s κ of 0.6 or lower is unacceptable.
References

