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Chapter 1

Introduction

Abstract. This chapter is devoted to the main concepts underlying the work carried out
in this thesis. An overview of process manufacturing is provided, which is followed by
a discussion of current trends & challenges in process industries which motivated the
development of this thesis.

1.1 An overview of the process industry

The American Production and Inventory Control Society (APICS) defines process

manufacturing as “production that adds value to materials by mixing, separating,

forming and/or chemical reactions” (Cox et al, 1995). The definition indicates that

process manufacturing is mainly characterized by the type of operations that take

place within the manufacturing process. These operations are usually applied on

non-discrete materials, and, technologically, they necessitate installations which re-

quire large capital investments.

Process manufacturing is common in many industries involving food, chemical,

pharmaceutical, and consumer packaged goods. These industries are amongst the

largest manufacturing sectors worldwide. For instance, the food-processing industry

is the largest manufacturing sector in the European Union in terms of turnover and

employment (CIAA, 2010).

The nature of the materials and the operations involved in process manufacturing

are quite different as compared to those in discrete manufacturing. This difference

clearly shows itself in the terminology used. For example, in process manufacturing,
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ingredients replace parts, recipes replace bill of materials, and batches replace units

as opposed to discrete manufacturing. The difference in the terminology is inher-

ited from the manufacturing practice since the aforementioned terms characterize

distinct manufacturing approaches.

There are two basic types of process manufacturing: flow and batch. Flow process-

ing refers to “a lotless production in which products flow continuously rather than

being divided”. Flow processes are common in systems where a limited number

of products are produced in high volumes following rather standardized processing

steps. Batch processing is defined as “a manufacturing technique in which parts are

accumulated and processed together in a lot”. Batch processes are common in sys-

tems offering a variety of products which usually undergo distinct processing steps

(Cox et al, 1995). There are also processing systems which involve flow and batch

type sub-processes. These are often referred to as semi-continuous (or semi-batch)

processes (Kallrath, 2002).

The process industry has long been acknowledged as an industry where only a few

products are produced following standardized flow type production operations. Fol-

lowing recent trends, however, the process industry has experienced growing logisti-

cal demands, growing variety in products, and more intense competition. Thus, the

traditional positioning of the processing industry has significantly evolved towards

more market oriented strategies and make-to-order policies (Dennis and Meredith,

2000; Van Donk, 2001).

The change in the marketing environment has also affected the manufacturing en-

vironments by necessitating the use of multi-product and multi-purpose processing

systems offering high flexibility. Such systems have provided a means to meet the

increasing demands with regard to the larger number of different products. They

have, however, intensely affected planning and scheduling of operations because

they require the coordination of a limited set of equipment and resources to under-

take a variety of tasks. This has resulted in the need for effective scheduling methods

tailor made for process industries.

This thesis is motivated by the aforementioned observation and concentrates on

planning and scheduling in the process industry. In the following sections, we first

discuss some important characteristics of the process industry and provide a perspec-

tive of the main problems addressed in the context of the thesis. Then, we review

and discuss the literature on scheduling approaches in process industries. Finally,

we provide the research objectives and present an outline of the thesis.
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1.2 Characteristics of the process industry

There is a large amount of research centered on the characteristics of process in-

dustries. In particular, the differences between process manufacturing and discrete

manufacturing in terms of demand management, production process, quality, and

production planning and control have been elaborated by many authors (see e.g.

Taylor et al, 1981; Fransoo and Rutten, 1994; Ashayeri et al, 1996). Nevertheless,

not all of those characteristics have immediate effects on planning and scheduling

processing systems. In what follows, we rather concentrate on some characteristics

of the process industry that often lead to difficulties in planning and scheduling pro-

cessing systems, and need to be treated in a peculiar manner. We refer to Fransoo

and Rutten (1994) and the references therein for a detailed summary and discussion

of the general characteristics of the process industry.

Raw materials. In the process industry, raw materials have a prominent effect on

the planning and scheduling activities. This is mainly because the process indus-

try obtains raw materials from mining and agricultural industries. The quality, and

thus, the yield of these raw materials are often subject to variability (Rice and Nor-

back, 1987; Gunasekaran, 1998). Therefore, production plans must account for the

variability of raw materials in terms of quality and availability (Taylor et al, 1981).

Recipes. The materials concerned in the processing industry are characterized by

their recipes. These recipes define the ingredient compositions of materials, and

also specify the succession of production steps that materials undergo. There could

often be several potential recipes for intermediates and end products since many

products are produced from a few raw materials in process industries. Thus, the

decisions on which recipes to use are usually made in connection with seasonal

considerations, the scarcity of raw materials, and the availability of processing and

storage facilities (Cokins, 1988). It is important to note that these decisions have

immediate effects on scheduling production operations. That is because not only the

ingredient compositions of materials but also the course of processing operations

may vary according to product recipes.

Perishability. The process industry use raw materials, intermediates, and also end

products which are often subject to perishability. This necessitates the careful han-

dling of inventories throughout production processes and shipping, and leads to
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specific constraints on planning and scheduling. In particular, perishability has an

important effect on storage operations. Storage operations lead to better utiliza-

tion of resources by decoupling consecutive processing stages. Hence, limitations

on the storage operations constrain the extent to which the upstream and down-

stream production units can be decoupled. In presence of storage time constraints,

inappropriate scheduling decisions may result in a high number of setups, blocking

or starvation throughout the stages, waste of intermediates, and thus, degrade the

overall system performance significantly. Furthermore, perishability dictates the seg-

regation of batches in order to avoid degradation and makes production scheduling

more difficult (Akkerman and Van Donk, 2009).

Traceability. It is often required to have tracking systems in the process industry

to trace back the origin of materials through the processing system. Traceability

is an important aspect especially in the food processing industry where it is con-

ducive to food safety. Food safety has become an important concern in recent years

due to food scandals and incidents. The main benefit of traceability lies in han-

dling product recalls in an effective way when a problem has been identified (Rong

and Grunow, 2010). Traceability necessitates a perpetual control of material flows

through production and storage operations. Thus, maintaining traceability becomes

more challenging as material batches are merged and/or separated in successive

processing and storage operations.

Storage. It is obvious that storage limitations are common in all types of man-

ufacturing systems. However, they are considered to be more critical in process

industries. This is mainly due to the fact that the nature of storage is rather different

as compared to other industries. In most production environments, storage space is

mainly a buffer or a warehouse where items are stocked all together. In the process

industry, however, storage operations are carried out by a number of discrete storage

units (i.e. tanks, vessels, silos) which can be used only for a single type of material

at a time. This results in capacity constraints for each individual storage unit rather

than an aggregate storage capacity constraint. Storage units are either dedicated to

certain material, or flexible and can be used for several materials. The latter requires

the assignment of storage units to materials, as is the case for processing units. The

aforementioned characteristics of storage units also interfere with perishability and

traceability issues. These, all together, translate into complex restrictions on both

processing and storage operations.
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Setups. Production setups are often required to prepare the machinery for new

production runs. As compared to other industries, setups take significant amounts

of time and effort in the process industry. Moreover, besides the setups for configur-

ing the settings of production units, there are setups for the cleaning requirements.

It is also common that setups are sequence-dependent due to the differences in

the product and process specifications among different materials (Van Wezel et al,

2006). For instance, in dairy industries it may be more favorable to process prod-

ucts sequenced from low to high fat concentrations, because there is a little or no

effort needed to clean processing units following this sequence. Especially when the

capacity utilization is high, setups may significantly affect the system performance.

The main issue here is the trade-off between the setup time and the lead time. That

is, significant setups stimulate larger production runs, but in return they delay con-

sequent processing runs (Potts and Kovalyov, 2000).

The characteristics of the process industry we mentioned in this section have signifi-

cant effects for their own sakes. However, it is important to note that one has to deal

with the combination of these characteristics when scheduling processing systems.

In the next section, we provide a review of the literature on scheduling approaches

in the context of the process industry.

1.3 Scheduling in the process industry

The efficiency of production is at the forefront of the current competitive global

environment. In this context, scheduling plays a major role by coordinating and in-

tegrating production facilities and resources. The scheduling of processing systems

mainly involves the decisions regarding the allocation of production facilities and

resources to all types of operations, and the timing of those operations. In this sec-

tion, we briefly discuss the scheduling approaches used in the process industry. As

mentioned earlier, flow and batch processes are characterized by different degrees

of material diversity and routing complexity. Because of this reason, the scheduling

practices utilized in those processes are quite different from each other. Here, we

review the scheduling literature directed towards flow and batch processes individ-

ually.
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1.3.1 Flow processes

Flow process industries usually involve the manufacturing of a small number of

products with a limited variety. The processing steps are rather standard, products

mainly follow the same routing, and the flexibility of processing units is quite lim-

ited. The customer demands are relatively stable (Cooke and Rohleder, 2006).

The limited product and routing variety in flow processes often postulate a bottle-

neck production operation which dominates others in terms of capacity utilization.

Furthermore, the lack of flexibility abates the need of considering multiple machines.

Therefore, it is justifiable to concentrate only on this bottleneck stage with a single

processing unit when scheduling flow processes (Fransoo, 1993). Consequently,

scheduling approaches in flow processes mainly follow single-stage, single-machine,

multi-product, lot-sizing and scheduling problems which are also commonly used in

discrete manufacturing. We can acknowledge two main research lines in this domain

which takes different approaches in expressing time and customer demands.

The first line of research is centered on the economic lot sizing problem (ELSP)

(Rogers, 1958). The ELSP is mainly the multi-product capacitated version of the

well-known economic order quantity (EOQ) problem. The assumptions of ELSP are

as follows: demand and production is deterministic and continuous, setup time and

cost are sequence independent, and backlogging is not allowed. The ELSP aims to

find a production schedule that minimizes the sum of holding and setup costs per

unit time. An ELSP schedule refers to the length and position of the production

cycles associated with the set of products to be produced. The ELSP is known to be

a difficult problem. In fact, even checking the feasibility of a given ELSP schedule

is NP-hard (Hsu, 1983). Thus, a plethora of literature has been emerged to tackle

this problem. These research efforts resulted in many efficient approaches to solve

the problem heuristically. Among those, we can mention the common cycle, the

basic period, the extended basic period, and the multiple cycle approaches. The

interested reader is referred to Elmaghraby (1978) and Raza and Akgunduz (2008)

for an overview of the problem and associated solution approaches.

The second line of research is concentrated on finite-horizon, periodic, and time-

varying counterparts of the ELSP. A variety of problems has been considered in this

area. The fundamental assumptions of these models are as follows: planning hori-

zon is finite and comprised of a number of time periods with deterministic lengths,

demand over periods is deterministic and time-varying, production rates are fixed,

setup costs are sequence independent, setup times are negligible, and backlogging is

not allowed. The objective is to find a production schedule that minimizes the sum
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of holding and setup costs within the planning horizon. Here, a schedule specifies

the products and lot sizes associated with each time period within the planning hori-

zon. The most well-known problems in this domain are: the capacitated multi-item

lot sizing problem (CLSP) (Bitran and Yanasse, 1982), the discrete lot sizing prob-

lem (DLSP) (Lasdon and Terjung, 1971; Fleischmann, 1990), the continuous setup

lot sizing problem (CSLP) (Karmarkar et al, 1987), the proportional lot sizing and

scheduling problem (PLSP) (Drexl and Haase, 1995), and the general lot sizing and

scheduling problem (GLSP) (Fleischmann and Meyr, 1997). The CLSP is a so-called

large-bucket model which is characterized by time periods large enough to accom-

modate several different products. Practically, periods in large-bucket problems cor-

respond to time slots of weeks (Drexl and Kimms, 1997). The CLSP is often regarded

as a medium-term planning problem since scheduling decisions within single time

periods are not integrated into the problem. The DLSP is a so-called small bucket

problem which is characterized by small time periods in each of which at most one

type of product can be produced. The length of the periods in small-bucket problems

correspond to hours/shifts (Drexl and Kimms, 1997). The main assumption of DLSP

is that in each time period the facility either processes a single type of product at

full capacity, or remains idle (i.e. all-or-nothing). Thus it is not necessary to deter-

mine lot sizes explicitly. The CSLP relaxes the all-or-nothing assumption and allows

continuous lot sizes. The PLSP relaxes the one product per period limitation and

allows up to two products per period. The GLSP is an integrated large- and small-

bucket problem. The planning horizon is divided into a number of macro-periods

each of which is composed of a number of micro-periods. Then, each macro-period

is treated as a small-bucket problem, whereas the overall problem is treated as a

large-bucket problem. There is an extensive literature on the aforementioned prob-

lems and their extensions. Recent overviews of this line of research can be found in

Wolsey (2002) and Jans and Degraeve (2008).

Despite the vast majority of the literature focuses on single-stage single-machine

multi-product lot-sizing and scheduling problems, some research effort has also been

taken towards multi-stage and/or multi-machine extensions of the problems men-

tioned above. Some variants of the ELSP include parallel-machine ELSP (see e.g.

Carreno, 1990; Bollapragada and Rao, 1999; Pesenti and Ukovich, 2003), multi-

stage ELSP (see e.g. El-Najdawi and Kleindorfer, 1993; Dobson and Yano, 1994;

El-Najdawi, 1997; Ouenniche and Boctor, 1998; Ouenniche et al, 1999; Ouenniche

and Bertrand, 2001), and multi-stage and multi-machine ELSP (see e.g. Torabi et al,

2005; Jenabi et al, 2007). Some variants of the CLSP and the DLSP include parallel-

machine CLSP (see e.g. Ozdamar and Birbil, 1998; Ozdamar and Barbarosoglu,
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1999; Kang et al, 1999; Clark and Clark, 2000; Belvaux and Wolsey, 2000), parallel-

machine DLSP (see e.g. Salomon et al, 1991; Jans and Degraeve, 2004; De Matta

and Guignard, 1994a,b, 1995), and multi-stage CLSP (see e.g. Tempelmeier and

Derstroff, 1996; Franca et al, 1997; Katok et al, 1998; Ozdamar and Barbarosoglu,

2000; Berretta and Rodrigues, 2004; Sahling et al, 2009). It is important to note

that such problems also involve the consideration of the assignment of production

units and the interdependency between processing stages. From this point of view,

they can be regarded as steps towards batch processing systems. Nevertheless, they

do not account for lower and upper bounds on processing times/quantities which

are prominent in batch processes. Furthermore, they mainly concentrate on process-

ing operations and do not integrate other resources such as storage units into the

scheduling problem.

1.3.2 Batch processes

Batch process industries commonly produce a large number of products in small

quantities following customer orders. The number of processing operations is large

and routing complexity is high (Rippin, 1991). In order to provide flexibility, multi-

purpose production units are preferred. The size of each batch is often bounded

from below and above due to technological constraints. This may necessitate per-

forming successive batch operations for the same material – often referred to as a

product campaign (Kallrath, 2002). It might be evident from the aforementioned

characteristics of batch processes that it is often not realistic to assume that a single

bottleneck operation dominates the rest of the production operations.

The batch process scheduling problem is to find a production schedule optimizing a

time-based (e.g. makespan, tardiness) or a financial (e.g. cost, revenue) objective

given the configuration of the processing system and the demand requirements. The

configuration of the processing system involves the set of available resources, and

the product recipes which define the processing operations required to produce each

intermediate and end product. The demand requirements involve the size and due

dates for each customer order. In this context, the fundamental decisions involve the

number and the size of batches associated with each intermediate and end product,

the assignment of batches to resources, and the timing of processing operations.

The vast majority of research contributions in the area of scheduling batch processes

have been emerged in response to the short-term scheduling needs of large-scale

chemical plants. Two types of batch processes are usually distinguished based on

their process layout. The first type is the multi-stage processes where one or more

8



processing units work in parallel in each stage. In multi-stage processes, each batch

is processed in a succession of stages defined through the associated product recipe.

Batches are not mixed or split, and the batch identity is, thus, maintained through-

out the whole process. The second type is the network processes where processing

operations are connected through an arbitrary network structure. In this type of pro-

cesses, product recipes are rather complex and batches are mixed and split through

the processing operations. There is a large body of literature on the short-term

scheduling of multi-stage and general network type batch processes. The research in

this domain mainly aims at developing a general purpose framework which can sys-

tematically characterize and accommodate all relevant aspects in batch processing

systems. We can mention equipment connectivity, storage settings, material trans-

fers, batch size and processing time settings, demand characteristics, setup consider-

ations, labor and utility constraints, maintenance operations, and operational costs

as some of those aspects (Mendez et al, 2006). Batch process scheduling problems

are predominantly formulated as exact mixed integer linear programming (MILP)

models. There is a variety of modeling approaches which vary in terms of their

time, event, and material balance representations. These approaches significantly

affect the flexibility and the computational performance of the associated optimiza-

tion models. The interested reader is referred to Kallrath (2002); Floudas and Lin

(2004), and Mendez et al (2006) for comprehensive reviews on models and methods

employed for batch process scheduling problems.

There is also research efforts concentrated in adopting lot sizing and scheduling

approaches to deal with batch processes. These research contributions mainly build

on existing single-stage and single-machine lot sizing and scheduling formulations.

They use a stepwise setup cost function which is not only dependent on the lot

size but also on the number of batches needed to fill the associated lot sizes (see

e.g. Lippman, 1969; Lee, 1989; Pochet and Wolsey, 1993). These approaches can

correctly account for setup costs in batch processes. However, they are limited to

single-stage and single-machine environments, and they do not capture the setup

times required when switching from one batch to another.

1.4 A critical overview of the literature

In the previous sections, we summarized some specific characteristics of the pro-

cess industry which may have prominent effects on scheduling, and outlined some

research domains which are relevant in the context of scheduling in the process in-
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dustry. In this section, we provide a critical overview of the outlined literature while

taking into account the given specific characteristics of the process industry. We

mainly analyze the extent to which those characteristics are captured in the litera-

ture.

The process industry is characterized by raw materials which are often subject to

seasonal supply and yield variability. These characteristics of raw materials may

significantly influence production planning and control. Crama et al (2001) pointed

out that if the key raw material is a scarce resource, then demand satisfaction may

not be enforced anymore. Schuster and Allen (1998) considered this problem and

showed that, in such cases, management of raw material becomes an essential task,

and it is necessary to employ an admission policy in order to maximize profit.

The flexibility of recipes in the process industry necessitates the interaction of recipe

selection and scheduling decisions. The recipe selection problem itself falls into the

category of the well-known blending problems. The blending problem aims at find-

ing a minimum cost mix satisfying a set of quality related attributes (Crama et al,

2001). Despite the extensive literature on standalone blending problems, there are

only a few examples where the blending problem is incorporated in operational

planning and scheduling. There has been some work on multi-period production

planning problems where the purchasing and production quantities are periodically

determined while taking blending operations into account (see e.g. Williams and

Redwood, 1974; Rutten, 1993). However, they only concentrate on material bal-

ances, and do not consider the economies of scale in batch production.

A more relevant line of research addresses grade selection and blending problems

where a set of basic grades are selected to be used in processing a large mix of prod-

ucts (see e.g. Karmarkar and Rajaram, 2001; Akkerman et al, 2010). However, these

studies assume unlimited production and storage capacities. The pooling problem

is also a classic example of the blending problems. It is particularly important in the

petrochemical industry (see e.g. Baker and Lasdon, 1985; Amos et al, 1997; Audet

et al, 2004). The pooling problem refers to a situation where materials with different

quality characteristics are merged in a series of pools (e.g. tank or vessel) such that

the quality specifications of the blends satisfy a given set of quality requirements.

Nevertheless, the pooling problem is predominantly regarded as a design problem

and it is not integrated with the scheduling decisions.

Perishability is a major concern in the process industry. We can acknowledge two

types of perishability which are characterized by fixed and random storage times

(Nahmias, 1982). The quality (e.g. texture, color, taste or nutrient content) of ma-
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terials with fixed storage time does not significantly change during some specified

time period. However, materials immediately deteriorate after the end of this period.

Thus, they can be kept in stock for some time after which they must be disposed of.

When the storage time is random, on the other hand, the quality of materials grad-

ually decreases following to a stochastic process and eventually hits to a minimum

acceptable level. Thus, they can be retained in stock during a random storage time

after which they should be discarded. Both types of perishability are extensively

investigated in the inventory literature under various control policies. An overview

of this research can be found in Silver et al (1998). In this context, uncapacitated

lot sizing problems have also been extended with the issue of perishable inventories

(see e.g. Hsu, 2000; Chu et al, 2005). However, there are only a few examples of

lot sizing and scheduling problems involving perishability. These are mainly concen-

trated on the ELSP and assume fixed storage times (Silver, 1989, 1995; Sarker and

Babu, 1993; Goyal, 1994; Viswanathan, 1995; Viswanathan and Goyal, 1997, 2000,

2002; Soman et al, 2004b). These studies propose a variety of heuristics to deal

with perishability, and show that this limitation may significantly affect the optimal

production schedule.

In the literature on batch process scheduling, storage time constraints are reflected

by storage policies which define the maximum amount of time that a batch can

wait between its release from one processing operation and its start in the next

processing operation (Mendez et al, 2006). These storage policies are unlimited

wait (UW), finite wait (FW), and zero wait (ZW). Among those FW is the most

general storage policy and it reflects perishability with fixed storage times. These

policies are successfully implemented in general purpose batch process scheduling

models (see e.g. Kondili et al, 1993a; Schilling and Pantelides, 1996; Mockus and

Reklaitis, 1997; Ierapetritou and Floudas, 1998). However, the impact of storage

time limitations is more severe when the storage capacity is also limited. This issue

is considered in the context of multi-stage batch processes (see e.g. Sundaramoorthy

and Maravelias, 2008). The problem is even more demanding when batches of the

same material are mixed and split through the production process. To the best of

our knowledge, there exists no work addressing the combination of storage capacity

and storage time limitations.

There has been an increasing societal concern on food safety issues in response to

food safety crises, such as mad cow disease, bird flu, and salmonella in recent years

(Rong and Grunow, 2010). This has necessitated the use of traceability systems in

order to trace back materials through the chain and handle product recalls effec-

tively (Thakur et al, 2010). The operations management and operations research
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literature has only recently started to take over this issue. Dupuy et al (2005) pro-

posed a batch dispersion model to optimize traceability in food industry by minimiz-

ing the batch size and the extent of batch mixing. Tamayo et al (2009) considered a

raw material dispersion optimization model to reduce the number of batch recalls in

case of a crisis. Thakur et al (2010) proposed a multi-objective optimization model

that provides an effective method for minimizing the food safety risk caused by lot

aggregation at a grain elevator. However, none of those models take into account the

additional cost/time needed in managing traceability. There are a few papers which

reflect the effects of the decisions taken to reduce dispersion on the operational per-

formance. Wang et al (2009) and Wang et al (2010) used the concept of batch

dispersion in the context of the economic production quantity (EPQ) model. They

developed optimization models which also consider potential logistics efforts due to

product recalls Rong and Grunow (2010) use the chain dispersion concept while us-

ing an uncapacitated lot sizing problem. Nevertheless, none of these research efforts

consider traceability in the context of process scheduling with capacitated resources.

Due of their practical relevance, storage limitations have been widely investigated

in the literature. Nevertheless, in lot sizing applications, they are usually modeled

as an aggregate warehouse capacity constraint. For example, Anily (1991) and Gal-

lego et al (1996) extended ELSP by limited warehouse capacities. They proposed

sophisticated heuristics for the problem, and provided lower bounds on the optimal

costs of different inventory policies under storage constraints. Van Vyve and Ortega

(2004) considered the case where a fixed cost is charged per number of storage units

employed.

In the literature on batch process scheduling, storage capacity constraints are re-

flected by storage policies (Mendez et al, 2006). These are unlimited intermediate

storage (UIS), finite intermediate storage (FIS), and no intermediate storage (NIS).

Notice that FIS represents the most general case. These policies are successfully

implemented in general purpose batch process scheduling models (see e.g. Kondili

et al, 1993a; Schilling and Pantelides, 1996; Mockus and Reklaitis, 1997; Ierapetri-

tou and Floudas, 1998). Nevertheless, it is well-known that the number of storage

units, especially in case of non-zero cleaning times, significantly increases the com-

plexity of resulting mathematical models. This effect is even stronger if storage units

are flexible, i.e. they can be used for more than one type of material and cleaning

operations are needed when switching from one material to another.

Setups are seminal in almost all manufacturing environments. However, they usu-

ally require larger time and effort in the process industry. The literature on both lot

sizing and scheduling problems and batch process scheduling problems pay a con-
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siderable attention to setups. In particular, a significant amount of research effort

is devoted to sequence-dependent setups. In case of sequence-dependent setups,

when evaluating a given production schedule, one should consider not only the set

of products but also the production sequence. Thus, the resulting problem is signif-

icantly more difficult than its sequence-independent counterpart. Here we shortly

mention some of the work in this research domain.

The research efforts on lot sizing and scheduling problems involving setups can

be summarized as follows. Galvin (1987), Lopez and Kingsman (1991), Dobson

(1992), Wagner and Davis (2002), and Brander and Forsberg (2005) studied se-

quence-dependent setups in the context of the ELSP. Dilts and Ramsing (1989),

Haase (1996), Kang et al (1999), Laguna (1999), Clark and Clark (2000), Haase

and Kimms (2000), Meyr (2000), and Gupta and Magnusson (2005) considered the

CLSP with sequence-dependent setups. Cattrysse et al (1993) studied DLSP with

setup times. Fleischmann (1994), De Matta and Guignard (1994b), and Salomon

et al (1997) considered the DLSP with sequence-dependent setup costs and times.

Vanderbeck (1998) formulated the CSLP with fractional start up times. Drexl and

Haase (1995), and Drexl and Haase (1996) discussed the PLSP with setup times

and multiple machines. Wolsey (1997) studied the CSLP with sequence-dependent

setups. Suerie (2006) provided an approach that allows the setup times to be

split between two periods. Belvaux and Wolsey (2000), and Belvaux and Wolsey

(2001) presented a series of lot sizing and scheduling models, including sequence-

dependent costs and times.

The research on batch process scheduling problems has predominantly acknowl-

edged sequence-dependent setups. Most of the research efforts in this domain,

even the earlier contributions, considered sequence-dependent setups as one of

the basic characteristics of batch processing systems (see e.g. Sahinidis and Gross-

mann, 1991a; Kondili et al, 1993a,b; Shah et al, 1993; Papageorgiou and Pantelides,

1996a,b). There are also studies which explicitly address modeling sequence-depen-

dent setups (see e.g. Kelly and Zyngier, 2007).

1.5 Real-life implementations

The real-life scheduling problems found in process industries are often large-scale

combinatorial optimization problems, and due to the curse of dimensionality, they

can hardly ever be solved in reasonable computational times by using exact ap-

proaches (Mendez et al, 2006). Therefore, although the research efforts taken in the
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development of general purpose approaches are valuable from a theoretical point of

view, the resulting models cannot readily be used to solve real-life process schedul-

ing problems. This has motivated many researchers to develop alternative solution

approaches which are less demanding in terms of computational time in exchange

for compromising the optimality. The research efforts in this line often make use

of the specific characteristics of the underlying process in order to streamline the

optimization models. Here we provide some representative examples of such ap-

proaches.

Harjunkoski and Grossmann (2001) studied a real-life problem originating from a

steel-making continuous casting plant. In order to solve the problem within a rea-

sonable computational time they employed a three-stage decomposition approach.

In each stage of the approach, some parts of the schedule are fixed and used as input

in the subsequent stage.

Schwindt and Trautmann (2000) and Neumann et al (2002) propose a rather gen-

eral decomposition approach. Their approach decomposes the batch scheduling

problem into separate batching and scheduling problems. The batching problem

determines the number and the size of the batches to be processed. Schwindt and

Trautmann (2000) used a heuristic to solve the batching problem which sequentially

determines the batch sizes of end products and associated intermediates gradually.

Neumann et al (2002) propose a mixed integer non-linear program (MINLP) that

minimizes the number of batches weighted by the processing times assuming that

all batches of a product have the same batch size. The scheduling problem gener-

ates a schedule indicating the timing of processing those batches determined by the

batching problem. However, the batch scheduling problem itself is intractable. Con-

sequently, Schwindt and Trautmann (2000) used a branch-and-bound approach, and

Neumann et al (2002) employed a relaxation approach to solve the batch scheduling

problem heuristically.

Ferris et al (2009) considered the problem of scheduling of multi-stage batch pro-

cesses. They developed a dynamic decomposition approach that exploits the struc-

ture of the underlying problem. Their approach dynamically decomposes the prob-

lem into a set of subproblems which are generated by fixing the batch selection, unit

allocation, and timing decisions respectively, and make use of a grid computation

approach to solve the sub-problems. They showed that the proposed approach can

solve problems of realistic size within computational times small enough for practi-

cal applications.
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1.6 Research objectives

The discussion provided so far in this chapter points out that the process industry has

a specific set of product and process characteristics which have a significant impact

on the management of production operations. These characteristics are practically

important for their own sakes. However, in many production environments, a subset

of these characteristics appears together. Thus, planning and scheduling in process

industries often concerns the combination of several industry-specific characteris-

tics. It is important to note that these characteristics may closely interact with each

other. Let us, for instance, consider storage capacity limitations. As mentioned ear-

lier, these limitations are relatively critical in the process industry due to the use of

discrete storage units. However, it is evident that storage limitations become even

more critical when the production process involves perishable materials. Here, one

needs to allocate the available storage capacity while also considering the age of

materials in order to avoid degradation. The same holds for traceability require-

ments. Traceability prohibits the extent to which materials are merged and sepa-

rated, and puts a lot of pressure on the utilization of storage units. Therefore, we

can conclude that dealing with the combination of such industry-specific character-

istics is more challenging than dealing with each of them individually. Furthermore,

from a mathematical modeling point of view, it is difficult to translate the combina-

tions of complex operational characteristics into mathematical expressions. Despite

the discussion provided here, it appears that while the literature offers a variety

of methods which take into account these characteristics individually, the relation-

ship between them has not been fully addressed. This observation was also brought

up by Van Donk and Fransoo (2006) and Akkerman (2007). As a result, it is not

straightforward to see whether conventional planning and scheduling approaches

can be adopted to be used in more complex production environments. Also real-life

scheduling problems often suffer from high computational complexity which im-

pedes the practical application of exact modeling approaches. This necessitates the

use of computationally tractable heuristic procedures, albeit with possible sacrifice

in optimality. Therefore, it requires a careful investigation to determine which mod-

eling approaches and optimization techniques are most appropriate given the nature

of the underlying processing systems.

The aforementioned observations motivate this thesis. The aim of the thesis is to

add to the knowledge on planning and scheduling in the process industry while con-

centrating on processing systems where combinations of the specific characteristics

elaborated in this chapter are of concern. A strong emphasis is laid on schedul-
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ing problems originating from the food processing industry due to the relevance

and the criticality of its industry-specific characteristics. It would be fair to state

that many characteristics, e.g. raw material availability and yield, flexible product

recipes, perishable materials, traceability requirements, storage capacity limitations,

and production setups can be considered as ordinary concerns in the food process-

ing industry. It is very difficult, if not impossible, to develop mathematical mod-

els which can systematically accommodate all these characteristics simultaneously.

Nevertheless, based on the product and the process characteristics of the underly-

ing production environments, often a few of these characteristics become relatively

important with respect to others. For instance, let us consider a flour manufacturer

that supplies flour products to bakeries and industrial manufacturers. The raw ma-

terials used in this manufacturing process are mainly wheat and some other starchy

plant foods. The supply of such raw materials is fairly stable and availability is usu-

ally not an issue. Furthermore, the yield variability of milling – the main processing

operation – is very low. However, due to the large variety of end products limited

storage capacity is an important concern. A practical approach used to overcome

this issue is to make use of flexible product recipes, and to produce and stock a

limited number of intermediate products which are then blended into end products

following demand. However, this strategy leads to a production scheduling problem

with limited production and storage capacities, and also integrated product design

decisions regarding the product recipes of end products. This thesis focuses on prac-

tical planning and scheduling problems such as described above, and presents new

integrative approaches while making use of both optimal and heuristic procedures.

The planning and scheduling problems considered in the thesis are motivated by a

variety of practical cases originating from different production environments. These

cases have emerged from the long-standing industrial collaborations of the research

group where this thesis research was carried out.

The main research objectives of this thesis are: (i) to contribute to the development

of mathematical models that can be used as decision aids in scheduling processing

systems with industry-specific characteristics, and (ii) to provide some insight into

the order acceptance function in the process industry with respect to limitations in

raw material availability.

The thesis is organized as a collection of research papers centered around the main

research theme. These research papers are devoted to particular problems of prac-

tical interest originating from specific production environments. Each individual

paper mathematically defines and formalizes a particular problem and develops so-

lution approaches thereof based on well-grounded optimization methods. The ma-
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jority of the work carried out in this thesis concern deterministic scheduling prob-

lems. Nevertheless, the order acceptance function in batch processes is addressed

while considering stochastic yield and demand. The research efforts presented in

different chapters of the thesis are motivated by similar considerations. Thus, there

might be some extent of overlapping in positioning these chapters since they are

devised not only as parts of the thesis but also as research papers which can be read

individually. In the following section, we provide a brief outline of the contributions

of each research paper included in the thesis.

1.7 Thesis outline

The thesis is organized as follows. Chapter 2 addresses the scheduling problem in a

two-stage flow process. The essence of the problem lies in the use of flexible product

recipes. There is a variety of intermediate products characterized by different prod-

uct recipes which can be processed into end-products. The problem is to determine a

production schedule as well as the set of intermediates to be used minimizing the to-

tal operational costs while considering production and storage capacity limitations.

The chapter presents a comprehensive MILP model for this problem. The model

is applied on the data collected from a real-life case. The results of the numerical

study are used to analyze the effects of cost parameters and capacity limitations on

the selection of product recipes. Also the trade-offs between capacity limitations and

operational costs are investigated.

Chapter 3 considers the detailed short-term scheduling problem in batch processes.

The chapter contributes to the literature by extending the conventional discrete time

MILP formulation for scheduling batch processes by introducing storage capacity

and storage time limitations. The model is applied in a variety of storage config-

urations involving single/multiple and dedicated/multipurpose storage vessels. By

means of a numerical study several examples are illustrated to highlight the im-

pact of storage capacity and storage time limitations on scheduling production and

storage operations.

Chapter 4 investigates a process scheduling problem originating from a processing

system specialized in evaporated milk products. The processing system has a semi-

continuous structure. The layout of the system involves two continuous processing

stages connected by a batch-wise standardization step. The production environment

has several industry-specific characteristics such as traceability requirements and

time- and sequence-dependent cleaning of production units. The chapter presents
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a two-phase mathematical approach for this problem which successively determines

the specifications regarding material flows and builds a complete production sched-

ule. The approach is shown to be efficient by means of a numerical study based on

a data set collected from a real-life evaporated milk plant.

Chapter 5 focuses on the issue of raw material availability and yield variability in the

context of food processing. A food processing system is considered which processes

a single raw material with seasonal supply into several end products. The demand

for end products is stochastic. Also, the amount of raw material required to fulfill

a customer order is not known with certainty due to the variability in yield. The

problem is to decide whether or not to accept an incoming order given the amount

of raw material available and the time remaining until the next replenishment epoch

of the raw material inventory. The chapter elaborates this decision problem while

considering the objective to maximize the expected total revenue. It is shown that

the problem can be modeled as a single resource capacity control problem. Because

the optimal policy is too complex for practical use, a heuristic approach is proposed

based on rather simple decision rules. The performance of the heuristic is then

investigated by means of a numerical study, and the effects of yield variability are

analyzed.

Finally, Chapter 6 concludes the thesis where the individual chapters are summa-

rized, and possible directions for further research are outlined.
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Chapter 2

Capacitated intermediate

product selection and blending

in the food processing industry

An earlier version of this chapter is published as Kilic, Akkerman, Grunow, and

Van Donk (2009), Modeling intermediate product selection under production and

storage capacity limitations in food processing, Proceedings of the International Con-

ference on Industrial Engineering and Engineering Management, 1077 - 1081.

Abstract. This study addresses a capacitated intermediate product selection and blend-
ing problem typical for two-stage production systems in the food processing industry.
The problem involves the selection of a set of intermediates and end product recipes
characterizing how those selected intermediates are blended into end products to min-
imize the total operational costs under production and storage capacity limitations. A
comprehensive mixed integer linear model is developed for the problem. The model is
applied on a data set collected from a real-life case. The trade-offs between capacity
limitations and operational costs are analyzed, and the effects of different types of cost
parameters and capacity limitations on the selection of intermediates and end product
recipes are investigated.
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2.1 Introduction

The food processing industry is characterized by divergent product structures where

a relatively small number of (agricultural) raw materials are used to produce a large

variety of often customer specific end products (see e.g. Akkerman and Van Donk,

2009). Due to the large variety of end products it is often not possible or at least in-

efficient to produce and stock all end products. A common practice used to mitigate

the effect of the product variety on the operational performance in food-processing

systems is to produce some or all end products by blending them from a limited

number of selected intermediate products (Van Donk, 2001; Soman et al, 2004a;

McIntosh et al, 2010). The basic notion of this practice follows the well known prin-

ciple of postponement which is widely used amongst various industries (Van Hoek,

1999; Venkatesh and Swaminathan, 2003; Caux et al, 2006; Forza et al, 2008). This

approach reduces the frequency of processing runs and the storage requirements

in the intermediate product level at the expense of additional blending operations

in the final production stage. However, this strategy leads to a decision problem

involving (i) the selection of a set of intermediates from a large set of potential in-

termediates usually designed by quality management experts, and (ii) end product

recipes which prescribe how those selected intermediates are blended into end prod-

ucts in order to minimize the total operational costs (Rutten, 1993; Akkerman et al,

2010).

The current study seeks to address the aforementioned decision problem. The prob-

lem relates to the well-known blending problems, where, given a set of products,

the objective is to find a minimum cost mix satisfying a set of quality related at-

tributes. Due to their practical relevance, a considerable amount of work has been

done on industry-specific production planning problems involving blending com-

ponents, such as feedlot optimization problems (see e.g. Glen, 1980; Taube-Netto,

1996), sausage blending problems (see e.g. Steuer, 1984), multi-period production

planning problems (see e.g. Williams and Redwood, 1974; Rutten, 1993), and grade

selection and blending problems (see e.g. Karmarkar and Rajaram, 2001; Akkerman

et al, 2010). However, these studies assume unlimited production and/or storage

capacities. The problem we consider in this paper stands apart from the afore-

mentioned literature with regard to two main aspects. First, we capture whether

blending of intermediates is required to produce end products by acknowledging

the possibility of direct use of intermediates as end products. Secondly, we approach

the blending problem by considering the costs and the capacity limitations related

to both the production and the storage operations which also affect the selection of
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the intermediates and end product recipes.

The rest of the paper is organized as follows: In Section 2.2, we provide a detailed

description of the production system under consideration. In Section 2.3, we review

the related literature. In Section 2.4, we present the mathematical programming

formulation of the problem. In Section 2.5, we demonstrate an application of the

model for a real-life case. We conduct a numerical study to illustrate the effects

of some operational settings on the optimal decisions. Finally, in Section 2.6, we

summarize our work and suggest directions for future research.

2.2 Problem description

The production system under consideration involves two production stages: process-

ing and blending. The processing stage involves the production of intermediates. In

the blending stage, intermediates are blended into end products following end prod-

uct recipes which specify the blending proportions of intermediates. The recipe of

an end product may involve single or multiple intermediates. In the former case, de-

mands can directly be satisfied from intermediate stocks. In the latter case, however,

intermediates are first blended to form end products which are then used to serve

demands. Figure 2.1 illustrates a small example of such a system involving two se-

lected intermediates and three end products where circles and rectangles represent

materials and production operations respectively. Notice that two of the three end

products in the example require blending operations, whereas the last one does not.

Intermediates End products

Processing stage Blending stage

Figure 2.1: An example production system
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The problem we address in this study involves the selection of (i) a set of intermedi-

ates to be stocked from a given set of potential intermediates, and (ii) end product

recipes which specify how those intermediates are blended into end products. The

selection of intermediates and end product recipes is associated with a set of cost

factors and constraints. The total operational cost is composed of material procure-

ment costs, processing costs, storage costs associated with selected intermediates;

and blending costs associated with end products. There are two basic constraint

sets. First, the compositions of end products, which are defined by their product

recipes, must comply with a specified set of quality requirements in order to guar-

antee the conformity of end products. The composition of an end product charac-

terizes all types of attributes associated with it. However, often it is sufficient to

consider a subset of those attributes when dealing with the quality requirements of

end products. Here, we refer to those attributes as quality parameters. The quality

requirement regarding a particular quality parameter (e.g. protein or fat concen-

tration) states that the relevant parameter must be within a given range defined by

a minimum and a maximum. Second, available production and storage capacities

must be sufficient to put the selected intermediates and end product recipes to use.

That is, given a set of selected intermediates and end product recipes, it must be

possible to produce the necessary amount of intermediates and to blend them into

end products to satisfy the demand, and the storage facilities must be sufficient to

stock production lots.

The processing stage is characterized by processing and setup times/costs associated

with each intermediate. In order to avoid high setup costs and down times, long pro-

cessing runs and/or a limited number of intermediates are preferred. Production op-

erations are scheduled following the common cycle scheduling policy (Hanssmann,

1962). This approach is widely used in industry due to its simplicity and adaptability

and has been proven to produce optimal or near-optimal schedules in many prac-

tical situations especially when products are similar in terms of their cost structure

and demand rates, and setup times are relatively short (Jones and Inman, 1989). In

a common cycle schedule, one lot of each product is produced in each production

cycle and the cycle time is identical for each product (in our case selected interme-

diate). If the usage rates of selected intermediates were known in advance, then the

optimal cycle time could easily be determined following to the common cycle policy.

However, in our case, the usage rates depend on the decisions regarding the set of

selected intermediates and end product recipes. Hence, rather than optimizing the

cycle time we aim at finding the optimal set of selected intermediates and end prod-

uct recipes for a given cycle time. Due to the perishable nature of food products,
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cycle times are rather short in food processing industry. Furthermore, cycle times

are usually not just arbitrary intervals but integer multiples of an applicable time

period such as a shift or a day. Thus, in case it is needed, the model can be solved

for a limited set of applicable cycle lengths.

As discussed previously, the product variety at the end product level often makes it

impossible to store all end products. Because of this reason, blending operations run

on a daily basis following end product demand. The blending stage usually involves

very standardized operations. Hence we assume a constant blending rate for all

end products. The setup operations in this stage are minor and are assumed to be

negligible.

The selected intermediates are stored between the two production stages in a num-

ber of storage units (e.g. silos or tanks) which are identical in terms of their volume.

The limitations on the storage capacities are rather restrictive in the food process-

ing industry since only a single type of intermediate can be stored in a storage unit

(Akkerman et al, 2007). The customer preferences and demands change gradually

over time, and consequently, selected intermediates and end product recipes are

usually revised to correct for those periodically. We assume that demand is stable

within those revision intervals.

2.3 Related literature and positioning

The first example of the blending problem is the famous diet problem of Stigler

(1945) where a minimum cost diet is determined subject to a set of dietary al-

lowances. Following the line of this problem a large body of literature has emerged

addressing blending problems particularly in the petrochemical industry and the

agricultural industry. Most of this work has been concentrated on stand-alone blend-

ing problems which usually concern the determination of a minimum cost blend or

a recipe while respecting a set of quality related constraints. However, in processing

systems, the production and the storage operations are tightly coupled with prod-

uct recipes and demands which together determine the consumption rates of the

ingredients to be used in processing the blends. Crama et al (2001) classify blend-

ing problems into three basic categories based on the degree of the integration of

the blending problem with production and storage operations: (i) design problems

where the blending operations are considered in isolation, (ii) long- or medium-

term planning problems where the blending operations are integrated in the long-

or medium-term (master) planning, and (iii) short term planning and scheduling
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problems where the blending problem is a part of everyday operations. The problem

under consideration in this study falls into the category of medium-term planning

problems. Here we briefly review some of the work in this domain.

Glen (1980) develops a method for the beef cattle feedlot operations to determine

the rations to feed animals. His method gradually changes the rations over time in

order to obtain a specified liveweight at the minimum cost. Steuer (1984) studies

sausage blending problems which concern the optimization of meat blends to pro-

duce sausages under a set of quality constraints. Taube-Netto (1996) presents an

integrated planning model for poultry production which encompasses, among other

aspects, the formulation of feed to be used over the planning horizon. In the afore-

mentioned examples, the processing and blending operations of the feedstuffs are

not integrated into the overall production planning problem.

Williams and Redwood (1974) propose a multi-period blending model for a com-

pany that refines and blends different types of raw oils to produce a number of

brand oils. Their model decides upon the purchasing and production quantities

for each time period considering the price fluctuations of raw oils. Rutten (1993)

develops a hierarchical approach for the operational planning of a dairy firm. He

considers the planning problem at the operational planning level and decomposes

it into smaller problems each of which can be solved in reasonable computational

times. However, these studies do not consider the economies of scale resulting from

the setup costs/times.

Karmarkar and Rajaram (2001) study the joint production and blending problem.

They propose a general mixed integer non-linear program (MINLP) and a Lagrange-

an heuristic to solve the problem. Their work is substantial since they jointly op-

timize the lot sizes and end product recipes. However, they consider only a single

quality parameter and use a cost function to penalize the nonconformity of end

product. Furthermore, they assume uncapacitated production and storage.

Our study is closely related to the work of Akkerman et al (2010) where a flour

manufacturing system is considered. They study a system where a limited number

of grains are milled and blended into various types of flour products. They propose

a mixed integer linear program (MILP) to determine the recipes of flour products

minimizing total milling and blending costs. Their approach also accounts for the

option of using selected intermediates directly as end products. They do not ex-

plicitly consider the production and storage capacities. However, they approximate

these limitations by using an upper bound on the number of intermediates to be se-

lected. They mention that it is logical to limit the number of intermediates since the
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opposite would require large setup times and a huge storage capacity. In this study,

we build on the model provided by Akkerman et al (2010) and extend their study by

explicitly incorporating the capacity limitations and costs on production and storage

operations.

2.4 Model formulation

In this section, we present a mathematical model for the intermediate selection and

blending problem. We first provide the notation used in the rest of the paper. Then

we outline the objective function and the constraints characterizing the problem.

2.4.1 Notation

Consider a food processing system producing a set of end products J . These end

products can be produced by using a set of intermediates I. Intermediates and end

products are characterized by their compositions in terms of a set of ingredients K.

We refer to the proportions of those ingredients as quality parameters. The quality

parameters of intermediates are known whereas they are defined on minimum and

maximum levels for end products. The end product recipes should comply with

those bounds.

We are given the quality specifications

qik = quality parameter k ∈ K of intermediate i ∈ I (%)

qmin
jk = minimum quality parameter k ∈ K of end product j ∈ J (%)

qmax
jk = maximum quality parameter k ∈ K of end product j ∈ J (%)

demand and process characteristics

dj = demand rate of end product j ∈ J (tons/day)

si = setup time of intermediate i ∈ I (days)

pi = processing rate of intermediate i ∈ I (tons/day)

pb = blending rate of end products (tons/day)

N = number of available storage units

V = capacity of each storage unit (tons)

π = cycle time (days)

and cost parameters
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ai = setup cost of intermediate i ∈ I (Euros)

ci = processing (and material) cost of intermediate i ∈ I (Euros/ton)

cb = blending cost of end products (Euros/ton)

hi = holding cost of intermediate i ∈ I (Euros/ton day).

In order to specify the basic intermediates to be used and corresponding end product

recipes we define the variables

xij = fraction of end product j ∈ J supplied by intermediate i ∈ Ij

where Ij ⊂ I is the set of intermediates which can be used in producing end product

j,

yi =





1, if intermediate i ∈ I is selected as a basic intermediate

0, otherwise

and

vij =





1, if intermediate i ∈ I∗j is used directly as end product j ∈ J

0, otherwise

where I∗j ⊂ Ij is the set of intermediates which comply with all quality specifications

of end product j, i.e.

I∗j = {i ∈ Ij | qmin
jk 6 qik 6 qmax

jk ,∀k ∈ K}.

For notational simplicity, we also introduce the expressions

wi = the consumption rate of intermediate i ∈ I (tons/day)

such that,

wi =
∑

j∈J
djxij ∀i ∈ I (2.1)

and

zj =





1, if end product j ∈ J is produced with blending operations

0, otherwise

such that,

zj = 1−
∑

i∈Ij

vij ∀j ∈ J. (2.2)

Notice that, the domain of zj can be verified since vij equals 1 for at most one

intermediate. This will further be clarified in the constraints.
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2.4.2 Objective function

The objective is to minimize the daily total costs which is comprised of cost compo-

nents associated with setup, processing and storage of intermediates; and blending

of end products. Setup costs are relevant to those intermediates which are selected

as basic intermediates. Since processing operations are carried out following a com-

mon cycle schedule, in each cycle a setup is initiated for every basic intermediate.

Thus, cost incurred in a single cycle equals
∑
i∈I aiyi. To obtain the setup cost per

day, the cost per cycle is divided by the cycle time. Processing costs involve the

material and operational costs of processing operations, and they are incurred for

all basic intermediates in proportion to their consumption rates. Hence, daily pro-

cessing cost can be expressed as
∑
i∈I ciwi. It is important to note that processing

cost, as a combination of material and operational costs, is usually the largest cost

component of the total costs in food process industries. Storage costs depend on

the average inventory levels of intermediates. The processing of an intermediate,

say intermediate i, starts when the inventory drops down to zero, and stops when

reaches up to πwi(1 − wi/pi). Because both production and consumption rates are

assumed to be constant, the average inventory equals half of the maximum inven-

tory level. Thus,
∑
i∈I 0.5hiπwi(1 − wi/pi) gives the daily storage cost. Blending

costs are incurred for end products which go through the blending operation in pro-

portion to their demand rates. Hence, the daily blending cost equals cb∑
j∈J djzj .

The following expression, therefore, provides daily total costs.

1

π

∑

i∈I
aiyi +

∑

i∈I
ciwi +

∑

i∈I

1

2
hiπwi

(
1− wi

pi

)
+ cb

∑

j∈J
djzj . (2.3)

2.4.3 Constraints

The capacitated intermediate selection and blending problem involves a variety of

constraints regarding the conservation and quality requirements of end product

recipes, and capacity limitations on processing, storage and blending operations.

These constraints are articulated in this subsection.

Recipe conservation constraints. For each end product j, the fractions xij defin-

ing the contribution of each intermediate i into end product j must sum up to 1 in

order to specify a complete recipe:

∑

i∈Ij

xij = 1 ∀j ∈ J. (2.4)
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The decision on whether intermediate i is selected to be used in one or more end

product recipes is indicated by the binary decision variable yi. Hence, intermediate

i cannot take place in any end product recipe as long as yi equals 0:

xij 6 yi ∀i ∈ Ij ,∀j ∈ J. (2.5)

If end product j is directly supplied as intermediate i then its contribution in the

associated recipe (in percentage) must equal 1 (i.e. %100):

vij 6 xij ∀i ∈ I∗j ,∀j ∈ J. (2.6)

Notice that Eq. (2.6) together with Eq. (2.4) guarantees that
∑
i∈I∗j

vij ∈ {0, 1}, and

hence zj ∈ {0, 1}.

Quality constraints. Quality constraints guarantee that recipes comply with the

quality requirements of end products. That is, each quality specification k of end

product j, as the weighted average of the specifications of the intermediates take

place in the corresponding recipe, must be between the pre-specified minimum and

maximum quality parameters:

qmin
jk 6

∑

i∈Ij

qikxik 6 qmax
jk ∀j ∈ J, ∀k ∈ K. (2.7)

Processing capacity constraints. Processing capacity constraints make sure that

there is enough time for the setup and the production operations of the selected

intermediates within the given cycle length. This can be guaranteed by

∑

i∈I

{
siyi + π

wi
pi

}
6 π (2.8)

where the terms in the summation stand for the total setup time and the total pro-

cessing time associated with the selected intermediates respectively. Notice that, wi
equals 0 for those intermediates that are not selected (see Eq. (2.1) and Eq. (2.5)).

Storage capacity constraints. Storage capacity constraints limit intermediate in-

ventory levels. More specifically, there are N storage silos available each with V

tons of capacity. Because the form of storage is homogeneous, the number of stor-

age units constitutes an upper bound on the number of intermediates. However, it

is also possible to assign multiple storage units to a particular intermediate. Hence-

forth, the number of storage silos assigned to an intermediate bounds the maximum

inventory level of that intermediate.
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The maximum inventory level of an intermediate depends on the production mode

as discussed in forming the objective function. Following the same reasoning, we

can write the storage constraints as

∑

i∈I




πwi

(
1− wi

pi

)

V



6 N. (2.9)

Blending capacity constraints. Blending capacity constraints limit the extent of

the daily blending operations. The daily blending rate is given as pb. The total daily

blending volume is the sum of the demands associated with those end products

which undergo blending operations as indicated by the binary variable zj . Hence,

the daily blending capacity constraint is expressed as

∑

j∈J
djzj 6 pb. (2.10)

The mathematical formulation provided so far involves non-linear expressions both

in the objective function and constraints. In particular, both storage costs and con-

straints are non-linear (see Eq. (2.3) and Eq. (2.9)). These expressions are dif-

ficult to handle with general purpose mathematical programming solvers. In Ap-

pendix 2.A, we provide a linearization scheme for those expressions which enables

us to express the model as a MILP. Also, in Appendix 2.B, we provide some upper

bounds on the consumption rates of potential intermediates which can be used to

strengthen the formulation.

2.5 Numerical study

We implement our approach on a data set collected from a medium-sized flour man-

ufacturer that supplies flour products to bakeries and industrial manufacturers. The

main processing operation in flour manufacturing is the milling process where the

grains are ground between successive sets of mill stones or rollers to produce differ-

ent types of intermediate flour products. These flour products can be used directly

as end products to satisfy demands. Alternatively, they can be blended into end

products following to a blending operation where they are dispersed within each

other and homogenized. Consequently, the decision problem is to select those flour

products to be stocked, and to determine the recipes of end products specifying how

they are blended.
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The production system under consideration involves 76 potential intermediates and

45 end products with 9 different quality parameters. The flour mill can process flour

products with a capacity around 350 tons/day. This does not include the setup times

which are around 30 minutes per changeover. The blender mixes flour products

with an average capacity of 200 tons/day. There are 18 storage silos each of which

can store around 50 tons of material. The total demand sums up to 220 tons/day.

However, the demands vary substantially between different end products. We do not

provide the cost figures here for the sake of confidentiality. It is important to note

that, as it is in most process industries, the material procurement costs (which are

expressed in processing costs in the formulation) are dominant with respect to other

operational costs. However, while good purchasing is pivotal, minimizing the non-

procurement costs is important to stay competitive since profit margins are rather

small in the food processing industry.

We analyze the case in a constructive manner by using several, increasingly compre-

hensive, scenarios, thereby illustrating the effect of the different constraints and cost

factors. In Scenario 1, we consider the blending problem in isolation, ignoring all

types of capacity limitations. This scenario establishes a benchmark to compare the

following scenarios with. In Scenario 2, we add the production capacity limitations

and setups costs to the problem showing us how these affect the selection of inter-

mediates and end product recipes. In Scenario 3, we integrate the storage costs into

the problem, demonstrating the trade-off between setup costs and storage costs. In

Scenario 4, we finally add the storage capacity limitation, thereby considering all

relevant costs and capacity limitations. This scenario reflects the actual production

environment addressed in this study. In Scenario 5, we again study the complete

problem, but change the production setup of the case company to look at possible

ways to increase efficiency.

In each scenario, we communicate the daily costs and capacity utilization levels of

production and storage operations, and provide some basic information regarding

the selection of intermediates and end product recipes. More specifically, we report:

1. Cycle time (CT): π

2. Total costs (ToC): 1/π
∑
i∈I aiyi +

∑
i∈I ciwi +

∑
i∈I 1/2hiπwi(1 − wi/pi) +

cb∑
j∈J djzj

3. Processing costs (PrC):
∑
i∈I ciwi

4. Setup costs (SeC): 1/π
∑
i∈I aiyi

5. Blending costs (BlC): cb∑
j∈J djzj

6. Storage costs (StC):
∑
i∈I 1/2hiπwi(1− wi/pi)

30



7. Processing utilization (PrU): 1/π
∑
i∈I{siyi + πwi/pi}

8. Blending utilization (BlU):
∑
j∈J djzj/p

b

9. Storage utilization (StU):
∑
i∈Idπwi(1− wi/pi)/V e/N

10. Number of selected intermediates (#SI):
∑
i∈I yi

11. Number of end products directly supplied from intermediate stocks (i.e. end

products with a single intermediate in their recipes) (#EPFS): |J | −
∑
j∈J zj

Notice that, we define the utilization levels as the ratio of the engaged capacity to

the available capacity. As such, the storage utilization relates to the percentage of

storage units in use, rather than utilization of each individual storage unit.

2.5.1 Scenario 1

We start our analysis with the blending problem in isolation. That is, we minimize

the sum of processing and blending costs subject to the quality constraints of end

products. Thus, we assume that the production and storage capacities are both

infinite and we neglect the setup and storage costs. Notice that, the optimal solution

of this problem is independent of the cycle time, and it sets a lower bound on the

costs for the original problem. The results are given in Table 2.5.1.

Costs (Euros/day) Utilization (%) Recipes

CT ToC PrC SeC BlC StC PrU BlU StU #SI #EPFS

1 31202 31129 - 73 - - - - 30 32

Table 2.1: Optimal solution - Scenario 1

We observe that the daily total costs are minimized at 31202. Only a very small

portion of this cost originates from the blending operations. The model selects 30

out of 76 intermediates to be stocked and 32 out of 45 end products to be supplied

from stock. One could expect that supplying all end products from stock yields a

lower total cost by preventing any blending costs. Yet, the optimal solution suggests

that 13 of 45 end products should undergo blending operations. This shows that

the unit production costs of those end products which are not directly supplied from

stock are smaller when they are blended from a number of intermediates despite the

additional blending costs. In other words, the intermediates which comply with the

quality requirements of those end products possess larger unit processing costs than

the unit processing cost of the optimal blend plus the blending costs. Another result

is that 32 end products are supplied from stock although only 30 intermediates are

31



selected to be stocked. This means that some selected intermediates comply with the

quality requirements of multiple end products. Notice that this scenario reflects the

minimum attainable combination of processing and blending costs. In the following

scenarios, we analyze how additional costs and capacity limitations add on this cost

figure.

2.5.2 Scenario 2

In this scenario, we integrate production capacities (i.e. processing rates and setup

times) and related costs (i.e. setup costs) into the problem considered in Scenario 1

while still neglecting the storage capacity limitation and storage costs. Note that the

optimal solution of the problem is now dependent on the cycle time. In Table 2.2,

we therefore report the optimal solutions of the problem for cycle times of 1 to 10

days.

Costs (Euros/day) Utilization (%) Recipes

CT ToC PrC SeC BlC StC PrU BlU StU #SI #EPFS

1 31875 31215 531 129 - 0.88 0.32 - 11 21

2 31585 31178 290 117 - 0.77 0.29 - 12 21

3 31480 31165 224 91 - 0.74 0.23 - 14 24

4 31423 31160 174 89 - 0.71 0.22 - 15 25

5 31386 31151 146 89 - 0.71 0.22 - 16 25

6 31363 31153 124 86 - 0.70 0.21 - 16 25

7 31346 31153 107 86 - 0.69 0.21 - 16 25

8 31331 31141 102 88 - 0.70 0.22 - 17 24

9 31319 31142 90 87 - 0.69 0.22 - 17 25

10 31311 31132 92 87 - 0.72 0.22 - 19 25

Table 2.2: Optimal solution - Scenario 2

The results show that both the cost figures and the selection of intermediates are

quite different from the ones in Scenario 1. We notice a sharp decrease in the num-

ber of selected intermediates compared to Scenario 1. This leads to higher process-

ing and blending costs which, together with setup costs, significantly increase the

daily total cost. Notice that the optimal daily total cost is decreasing on cycle time

since we do not consider storage costs. We also observe that neither the production

nor the blending capacity is binding. For the cycle times considered the utilization

of the production and blending do not reach 100%.
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It is important to remark that the selection of the intermediates is also affected by

the cycle time. A setup cost is incurred for each selected intermediate in every

production cycle. Thus, the daily total setup cost is decreasing on the cycle time and

increasing on the sum of the individual setup times of selected intermediates. In this

sense, having a larger number of selected intermediates may lead to higher setup

costs. The results clearly show that this effect is dominated by the cost reduction

due to the increasing cycle time. On the other hand, having a larger number of

intermediates may also result in lower processing and/or blending costs by bringing

more options to supply end products. We can detect these effects in Table 2.2.

The results show that increasing cycle time leads to a larger number of selected

intermediates, and thus, reduce processing and blending costs.

2.5.3 Scenario 3

In this scenario, we integrate the storage costs into the problem considered in Sce-

nario 2 while still neglecting the storage capacity limitation. In Table 2.3 we report

the optimal solutions of the problem for cycle times of 1 to 10 days.

Costs (Euros/day) Utilization (%) Recipes

CT ToC PrC SeC BlC StC PrU BlU StU #SI #EPFS

1 31892 31215 531 129 17 0.88 0.32 - 11 21

2 31623 31178 290 117 38 0.77 0.29 - 12 21

3 31539 31165 224 91 59 0.73 0.23 - 14 24

4 31503 31165 168 91 79 0.71 0.23 - 14 24

5 31485 31151 146 89 99 0.71 0.22 - 16 25

6 31482 31153 124 86 119 0.70 0.21 - 16 25

7 31485 31153 107 86 139 0.69 0.21 - 16 25

8 31490 31142 102 87 159 0.70 0.22 - 17 25

9 31498 31142 90 87 179 0.69 0.22 - 17 25

10 31509 31142 81 87 199 0.69 0.22 - 17 25

Table 2.3: Optimal solution - Scenario 3

The difference between the cost figures in Scenario 2 and Scenario 3 demonstrates

the effects of storage costs. We observe that the daily setup cost is decreasing

whereas the daily storage cost is increasing on cycle time. As a consequence, the

optimal daily total cost is no longer decreasing on cycle time. The minimum daily

total cost 31482 is achieved when the cycle time is 6 days. The optimal daily total
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cost is higher for cycle times shorter than 6 days due to larger setup costs, and for

cycle times longer than 6 days due to larger storage costs.

The effect of holding costs on the selection of intermediates is only visible for longer

cycle times where the magnitude of storage costs is rather large. Consider the cycle

time of 10 days. In Scenario 2, the model selects 19 intermediates which can supply

25 end products directly from stock. In Scenario 3, however, the model selects 17

intermediates which can also supply 25 end products directly from stock. The differ-

ence between those figures can be explained as follows. The total consumption rate

of selected intermediates equals the total demand rate, and it is allocated between

the selected intermediates following the end product recipes. The average inven-

tory level of a selected intermediate is increasing on intermediate’s production rate

whereas it is concave on intermediate’s consumption rate. Thus, with other things

held constant, the total holding cost would be lower when the production rates and

holding costs of the selected intermediates are lower and/or the number of selected

intermediates is smaller. The reduction in the number of intermediates also leads

to a slight increase in the processing costs, demonstrating that more expensive raw

materials are required to produce more flexible intermediates.

2.5.4 Scenario 4

In this scenario, we integrate the storage capacity limitation into the problem con-

sidered in Scenario 3. Thus, we consider all types of capacity limitations and costs

and investigate the actual real-life problem. In this particular case, there are 18 stor-

age units available. In Table 2.4 we report the optimal solutions of the problem for

cycle times of 1 to 6 days. We do not consider cycle times longer than 6 days because

there is no feasible solution for those with the given storage capacity limitation.

Costs (Euros/day) Utilization (%) Recipes

CT ToC PrC SeC BlC StC PrU BlU StU #SI #EPFS

1 31892 31215 531 129 17 0.88 0.32 0.61 11 21

2 31623 31178 290 117 38 0.77 0.29 0.78 12 21

3 31539 31165 224 91 59 0.74 0.23 1.00 14 24

4 31577 31215 155 128 79 0.73 0.32 1.00 13 21

5 31891 31386 93 327 85 0.82 0.82 1.00 9 11

6 32451 31959 54 346 92 0.90 0.87 1.00 7 12

Table 2.4: Optimal solution - Scenario 4
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The results show that minimum daily total cost is achieved when the cycle time

is 3 days. We observe that the storage capacity limitation significantly affects the

optimal cost structure and the selection of intermediates and end product recipes.

Notice that, in general, a longer cycle time leads to higher average inventory levels.

Thus storage capacity limitation is more restrictive when the cycle time is longer.

It is possible to observe this by comparing the results reported in Table 2.3 and

Table 2.4. The storage capacity limitation leads to large differences in daily total

costs especially when the cycle time is longer than 2 days. The magnitude of this

effect gradually increases with the cycle time and eventually results in an infeasible

problem for cycle times longer than 6 days. The same effect can be observed on

the storage utilization. For cycle times longer than 2 days, the utilization of storage

units reaches 100%, and the storage capacity becomes binding. Hence, for those

cycle times the cost difference between Scenario 3 and Scenario 4 originates from

the limited storage capacity.

We also observe that the storage limitations significantly change the structure of the

optimal set of selected intermediates and the end product recipes. In particular, for

those cycle times where the storage capacity is binding, the model selects a smaller

number of intermediates, preferably the ones with lower production rates, in order

to reduce the stock levels. This, however, increases processing and blending costs

because the set of selected intermediates and end product recipes further move away

from the optimal ones.

2.5.5 Scenario 5

In the previous scenarios, we have observed that the storage capacity limitation is

the most critical one among other limitations for the particular example considered

in this numerical study. Consequently, in this scenario, we focus on cost reductions

that can be achieved by altering the storage capacity. We conduct our analysis as

follows. First, for each cycle time, we find a critical storage capacity level which

is large enough to provide the optimal daily total cost that can be achieved when

there is no storage limitation. Since inventory levels gradually increase with cycle

time, we expect critical storage capacity levels to be higher for longer cycle times.

These levels can easily be found by solving the problem without storage capacity

limitations, as in Scenario 3, and checking how many storage units are being used

following the optimal solution. Notice that the storage capacity constraint is binding

only when the storage capacity is below those critical levels, and if so then having

extra storage capacity could reduce the daily total cost. Secondly, we solve the
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problem for all storage capacity levels up to critical ones so as to find the added

value of expanding the storage capacity.
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Figure 2.2: Critical storage capacity levels for cycle times of one to six days

We know, from Scenario 3, that the optimal cycle time is 6 days for the problem

without storage capacity limitations. This cycle time can be regarded as an upper

bound for the optimal cycle time when storage capacity is limited. Thus we limit

our analysis to cycle times from 1 to 6 days. In Figure 2.2, we report those critical

resource levels. As expected, we observe that the critical storage levels are increasing

on cycle time. The critical storage capacity levels reflect the maximum number of

storage units that could possibly be needed when a given cycle time is employed.

Up to this level, additional storage units lead to lower costs, but, there is no added

value of expanding the storage capacity beyond the critical level as long as the same

cycle time is employed. Nevertheless, from Scenario 3 we know that the daily total

cost can still be improved by employing a longer cycle time (not more than 6 days).

In what follows, we solve the problem for cycle times of 1 to 6 days and for all

feasible storage capacity levels up to the critical ones so as to find the added value of

the extra storage capacity. In previous scenarios we have already demonstrated the

effects of the storage capacity limitation on individual cost components, utilization

rates, and the selection of intermediates and end product recipes. Thus, in this

scenario we only communicate the optimal daily total costs. Figure 2.3 illustrates

the minimum daily total costs that can be achieved with respect to the available

number of storage units – also including the cycle time linked to these solutions.

We observe that different cycle times are optimal for different storage capacities.
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Figure 2.3: Optimal daily total costs - Scenario 5

For example, when cycle time is 3 days, the critical storage capacity level equals 19

storage units. Further increasing the storage capacity does not lead to a reduction of

cost as long as the cycle time remains the same. However, increasing the available

number of storage units to 20, while also increasing the cycle time to 4 days opens up

the possibility to reduce costs, since the storage capacity of 20 units is less than the

critical storage capacity level for the cycle time of 4 days. Hence, further increasing

the storage capacity leads to a lower daily total cost until we reach a storage capacity

of 25. After this, we would again need to increase the cycle time to enable further

cost reductions. Notice that the cycle time that minimizes the daily total cost tends to

increase as the storage capacity gets larger. Nevertheless, from Scenario 3, we know

that the maximum cycle time that would be used equals 6 days. Hence, it would

never be necessary to use more than 32 storage units as it is the critical storage level

for the cycle time of 6 days.

We can also investigate the added value of extra storage capacity by looking at the

minimum daily total cost for each storage capacity level over the cycle times. These

costs are illustrated by the down-most bold line in Figure 2.3. We know that the

daily total cost tends to decrease as the storage capacity expands up to 32 storage

units and then levels off. However, we observe that this trend is not steady over
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the storage capacity. That is, the cost reduction due to an extra storage unit is not

decreasing on the number of available storage units. This is mainly because when

an additional storage unit increases the storage capacity to exceed a critical level, it

brings up the possibility of reducing the cost also by altering the cycle time which is

not possible otherwise.

In the actual storage setting of the case company, 18 storage units are used. We

know now that expanding the storage capacity to 32 units will reduce the daily total

cost – but only if the cycle time is increased simultaneously. Minor, more realistic,

increases in the storage capacity should also be considered in combination with

changes in the cycle time. Adding one storage unit has almost no effect on costs

whereas adding two or three storage units in combination with an increase of the

cycle time to 4 would have a significant effect.

2.6 Conclusions and extensions

In this study, we addressed a capacitated intermediate product selection and blend-

ing problem encountered in the food processing industry. The problem involves

the selection of a set of intermediates and end product recipes characterizing how

those selected intermediates are blended into end products to minimize the total

operational costs under capacity limitations. We developed a comprehensive mixed

integer linear model for the problem. We applied the model to a data set collected

from a real-life company and we analyzed the problem under several scenarios to

better understand the trade-offs between capacity limitations and costs. For the par-

ticular case considered in our numerical study, we observed that the production and

the blending capacities are not binding for the case whereas the storage capacity is.

Consequently, we investigated possible cost reductions that can be achieved by alter-

ing the storage capacity. We showed that the cost reduction due to an extra storage

unit is not decreasing on the number of available storage units, mainly due to the

use of different cycle times. This suggests that a careful investigation is required

when deciding upon an expansion of the storage capacity.

In general, this study demonstrated important product-process interactions in the

process industries, where the decisions on the selection of intermediates and the

configuration of end product recipes are affected by the capacity limitations and

the costs associated with production and storage operations. In this context, the

problem addressed in this study can be regarded an extension of the production lot

scheduling problem with integrated design decisions. The conventional production
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lot scheduling problems try to balance the trade-off between the fixed production

setup costs and inventory holding costs. We observed that this trade-off is affected

by integrated design decisions, since excessive setup and holding costs can be elim-

inated by reducing the number of intermediates, however, in expense of additional

blending costs. We also analyzed how capacity limitations affect the selection of

intermediates and end product recipes. We saw that these limitations interact with

each other, and based on their magnitude, one or more of those limitations could

be binding at the same time. Especially the planning of the production operations

within the capacitated situation (in this paper represented by the selection of a cer-

tain cycle time) had a significant effect on the selected intermediate products, the

amount of storage units this requires, and the total costs. It should be noted that

we mainly concentrated on the storage capacity in our numerical study because it

appeared to be the most critical parameter for the case example under considera-

tion. Nevertheless, there are many other parameters, such as production capacities,

and setup and holding costs which could also be influential. The model presented

in this paper can be used to gain insight in the complex interactions between prod-

uct design, process design, and operational planning. Also, an analysis as the one

conducted in this paper, could be useful for evaluating alternative design and/or

expansion decisions.

This research is particularly aimed at the food processing industry. Nevertheless,

it encompasses characteristics, such as limitations on production and storage ca-

pacities, which are very common in many other processing systems. Therefore,

the proposed model can also be adapted to other processing systems with some

simple modifications. For instance, in some processing systems, production lots go

through a series of quality checks before they are used. This could easily be covered

by the proposed model by replacing the expression of maximum inventory levels

πwi(1 − wi/pi)) with πwi in the objective function and the storage capacity con-

straints. This would also simplify the linarization of storage capacity constraints.

There are several directions we leave aside for further research. We analyzed the

problem assuming a common cycle scheduling policy. Although it is widely used

in practice, under certain circumstances this policy may perform badly. Hence, the

same problem can be considered under more sophisticated scheduling policies. We

assumed that all storage units are identical, and they must be assigned to certain

intermediates. Violating these assumptions require significant modifications in our

approach. However, in some cases, storage units may possess different characteris-

tics, and it may be possible to switch storage units between intermediates. Thus, it

would be interesting to analyze the problem while relaxing these assumptions.
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Appendix 2.A Piecewise linear approximation of

storage capacities and costs

The mathematical formulation provided in Section 2.4 involves non-linearities in the

objective function and constraints. The non-linearity arises due to the expression of

the maximum inventory level of intermediates which is a quadratic polynomial. The

expression appears in the objective function (see Eq. (2.3)) and the storage capacity

constraints (see Eq. (2.9)). Here, we provide a piecewise linear approximation for

this expression. Let us define

fi(wi) = πwi

(
1− wi

pi

)
. (2.11)

For any intermediate i, the consumption rate wi is non-negative, and it cannot ex-

ceed the production rate pi (see Eq. (2.8)). Hence, we analyze fi(·) in the domain

[0, pi], where it is concave, equals 0 at wi = 0 and wi = pi, and reaches its maximum

at wi = pi/2 (see Figure 2.4).

ui1 ui2 ui3 ui4 ui5 ui6 ui7 ui8 ui9

V

2V

3V

(pi/2, πpi/4)
fi(wi)

f̃i(wi)

Figure 2.4: Approximation of fi(·)

The proposed approximation scheme is based on setting breakpoints of the piecewise

approximation to exact values of fi(wi) corresponding to integer multiples of the

storage unit capacity V . In order to account for the exact maximum inventory level

and extreme values of the domain of wi, we also use breakpoints at wi = 0, wi =

pi/2, and wi = pi. This approach guarantees the feasibility of any storage unit

assignment while, in general, underestimating maximum inventory levels and hence

storage costs.
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The number of linear segments that must be used for intermediate i depends on the

production rate pi, the capacity of storage units V , and the length of the planning

horizon π. We denote the set of linear segments for intermediate i by Li. Each linear

segment l ∈ Li is bounded below and above by two breakpoints denoted by uil−1

and uil. Notice that these values can easily be pre-computed. Figure 2.4 depicts a

possible realization of fi(·) and the corresponding approximation function denoted

by f̃i(·).

The approximation scheme requires the usage a set of new variables and constraints.

Let αil and βil be the intercept and the slope of the l’th linear segment of f̃i. Now,

we introduce variables:

δil =





1, if uil−1 < wi 6 uil

0, otherwise

and

µil =




wi, if uil−1 < wi 6 uil

0, otherwise.

It should be obvious that δil and µil represent the active segment and the corre-

sponding consumption rate for intermediate i. In order to guarantee that these

variables take appropriate values, we use the constraints:

uil−1δil < µil 6 uilδil ∀l ∈ Li,∀i ∈ I (2.12)

and

∑

l∈Li

δil = 1 ∀i ∈ I (2.13)

∑

l∈Li

µil = wi ∀i ∈ I. (2.14)

We can now re-write the objective function in Eq. (2.3) by replacing the exact

expression of the maximum inventory levels given in Eq. (2.11) with the following

approximate one:

f̃i(wi) =
∑

l∈Li

αilδil + βilµil. (2.15)

Next, we revise the storage capacity constraint. The number of storage tanks that

must be assigned to intermediate i is uniquely defined for each linear segment l ∈ Li.
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Let us denote these values by ril, such that, if δil = 1, then ril storage tanks are

assigned to intermediate i. We can now re-write the storage capacity constraint

given in Eq. (2.9) as

∑

i∈I

∑

l∈Li

rilδil 6 N. (2.16)

Appendix 2.B Upper bounds on the consumption

rates of intermediates

We used a piecewise linear approximation scheme in order to ensure the linearity of

the mathematical formulation. However, this necessitated the use of a new set bi-

nary variables. In this section, we provide a simple method to reduce the number of

those variables, and thus, to reduce the computation time. The method is based on

the idea of finding upper bounds on the consumption rates of potential intermedi-

ates by using a slightly modified version of the blending sub-problem. These bounds

are then used to cut-off some of the binary variables associated with the assignment

of storage units to intermediates.

Let us consider the blending sub-problem:

min
∑

j∈J

∑

i∈Ij

cixij (2.17)

∑

i∈Ij

xij = 1 ∀j ∈ J (2.18)

qmin
jk 6

∑

i∈Ij

qikxik 6 qmax
jk ∀j ∈ J,∀k ∈ K (2.19)

The blending sub-problem provides the optimal end product recipes when produc-

tion and storage capacities are unlimited and the only cost to be considered is

the processing costs of intermediates. Hence, the constraints of the blending sub-

problem define all feasible end product recipes. Now, let us replace the objective

function by

max wmax
i =

∑

j∈J
djxij . (2.20)

It is clear that wmax
i is an upper bound on any feasible wi of intermediate i in the

original formulation since it is the maximum possible consumption rate in the un-

capacitated problem. The modified version of the blending sub-problem is a simple
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linear program and can easily be solved for each intermediate. Notice that it is

possible to find stronger bounds by using more sophisticated sub-problems follow-

ing the same approach. However, we experienced considerable reductions in the

computation time even with this simple sub-problem.

Once upper bounds on the consumption rates are computed, for each intermediate

i, we can replace the set of linear segments Li with a smaller one L̃i which can be

defined as follows:

L̃i = {l ∈ Li|uil 6 wmax
i }. (2.21)
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Chapter 3

A discrete time formulation for

batch processes with storage

capacity and storage time

limitations

This chapter is published as Kilic, Van Donk, and Wijngaard (2011), A discrete time

formulation for batch processes with storage capacity and storage time limitations,

Computers & Chemical Engineering, 35(4): 622 - 629.

Abstract. This paper extends the conventional discrete time mixed integer linear pro-
gramming (MILP) formulation for scheduling multiproduct/multipurpose batch pro-
cesses by introducing storage capacity and storage time limitations. For this purpose,
storage vessels are explicitly modeled on which material flows are defined, and storage
capacity and storage time constraints are expressed. The approach is shown to be ef-
fective in modeling the scheduling problem in a variety of storage configurations such
as single/multiple dedicated and multipurpose storage vessels. In a numerical study,
cases where storage capacity and storage time limitations have significant impacts on
scheduling production and storage operations are highlighted.
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3.1 Introduction

Following recent trends, the process industry has experienced growing logistical de-

mands, growing variety in products, and more intense competition. The increase in

the variety of products leads to the need for multiproduct and multipurpose batch

processing systems offering high flexibility. On the one hand, such systems provide

a means to meet the increasing demands with regard to the larger number of differ-

ent products. On the other hand, they intensely affect planning and scheduling of

operations by necessitating the use of limited equipment and resources to undertake

a variety of tasks. In such systems, the impact of effective scheduling methods is sig-

nificant. As a result, the inherent mathematical planning and scheduling problems

have received considerable attention in the literature (Mendez et al, 2006).

There is a large variety of aspects that can be considered in developing scheduling

models for batch processing systems. A detailed taxonomy can be found in Mendez

et al (2006). One of these aspects is the specification of the constraints on storage

operations. Storage operations lead to better utilization of resources by decoupling

consecutive processes. Hence, limitations on the storage operations constrain the

extent to which the upstream and downstream production units can be decoupled.

There are two types of limitations with regard to storage operations: capacity con-

straints (in terms of the number and the size of storage vessels) and storage time

constraints (in terms of the time materials deteriorate). Capacity constraints limit

the amount of material that can be stored in storage vessels, whereas storage time

constraints restrict the amount of time that materials can be stored in storage vessels

e.g. before decaying. In presence of these constraints, inappropriate scheduling de-

cisions may result in a high number of setups, blocking or starvation throughout the

stages, waste of intermediates, and thus, degrade the overall system performance

significantly.

In the literature, capacity and storage time constraints are reflected by intermediate

storage policies (Mendez et al, 2006). Unlimited intermediate storage (UIS), finite

intermediate storage (FIS), and no intermediate storage (NIS) policies are associ-

ated with capacity constraints, whereas, unlimited wait (UW), finite wait (FW), and

zero wait (ZW) policies are associated with storage time constraints. Although the

combinations of UIS, NIS, UW and ZW policies have been intensively investigated,

the combination of FIS and FW policies is rather neglected in the literature (Sun-

daramoorthy and Maravelias, 2008). Nevertheless, the combination of FIS and FW

policies are relevant and important in real-life settings. FIS policy is very common

since batch plants hardly ever have unlimited storage. FW policy is essential for
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many industries (e.g. food, solvent, polymer and pharmaceuticals) which involve

unstable/perishable intermediates/products that must be processed/shipped within

a short time (Gupta and Karimi, 2003).

There is a variety of studies in the literature which aim at developing efficient math-

ematical scheduling models for multiproduct/multipurpose batch processes (see e.g.

Kondili et al, 1993a; Schilling and Pantelides, 1996; Ierapetritou and Floudas, 1998).

These models account for storage capacity limitations either by imposing an upper

bound on the total inventory of each type of material, or by modeling and confining

each storage vessel separately. Regardless of the approach taken, addressing stor-

age time limitations together with storage capacity limitations is difficult due to the

need of tracing the remaining storage life of materials in storage vessels. The prob-

lem gets even more demanding when storage vessels are not dedicated to certain

materials, and batches of the same state are mixed and split through the production

process. Those characteristics can be found, for instance, in paint processing. In

paint processing plants, large batches could be technologically prohibitive. There-

fore, batches of the same type of paint are usually stored in large storage vessels

before they are further processed or shipped (Schultmann et al, 2006). In this case,

the storage life of a new batch is affected by the storage life of the material which

has already been stored in the vessel. This is particularly important for some types

of paint (e.g. water-based paints) whose formulation require a limited storage time

to ensure some quality specifications (e.g. to avoid drying or contamination). Thus,

these materials are retained in storage only for a short period of time before they

are further processed or shipped. In the former case, batches are also split in order

to be processed into different paint products.

It is a common practice to formulate storage operations as tasks performed by stor-

age vessels (see e.g. Kondili et al, 1993a; Ierapetritou and Floudas, 1998; Castro

et al, 2004; Janak et al, 2004; Susarla et al, 2010). This approach also facilitates

modeling multipurpose storage vessels. In general, storage tasks start upon the ar-

rival of materials and end when they are released. Thus, whenever a storage vessel

receives or releases some material, a new storage task must be initiated. If batches

are assumed to be received and released as a whole, then one can easily impose

storage time limitations by limiting the duration storage tasks. Nevertheless, this

assumption is usually not valid as discussed in the paint processing example. Thus,

since storage tasks do not relay any information regarding the remaining storage life

of the contents of the storage vessels, one should consider not only the time epochs

where materials are received and released, but also the flow of materials through

time, to account for the combination of storage capacity and storage time limitations.
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There are only a few studies in the literature which considers material flows in stor-

age vessels (e.g. Gimenez et al, 2009). However, they do not consider storage time

limitations. It must be noted that the discussion above is irrelevant for processes

where batch identities are maintained through the stages (i.e. mixing and splitting

of batches are not allowed). There exists some work on these types of processes

addressing storage capacity and storage time limitations. Ha et al (2000) devel-

oped a formulation for flow-shop processes that incorporates both storage capacity

and storage time constraints. Sundaramoorthy and Maravelias (2008) addressed

storage capacity and storage time limitations in multistage processes and developed

a mixed integer linear programming (MILP) model for the simultaneous batching

and scheduling with storage constraints. However, it might be evident that these

methods are not applicable to general multiproduct/multipurpose batch processes.

One major feature of batch scheduling models is the time representation. There

are two widely used time representations: discrete and continuous time. Both time

representations are based on dividing the planning horizon into a number of time

intervals. In discrete time models, these intervals have fixed and equal durations,

whereas in continuous time models, they have unequal durations which are not

known beforehand. The choice for one of these types of modeling depends on the

situation on hand as both have advantages and disadvantages. See Floudas and

Lin (2004) for a general discussion on these approaches. In principle, continuous

time models are more realistic and yield more precise solutions compared to discrete

time models. That is because task durations are accurately accounted for in contin-

uous time models whereas they need to be approximated in discrete time models.

Furthermore, continuous models are smaller than their discrete counterparts since

they require fewer number of time intervals. However, continuous time models are

usually difficult to solve because their linear programming (LP) relaxations are poor

and the number of time intervals is unknown (Maravelias and Grossmann, 2003).

Furthermore, since the durations of time intervals are not fixed in continuous time

models, intermediate due dates are difficult to model, and more importantly non-

linear expressions have to be used in order to express inventory costs, i.e. holding

and backlog costs. Since these aspects are of importance in many practical cases,

discrete time models remain being used in industrial problems despite their dis-

advantages in terms of preciseness and size (Maravelias and Grossmann, 2006). In

this respect, it is valuable to stylize discrete time models to account for more realistic

settings and to exploit their specific characteristics to reduce the associated compu-

tational complexities (see e.g. Shah et al, 1993; Kelly and Zyngier, 2007; Gaglioppa

et al, 2008).
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In this study, we propose a discrete time formulation for batch processes with stor-

age capacity and storage time limitations. We build on the conventional state-task-

network (STN) formulation of Kondili et al (1993a) which has served as a founda-

tion for most of the work in this field.

The paper is organized as follows. In Section 3.2, we present the conventional dis-

crete time formulation of batch processes. In Section 3.3, we highlight some aspects

on the flow of materials. In Section 3.4, we formulate the storage capacity and

storage time constraints for a variety of storage configurations. In Section 3.5, we

present some examples to illustrate the application of the model. Finally, in Sec-

tion 3.6, we provide an overall assessment of the proposed method and suggestions

on directions for further research.

3.2 Formulation

One of the most important developments in modeling planning and scheduling in

batch processes has been the introduction of the state-task-network (STN) represen-

tation of batch processes by Kondili et al (1993a). The STN approach is based on

state and task nodes. The former represents the feeds, i.e. materials, and the latter

represents the processing operations. The STN is defined by a number of parame-

ters related to the tasks, states, and available equipments. Kondili et al (1993a) and

subsequently Shah et al (1993) provided efficient discrete time MILP formulations

for scheduling operations in STN’s. In this study, we extend their formulation by

incorporating storage capacity and storage time limitations. We aim at determining

scheduling decisions, i.e. the start and end time of operations on specific production

and storage units and corresponding production and storage quantities, minimizing

the sum of production, setup, and inventory holding costs, while meeting demand

under production and storage capacity limitations. In this section we neglect the

storage capacity and the storage time limitations and present the basic formulation

proposed by Kondili et al (1993a).

The scheduling problem in batch processes can be defined on a set of tasks i ∈ I,

a set of states, s ∈ S, and a set of time periods t ∈ T . The production operations

are carried out by a set of processing units j ∈ J . Each processing unit is capable

of undertaking a set of tasks. The subset of processing units which are able to

undertake task i are denoted by Ji. Each task produces/consumes a set of states

in given proportions. We denote the set of tasks which produces/consumes state

s by Ips /I
c
s , and the corresponding production/consumption proportions by ρpis/ρ

c
is.
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Each task i, when performed on processing unit j, requires a fixed processing time

pij , and incurs a setup cost gij per production run and a variable production cost

cij per unit of production quantity. The system incurs a holding cost hs per unit of

state s held in inventory per time period. For each task i, there are unit dependent

minimum and maximum production quantities vmin
ij and vmax

ij which bound batch

sizes from below and above. The demand for state s at time period t is denoted by

dst. Decision variables include: binary variable wijt which is equal to 1 if task i is

initiated at time period t on processing unit j, and 0 otherwise, continuous variable

bijt which represents the batch size of task i which is initiated at time period t on

processing unit j, and continuous variable xst the inventory level of state s in period

t. The batch processes scheduling problem can be formulated as follows.

min
∑

i∈I

∑

j∈Ji

∑

t∈T
gijwijt +

∑

i∈I

∑

j∈Ji

∑

t∈T
cijbijt +

∑

s∈S

∑

t∈T
hsxst (3.1)

s.t
∑

i∈Ij

t∑

t′=t−pij+1

wijt′ 6 1 ∀j ∈ J, ∀t ∈ T (3.2)

vmin
ij wijt 6 bijt 6 vmax

ij wijt ∀j ∈ J, ∀i ∈ Ij ,∀t ∈ T (3.3)

xst =xs(t−1) +
∑

i∈Ips

∑

j∈Ji

ρpisbij(t−pij)

−
∑

i∈Ics

∑

j∈Ji

ρcisbijt − dst ∀s ∈ S,∀t ∈ T
(3.4)

wijt ∈ {0, 1}; bijt, xst ∈ R+ ∀i ∈ I, ∀j ∈ J, ∀s ∈ S,∀t ∈ T (3.5)

The model encompasses the following sets of equations. Eq. (3.1) sets the objective

function which minimizes the sum of setup, production, and holding costs. Eq. (3.2)

ensures that at most one task is assigned to a unit at any time. Eq. (3.3) sets the

lower and the upper bounds of batch sizes. Eq. (3.4) expresses the material balance.

Eq. (3.5) sets variable domains.

3.3 Material flows in storage vessels

The formulation provided in Section 3.2 has two implicit assumptions on interme-

diates: (i) there is no limitation on the storage capacity of any material, and (ii)

materials can be stored for unlimited time. In the following sections we extend this

formulation by relaxing these assumptions. However, there are several aspects worth

highlighting before analyzing the constraints regarding the storage operations.
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Both storage capacity and storage time constraints affect the timing and the volume

of inflow and outflow transactions in storage vessels. Storage capacity constraints

limit the amount of material stored in storage vessels, whereas storage time con-

straints limit the amount of time that materials can be stored. In order to character-

ize these limitations, we assume that (i) each state s has a specific storage life of πs
periods during which it has to be sent to upstream processing stages, and (ii) when

materials with different storage lives are mixed in a storage vessel the remaining

storage life of fresh material degrade to the one of dated material.

An important point in modeling material flows in storage vessels is the sequence of

inflow and outflow transactions. For convenience, we assume that outflow transac-

tions take place before inflow transactions. Let us consider a storage vessel which is

used to store a given state at a given period. Let initialinv be the inventory level

at the beginning of period, and inflow and outflow be the respective volumes of

the inflow and the outflow in the given period. The outflow can be satisfied either

with dated material (i.e. inventory) or with fresh material (i.e. inflow). Since we

consider finite wait policies, it is logical to assume that flows are coordinated by

the first-in-first out principle, that is, the outflow is first satisfied by inventory, and

the remaining amount (if non-zero) is satisfied by the inflow. Hence, the volume of

the outflow met by inventory is min{initialinv, outflow}. If the inventory level

is higher than the outflow, then only dated materials will be used. Otherwise, after

depleting all inventory, the inflow will be used to balance the outflow. Hence, the

outflow met by fresh material is max{outflow− initialinv, 0}. After inflow trans-

actions, the inventory is replenished to initialinv−outflow+inflow. Notice that

this actually represents the end-of-period inventory level (see Eq. (3.4)).

In terms of storage life limitations, the above mentioned analysis of material flow

transactions has an important result. That is, when all dated material is used to

fulfill the outflow (i.e. initialinv 6 outflow) fresh material can be stored without

being mixed with dated material. Otherwise, fresh and dated materials are mixed

in storage which results in degradation of fresh material. In the next section we will

use this observation in modeling storage operations.
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3.4 Modeling storage capacity and storage time

constraints

The approach that must be taken to model storage time constraints strongly depends

on the storage settings. In this section we consider three main cases. In the first case,

each state is stored in a single dedicated storage vessel. The second case extends the

first one with multiple storage vessels dedicated to each state. The third case is the

most general one which addresses multipurpose storage vessels that can be used for

multiple states.

3.4.1 Single storage vessel dedicated to each state

The first case addresses the instance where a single storage vessel with a given

capacity is dedicated to each state. We denote the capacity of the storage vessel

dedicated to state s by us. It is straightforward to set storage capacity constraints.

That is,

xst 6 us ∀s ∈ S,∀t ∈ T. (3.6)

In order to integrate storage time constraints, it is essential to keep track of the

remaining storage life of materials. More specifically, the periods where the entire

material stock in a vessel is depleted by outflow transactions has to be specified

explicitly. As we have discussed, only in such periods fresh material can be stored

without being mixed with dated material. We refer to these periods as renewal
periods. Let us denote a renewal period by σst ∈ {0, 1}, such that, σst = 1 if period

t is a renewal period for state s, and σst = 0 otherwise. Then, if material flows are

coordinated by first-in-first out principle, the following inequality holds.

xs(t−1) −
∑

i∈Ics

∑

j∈Ji

ρcisbijt − dst 6 us(1− σst) ∀s ∈ S, ∀t ∈ T (3.7)

Eq. (3.7) states that, if period t is a renewal period for state s, then the inventory

level after output transactions should be 0. Otherwise it is bounded by the storage

capacity. Note that each period t with xs(t−1) = 0 is a renewal period for state s.

The concept of renewal periods facilitates modeling storage time constraints. Since,

the storage time limitation is defined on the number of periods that materials can

be stored in a storage vessel, it can be modeled as an upper bound on the number of

consecutive non-renewal periods. Hence, storage time limitation can be guaranteed
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in terms of the following constraint.

t+πs−1∑

t′=t

σst′ > 1 ∀s ∈ S, ∀t ∈ T (3.8)

where πs (πs > 1) is the storage life of state s. Eq. (3.7) ensures that the remaining

storage life of state s never hits 0.

3.4.2 Multiple storage vessels dedicated to each state

The second case considers the instance where multiple storage vessels with given ca-

pacities are dedicated to each state. In processes where degradation of the materials

due to waiting time is negligible, materials from different batches can be considered

the same regardless of the time they are processed. In such cases, multiple dedi-

cated vessels can be modeled as a single aggregate dedicated storage vessel since

mixing materials in storage does not lead to any degradation. However, in case of

storage time limitations, it is possible to separate materials with different storage

lives, which in turn helps to subdue the effects of storage time limitations.

Let us consider a set of storage vessels k ∈ K each with a capacity of qk. Which

of these storage vessels k are being used for state s is known in advance. Hence,

we denote the set of storage vessels dedicated to state s by Ks. Using multiple

storage vessels necessitates to trace both the amount and the remaining storage life

of material in each storage vessel. This can be done by defining capacity constraints,

inflow/outflow transactions, and renewal periods explicitly on storage vessels rather

than on states. Let us start with capacity constraints. We denote the amount of

material stored in vessel k at period t by ykt, such that,
∑
k∈Ks

ykt = xst. Now, we

can write storage vessel specific capacity constraints as

ykt 6 qk ∀k ∈ K,∀t ∈ T. (3.9)

By using the new variable ykt we can characterize the inflow/outflow transactions

and renewal periods for each storage vessel. Let f ikt/f
o
kt be the volume of in-

flow/outflow in storage vessel k at period t. Then, while preserving the aggregate

balance constraints (see Eq. (3.4)), we add a balance constraint for each storage

vessel.

ykt = yk(t−1) + f ikt − fokt ∀k ∈ K,∀t ∈ T (3.10)

It is clear that the volumes of inflow/outflow transactions in storage vessels must

match the aggregate balance. This can be guaranteed by means of the following
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equations.

∑

k∈Ks

f ikt =
∑

i∈Ips

∑

j∈Ji

ρpisbij(t−pij) ∀s ∈ S, ∀t ∈ T (3.11)

∑

k∈Ks

fokt =
∑

i∈Ics

∑

j∈Ji

ρcisbijt + dst ∀s ∈ S, ∀t ∈ T (3.12)

In order to specify renewal periods on storage vessels, we use the binary variable

σkt. Then, the following inequality ensures that σkt = 1 if the inventory level after

output transactions is 0.

yk(t−1) − fokt 6 qk(1− σkt) ∀k ∈ K, ∀t ∈ T (3.13)

Eq. (3.13) is equivalent to Eq. (3.7) which was used in formulating renewal periods

for a single dedicated storage vessel. The only difference is that, here renewal pe-

riods are defined on storage vessels rather than states. Subsequently, storage time

limitations can be imposed on each storage vessel by means of the following con-

straint.

t+πs−1∑

t′=t

σkt′ > 1 ∀k ∈ Ks,∀t ∈ T (3.14)

As can be observed, the difference between modeling single and multiple dedicated

storage vessels lies in additional decisions on the allocation of aggregate inflow and

outflow of each state s to dedicated storage vessels, while taking the storage time

and storage capacity limitations into account.

3.4.3 Multipurpose storage vessels

The third case addresses the most general instance where a number of multipurpose

storage vessels can be used for any state. Multipurpose storage vessels are also

considered by Kondili et al (1993a). They model storage operations as tasks which

receive a certain amount of material and produce an equal amount after exactly one

time period. However, with their approach, it is not possible to trace the storage

life of materials in storage vessels and to address storage life limitations. For the

purposes of this study, we explicitly model storage vessels. We build on the approach

we have provided for modeling multiple dedicated storage vessels.

Let k ∈ K be the set of multipurpose storage vessels, and qk be the capacity of stor-

age vessel k. Unlike the case with multiple dedicated storage vessels, here we do not

54



know which storage vessels are going to be used for which state in advance. Simi-

lar to the approach taken for processing units, we introduce the binary assignment

variables zskt, such that, zskt = 1 if storage vessel k is assigned to state s in period

t, and zskt = 0 otherwise. Since a storage vessel can only be assigned to one state at

a time:
∑

s∈S
zskt 6 1 ∀k ∈ K, ∀t ∈ T. (3.15)

Consecutively, we define yskt as the amount of state s stored in storage vessel k in

period t, such that
∑
k∈K yskt = xst. Note that yskt can only be non-zero if zskt = 1.

This limitation, combined with the capacity constraints, can be expressed by means

of the following constraint.

yskt 6 qkzskt ∀s ∈ S,∀k ∈ K,∀t ∈ T (3.16)

Similar to the multiple dedicated storage vessels case, we define the inflow/outflow

transactions and renewal periods on each storage vessel. Let f iskt/f
o
skt be the volume

of inflow/outflow of state s in storage vessel k in period t. Note that we have used

three indices to characterize material flows since the state stored in a particular

storage vessel is a decision variable in case of multipurpose storage vessels. Now,

we can write the storage vessel specific balance constraints as follows.

yskt = ysk(t−1) + f iskt − foskt ∀s ∈ S, ∀k ∈ K,∀t ∈ T (3.17)

The storage vessel specific balance must match the aggregate balance. This can be

guaranteed by means of the following equations.
∑

k∈K

f iskt =
∑

i∈Ips

∑

j∈Ji

ρpisbij(t−pij) ∀s ∈ S, ∀t ∈ T (3.18)

∑

k∈K

foskt =
∑

i∈Ics

∑

j∈Ji

ρcisbijt + dst ∀s ∈ S, ∀t ∈ T (3.19)

We have used extra state indices in modeling material flows. This is not necessary

to model renewal periods. It is sufficient to guarantee that the storage vessel is fully

depleted after outflow transactions regardless of the state. Let us use binary variable

σkt to specify renewal periods on storage vessel. Then,

ysk(t−1) − foskt 6 qk(1− σkt) ∀s ∈ S,∀k ∈ K,∀t ∈ T. (3.20)

It is not possible to impose storage time restrictions for multipurpose storage vessels

in the same fashion as in the case of multiple dedicated storage vessels. This is
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due to the fact that storage times are state specific whereas renewal periods are

not. Consequently, storage time restriction can be satisfied by imposing at least one

renewal period for state s in every block of πs periods. This can be done by means

of the following inequality.

t+πs−1∑

t′=t

(zskt′ − σkt′) < πs ∀s ∈ S, ∀k ∈ K,∀t ∈ T (3.21)

Note that Eq. (3.21) is only binding when storage vessel k is assigned to state s

within periods t and t + πs − 1. If this is the case, then there must be at least one

renewal period for state s within this interval.

3.5 Computational experiments

In this section we aim to illustrate how storage capacity and storage time limitations

affect production and storage operations and corresponding cost figures by means

of numerical experiments. The instances we use are adopted from the literature

(i.e. Sahinidis and Grossmann, 1991b) and stylized for the purposes of this study.

In order to analyze the sole effects of storage limitations on processing and storage

operations, we assume that sufficient amount of raw material is available whenever

needed (i.e. we do not consider raw material inventories), and production costs (i.e.

processing and setup costs) are not unit dependent. In this setting, there is no need

to consider processing costs, and the total cost function is then composed of the sum

of setup and holding costs. This enables us to analyze the effects of storage capacity

and storage time limitations by considering the trade-off between setup and holding

costs.

In what follows, we provide three illustrative numerical experiments. In each ex-

periment, we demonstrate a different aspect of storage limitations by using several

scenarios with different storage configurations. In Experiment A, we analyze the

effects of storage limitations on the number of setups and average inventories by

considering the case where a single storage vessel is dedicated to each state. In

Experiment B, we show that the storage time limitations can be very restrictive due

to the degradation of materials particularly when there is a single dedicated storage

vessel for each state. Then, we also show how the use of multiple storage vessels

can help to reduce the effects of these restrictions. In Experiment C, we analyze the

efficiency of using multipurpose storage vessels in comparison with using dedicated

storage vessels.
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3.5.1 Experiment A – single storage vessel dedicated to each
state

In this experiment, we illustrate how storage limitations affect production and stor-

age operations. We consider the problem instance defined by the STN given in

Figure 3.1 and the specifications provided in Table 3.1. The system involves a single

intermediate and two end products. There are three processing units each of which

can be used to perform one of the three tasks. We consider four scenarios with

different storage configurations: unlimited storage capacity and unlimited storage

time (Scenario-A1), limited storage capacity and unlimited storage time (Scenario-

A2), unlimited storage capacity and limited storage time (Scenario-A3), and limited

storage capacity and limited storage time (Scenario-A4). In each of those scenarios,

there are three storage vessels each of which is dedicated to one of the three states.

The storage configurations of these scenarios are given in Table 3.2. We analyze the

effects of storage capacity and storage time limitations on the number of setups for

each task and the average level of inventories for each state. Table 3.3 presents the

results for each scenario. The results clearly shows that both storage capacity and

storage time limitations have significant effects on the resulting optimal schedule

and the corresponding cost figure.

Feed Task 2Intermediate

Task 1

Task 3

Product 1

Product 2

Figure 3.1: State-task-network of Experiment A

Scenario-A1 expresses the case with no restrictions on storage, and hence, its op-

timal cost 1605 constitutes a lower bound for the other scenarios. The storage

capacity and storage time limitations progressively increase this cost figure. Intro-

ducing storage capacity constraints in Scenario-A2 leads to one extra setup for each

of the three tasks and increases the total cost to 1962. Introducing storage time

constraints in Scenario-A3 results in one extra setup for Task 1 and Task 2, and

two extra setups for Task 3, and increases the total cost to 2162. Introducing both

storage capacity and storage time constraints in Scenario-A4 adds two extra setups

for Task 1 and Task 3, and one extra setup for Task 2, and increases the total cost
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Processing Units

Min. Batch Size Max. Batch Size Suitability Proc. Time

Unit 1 0 1500 Task 1 1

Unit 2 0 1000 Task 2 1

Unit 3 0 1000 Task 3 1

Demands

1 2 3 4 5 6 7 8 9 10 11 12

Product 1 300 450 600 150

Product 2 75 225 300 150

Costs

Setup cost 200

Holding cost 0.18

Table 3.1: Data used in Experiment A

Storage capacity Storage time (periods)

Interm. Prod. 1 Prod. 2 Interm. Prod. 1 Prod. 2

Scenario-A1 ∞ ∞ ∞ ∞ ∞ ∞
Scenario-A2 200 400 150 ∞ ∞ ∞
Scenario-A3 ∞ ∞ ∞ 1 1 1

Scenario-A4 200 400 150 1 1 1

Table 3.2: Storage configurations of the four scenarios of Experiment A
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to 2281. In all scenarios, introducing storage capacity and storage time limitations

tend to reduce the average inventory levels. To summarize, we observe that storage

constraints result in a reduction of inventories by initiating more frequent setups,

and they significantly degrade the cost performance of the system.

# of setups Average inventory
Total cost

Task 1 Task 2 Task 3 Interm. Prod. 1 Prod. 2

Scenario-A1 2 2 2 0.00 125.00 62.50 1605

Scenario-A2 3 3 3 33.33 12.50 29.16 1962

Scenario-A3 3 3 4 31.25 12.50 31.25 2162

Scenario-A4 4 3 4 12.50 12.50 12.50 2281

Table 3.3: Results of the four scenarios of Experiment A

3.5.2 Experiment B – multiple storage vessels dedicated to each
state

In this experiment, we demonstrate the criticality of storage time limitations. We

consider the problem instance defined by the STN given in Figure 3.2 and the pa-

rameters provided in Table 3.4. This system involves three tasks each of which pro-

cesses a certain feed into an end product. Since we assume that feeds are available

whenever they are needed, we only analyze the production and storage operations

of three end products. There are two processing units: Unit 1 which is suitable for

Task 1 and Task 3, and Unit 2 which is suitable for Task 2 and Task 3. We assume nei-

ther storage capacity nor storage time limitations for Product 1 and Product 2, and

we concentrate on Product 3 inventories. We consider three scenarios with different

storage configurations for Product 3: unlimited storage capacity and storage time

(Scenario-B1), a single dedicated vessel (with unlimited capacity) and limited stor-

age time (Scenario-B2), and two dedicated storage vessels (with limited capacities)

and limited storage time (Scenario-B3). The details of the storage configurations

are given in Table 3.5. This experiment mainly focuses on the comparison between

Scenario-B2 and Scenario-B3. The results show that using two smaller storage ves-

sels rather than a very large one could be more efficient in presence of the storage

time limitations.

The system sketched in Experiment B leads to a very tight production schedule.

In fact, the solution pool of Experiment B includes only a single feasible solution

in Scenario-B1 which reflects the case with no limitation in storage. Therefore,
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Feed 1

Task 1

Feed 2

Task 2

Feed 3

Task 3

Product 1

Product 2

Product 3

Figure 3.2: State-task-network of Experiment B

the following two scenarios are either infeasible, or they are optimal and use the

same production schedule as in Scenario-B1. This production schedule is depicted

in Figure 3.3. Let us consider Product 3 inventories through the planning horizon.

As can be seen in Figure 3.3, Product 3 has to be released in two batches of Task 3.

The first batch has a size of 250 and it has to be released in Period 3. The second

batch has a size of 100 and it has to be released in Period 5. The first batch is

initially used to fulfill the demand of size 100 in Period 3. The remaining amount

of this batch together with the second batch is then used to fulfill the demands in

Period 6 and 9 with the respective sizes of 200 and 50. The resulting inventory levels

of Product 3 are illustrated in Figure 3.4.

In Scenario-B2 we introduce the storage time limitation of 4 time periods and as-

sume that Product 3 has a single dedicated storage vessel with infinite capacity.

However, this scenario has no feasible solution since the only feasible schedule in-

volves a block of 5 consecutive periods without a renewal period for Product 3. This

is due to the fact that the two batches of Product 3 have to be mixed in a storage

vessel since there is only a single storage vessel available for Product 3.

In Scenario-B3 we replace the single dedicated vessel with two dedicated vessels

with the respective capacities 100 and 150. This modification makes it possible to

separate the two batches of Product 3, and consequently, leads to a feasible schedule.

This is illustrated in Figure 3.5. This experiment clearly presents a case where using

two smaller storage vessels can be more efficient than using a single storage vessel

with a very large volume because of the storage time limitations.
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Processing Units

Min. Batch Size Max. Batch Size Suitability Proc. Time

Unit 1 0 250 Task 1, Task 3 6, 2

Unit 2 0 100 Task 2, Task 3 2, 2

Demands

1 2 3 4 5 6 7 8 9

Prod. 1 250

Prod. 2 100 100 100

Prod. 3 100 200 50

Costs

Setup cost 100

Holding cost 0.1

Table 3.4: Data used in Experiment B

Unit 1

Unit 2

Task 3: 250 Task 1: 250

Task 2: 100 Task 3: 100 Task 2: 100 Task 2: 100

Figure 3.3: The feasible production schedule in Scenario-B1

0 0 150 150 50 50 50 0
Inventory
Product 3 250

Figure 3.4: The inventory levels of Product 3 in Scenario-B1

0 0
Vessel 2
Product 3

0 0 150 150 0 0 0 0
Vessel 1
Product 3

50 50 50 000

150

100

Figure 3.5: The feasible storage schedule of Product 3 in Scenario-B3
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Product 3

Storage vessels (#: capacity) Storage time (periods)

Scenario-B1 1:{Unlimited} Unlimited

Scenario-B2 1:{Unlimited} 4

Scenario-B3 2:{150,100} 4

Table 3.5: Storage configurations of the three scenarios of Experiment B

3.5.3 Experiment C – multipurpose storage vessels

In this experiment, we compare the respective cases with dedicated and multipur-

pose storage vessels and analyze their efficiency in terms of operational costs. We

consider the problem instance defined by the STN given in Figure 3.6 and the pa-

rameters provided in Table 3.6. The system involves eight tasks, six intermediates

and four end products. There are six processing units which are available to carry

out the set of tasks. In order to highlight the efficiency of multipurpose storage

vessels on cost performance, we consider three scenarios with different storage set-

tings. In each of those scenarios, the maximum storage time of all states are set

to three periods. The scenarios include the following storage settings: ten dedi-

cated storage vessels – one for each state (Scenario-C1), five multipurpose storage

vessels (Scenario-C2), and four multipurpose storage vessels (Scenario-C3). Both

dedicated and multipurpose vessels have the capacity of 500. Table 3.7 presents the

results for each scenario including the total number of setups, the total average level

of inventories, and the total costs. The results reveal that multipurpose storage ves-

sels are dramatically more efficient than dedicated storage vessels in terms of cost

performance.

In Scenario-C1 we sketch a rigid storage setting with a rather large capacity (10

vessels each with capacity 500). The optimal schedule of Scenario-C1 involves 12

setups and an average inventory level of 688.80 which leads to the cost of 2951.

Scenario-C2 illustrates an alternative storage setting characterized by flexible stor-

age vessels however with half of the capacity considered in Scenario-C1 (5 vessels

each with capacity 500). The optimal schedule of Scenario-C2 involves 11 setups

and an average inventory of 670.94 which results in a cost of 2736. By comparing

the first two scenarios, we observe that even five multipurpose storage vessels out-

perform ten dedicated storage vessels the in terms of cost efficiency. In Scenario-C3

we decrease the number of multipurpose storage tanks from five to four. This ne-

cessitates three extra setups while reducing the average inventory level to 594.88 in
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Figure 3.6: State-task-network of Experiment C

Processing Units

Min. Batch Size Max. Batch Size Suitability Proc. Time

Unit 1 0 1000 Task 1 1

Unit 2 0 2500 Task 3,7 1

Unit 3 0 3500 Task 4 1

Unit 4 0 1500 Task 2 1

Unit 5 0 1000 Task 6 1

Unit 6 0 4000 Task 5,8 1

Demands

1 2 3 4 5 6 7 8

Product 1 110 110 133.3 100 33.3 33.3

Product 2 233.1 260 360 360

Product 3 116.6 56.6 116.6

Product 4 333.3 333.3 685.8

Costs

Setup cost 200

Holding cost 0.1

Table 3.6: Data used in Experiment C
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comparison with Scenario-C2. Hence, Scenario-C3 results in a cost of 3276 which is

larger than the cost in Scenario-C1. These results illustrate that using multipurpose

storage vessels could be dramatically more efficient than using dedicated storage

vessels. For this particular experiment, we observe that the cost performance of us-

ing dedicated storage vessels can be achieved by using multipurpose storage vessels

with half of the storage capacity.

Storage Total # of Total average
Total cost

configuration setups inventory

Scenario-C1 10 × 500 (dedicated) 12 688.80 2951

Scenario-C2 5 × 500 (multipurpose) 11 670.94 2736

Scenario-C3 4 × 500 (multipurpose) 14 594.88 3276

Table 3.7: Results of the three scenarios of Experiment C

It should be noted that there are many other factors of practical interest which are

not considered in the current numerical study. For instance, in many production

environments storage vessels require setup times and costs. In such cases, using

a large number of storage vessels with rather limited capacities may degrade the

overall performance due to extensive setup operations. Thus, the results reported

here can be broadened to better understand the effects of further factors on the

system performance.

3.5.4 Computational statistics

All problem instances are solved using CPLEX 11.1 in OPL Studio 6.0 modeling

environment on a 1.83 GHz computer with 1.00 GB of RAM. Model and solution

statistics for all instances are given in Table 3.8.

3.6 Conclusions and extensions

In this paper we proposed a discrete time formulation for scheduling multiprod-

uct/multipurpose batch processes considering storage capacity and storage time

limitations which are very common in many industries involving perishable inter-

mediates and end products. We explicitly modeled storage vessels on which we

defined material flows and expressed storage constraints. We have formulated the

problem mathematically as a MILP model building on the conventional formulation
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Instance
Variables

Constraints Nodes CPU (s)
Binary Continuous

Scenario-A1 108 147 399 0 0.25

Scenario-A2 108 147 435 0 0.25

Scenario-A3 144 147 471 0 0.25

Scenario-A4 144 147 507 0 0.25

Scenario-B1 54 84 210 0 0.00

Scenario-B2 81 84 264 0 0.00

Scenario-B3 90 196 439 0 0.00

Scenario-C1 464 474 1450 26 0.25

Scenario-C2 824 1714 3170 3564 65.00

Scenario-C3 736 1464 2842 14417 337.76

Table 3.8: Solution statistics of all instances

of Kondili et al (1993a), and showed how the proposed approach can account for

specific storage configurations such as single/multiple dedicated and multipurpose

storage vessels. By means of numerical experiments, we illustrated how storage ca-

pacity and storage time limitations affect production and storage operations. We

showed that storage limitations can significantly reduce the cost performance of

processing systems. We also demonstrated that the usage of multipurpose storage

vessels can significantly help to overcome storage limitations.

There has been a significant amount of work done in the literature on exploiting

various specific features of discrete time scheduling problems. Since the proposed

model inherits the underlying features of general discrete time scheduling models,

it is easy to extend it with the approaches which have already been proposed in

the literature. We shortly discuss some of them. For both production and storage

units, sequence-dependent and/or frequency-dependent setups can be incorporated

into our formulation following to Kondili et al (1993a) or Kelly and Zyngier (2007).

Makespan minimization can be set as an objective function by following the ap-

proach of Maravelias and Grossmann (2003). In order to reduce the computational

time, reformulations and valid inequalities proposed by Shah et al (1993), and re-

cently by Gaglioppa et al (2008) can be applied.

There are several directions for further research worth exploring. First, the frame-

work developed in this study can be applied to continuous time models. One ma-

jor difficulty here is formulating material flows in storage vessels. Only recently,

Gimenez et al (2009) developed a novel continuous time formulation which also

considers the material flows in storage vessels. The approach we used in this study
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could also be applied in their continuous time framework. Secondly, the approach

taken in this study can be extended to continuous or semi-continuous processes.

The literature suggests well-established approaches for scheduling these processes

which could possibly be extended to address the combination of storage capacity

and storage time limitations. Thirdly, a different modeling paradigm e.g. con-

straint programming (CP) can be employed together with MILP in order to solve

the mathematical problem more efficiently. In the last decade successful applica-

tions of MILP/CP hybrid approaches have been reported for similar problems (see

e.g. Jain and Grossmann, 2001).
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Chapter 4

Scheduling a two-stage

evaporated milk production

process

Abstract. This paper addresses a process scheduling problem originating from a pro-
cessing system specialized in evaporated milk products. The layout of the system involves
two continuous processing stages: processing and packaging. The processed materials
are batch-wise standardized in between these production stages. The production envi-
ronment has several industry-specific characteristics involving traceability requirements
and time- and sequence-dependent cleaning of production units. These all together lead
to a challenging scheduling problem which requires an efficient and yet flexible model-
ing approach. A two-phase mathematical approach is presented for this problem which
successively determines the specifications regarding material flows and builds a com-
plete production schedule. The approach is then shown to be efficient by means of a
numerical study based on the data collected from a real-life evaporated milk plant.

4.1 Introduction

The process industry has evolved towards more market oriented strategies in the last

decades in response to the trends with respect to larger product variety and intense

competition. This resulted in a growing interest in processing systems which pro-

vides the flexibility of handling demands with regard to a variety of products while
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using limited production resources. Production scheduling in flexible processing

systems is more demanding as compared to dedicated flow type processing systems.

Hence, the impact of effective scheduling methods is significant. Process scheduling

problems have received considerable attention in the literature. The vast majority

of research contributions have been published in the chemical engineering literature

and centered on scheduling of batch processes in large-scale chemical plants. A com-

prehensive overview of state-of-the-art models and methods in this line of research

can be found in Kallrath (2002), Floudas and Lin (2004), and Mendez et al (2006).

In this paper, we investigate a process scheduling problem originating from a pro-

cessing plant of a dairy company specialized in evaporated milk products. The pro-

duction layout of the system involves two continuous production stages where fresh

milk is first processed into evaporated milk and then put into consumer packag-

ing. These production stages are connected by storage tanks where materials are

batch-wise standardized. The production system involves the processing of a large

variety of product recipes based on the main raw material fresh milk. The prod-

uct recipes mainly differ in terms of their dry-matter concentration. The number of

end-products is much larger than the number of production recipes due to different

packaging types.

The production process under consideration has some distinctive characteristics that

require careful consideration in the context of scheduling. The production resources

associated with both the processing and the packaging stages as well as the inter-

mediate storage are strictly limited. The production resources require sequence- as

well as time-dependent cleaning due to varying dry-matter concentrations of differ-

ent product recipes and hygiene requirements. The traceability of materials through

the production process is an important concern. The company policy towards trace-

ability calls for the integrity of materials used in each customer order. These, all

together lead to a highly constrained operational environment that, to the best of

our knowledge, cannot be captured by readily available scheduling approaches in

the literature. The literature has paid a great deal of attention to some of the afore-

mentioned characteristics. For example, already in earlier contributions on process

scheduling sequence-dependent cleaning is considered as one of the basic character-

istics of processing systems (see e.g. Kallrath, 2002, and references therein). There

are even studies which explicitly address the issue of modeling sequence depen-

dency (see e.g. Kelly and Zyngier, 2007). However, the research efforts towards

some other characteristics are rather limited. There are only a few papers which

address time-dependent cleaning (see e.g. Kondili et al, 1993a; Papageorgiou and

Pantelides, 1996a). The literature on operations management and operations re-
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search has only recently started to take over the concept of traceability. There are

only a few studies which reflect the effects of traceability on the operational perfor-

mance (see e.g. Wang et al, 2009, 2010; Rong and Grunow, 2010). However, none

of these research efforts considers traceability in the context of process scheduling

with capacitated resources.

Traceability is a critical concern in the food processing industry since it contributes

to food safety by facilitating product recalls when a problem is identified (Dupuy

et al, 2005). It necessitates a perpetual control of the flow of materials through the

production system. In the literature on process scheduling, the so-called material

balance equations appear to be the standard approach towards modeling material

flows (Mendez et al, 2006). These equations dictate the flow conservation, and con-

trol the accumulation and consumption of materials through time. Thus, they guar-

antee that materials are available when they are necessary. However, this approach

does not leave any room to coordinate the execution of production operations and to

keep track of the origin of materials to associate them with particular customer or-

ders. It should be obvious that having control over those is essential to keep up with

traceability requirements. Therefore, it is necessary to employ a different modeling

approach towards material flows in order to account for traceability.

The purpose of this study is to present a scheduling approach which can systemati-

cally characterize and accommodate the industry-specific characteristics of the evap-

orated milk production process. The main feature of the approach is to decompose

the problem in such a way that enables us to make use of the specific characteristics

of the system in modeling and solving the integrated sub-problems. We decompose

and solve the overall scheduling problem in two phases. In the first phase, we spec-

ify the number and size of the standardization batches and how those batches are

used to fulfill particular customer orders. The separation of these decisions from the

rest of the process scheduling problem enables us to coordinate material flows while

respecting traceability requirements. In the second stage, we assign production op-

erations to suitable production resources and determine the timing of production

operations to realize the material flows specified in the first sub-problem. This in-

tegrated method leads to a simple yet flexible approach for scheduling evaporated

milk production processes. The most important advantage of this approach is its

simplicity. The enclosed mathematical models can easily be written and plugged

into commercial solvers.

The rest of this paper is organized as follows. In Section 4.2, we give an overview of

the relevant literature. In Section 4.3, we describe the production process in detail.

In Section 4.4, we introduce the modeling approach. In Section 4.5, we provide a
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formal definition of the problem. In Section 4.7, we illustrate the applicability of

the proposed formulation by means of a real-life case. Finally, in Section 4.8, we

conclude and provide some directions for further research.

4.2 Relevant literature

The process layout addressed in this study falls into the category of the so-called

make-and-pack systems which could be considered as a specific case of semi-contin-

uous production processes (Mendez and Cerda, 2002; Kopanos et al, 2010). These

production environments are common especially in the food processing industry,

and they are often characterized by perishable materials, divergent product struc-

tures, limited production resources, and sequence-dependent cleaning requirements

(Van Donk, 2001). The literature on scheduling make-and-pack production systems

is rather limited. However, their practical relevance has motivated some researchers

towards case oriented process scheduling problems.

Jain and Grossmann (2000) addressed a two-stage continuous process motivated

by a manufacturing plant of a fast moving consumer goods company. They initially

modeled the scheduling problem as a disjunctive program with the objective to min-

imize makespan using a continuous time representation. Then, they transformed

this into a mixed integer linear programming (MILP) model. In order to reduce the

computational time they introduced a set of partial pre-ordering rules. This enabled

the authors to handle larger problem instances while not sacrificing optimality too

much. However, their formulation is based on the assumption that each customer

order is processed, stored, and packaged individually. Thus, they do not look into

the case where multiple customer orders are fed by the same processing run. Fur-

thermore, they do not consider sequence- and time-dependent changeovers.

Mendez and Cerda (2002) considered the production process of a candy manu-

facturing plant. They provided a continuous time MILP formulation of the associ-

ated process scheduling problem with the objective to minimize makespan. They

respected various real-life specifications such as order due dates and sequence-

dependent changeovers. They introduced a set of pre-ordering rules into the MILP

formulation which reduce computational times while providing good feasible sched-

ules. However, their formulation strongly relies on the assumption of unlimited

storage resources between processing and packaging stages which is not the case in

most production environments.
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Entrup et al (2005) studied the case of yogurt production. They employed a block

planning approach where a schedule is defined on a repeated cycle of a pre-defined

sequence of production operations. They presented different MILP formulations

optimizing a cost-based objective function using a hybrid discrete- and continuous-

time representation. The formulations are tested on a case study and it is shown

that near-optimal solutions can be obtained within reasonable computational times.

However, their problem only concerns the scheduling of the packaging stage. Thus,

operations involving the processing and storage of products are neglected.

Marinelli et al (2007) addressed the scheduling problem in a yogurt production

system. They developed a discrete time capacitated lot sizing and scheduling for-

mulation of the problem with a cost-based objective function. They proposed a

heuristic based on the decomposition of the overall problem into a lot sizing and

a scheduling problem which are solved successively. It is shown that the heuristic

exhibits near-optimal solutions in a short computational time. However, the pro-

posed formulation is based on the assumption that the production rate is fixed by

a single bottleneck stage. Furthermore, they assumed that the changeovers are in-

dependent from the production sequence. These all together make their approach

more suitable for planning rather than detailed scheduling problems.

Doganis and Sarimveis (2008) studied a yogurt production plant. They formulate

the problem as a MILP model with a cost-based objective function using a hybrid

discrete- and continuous-time representation. They consider various real-life limi-

tations involving sequence restrictions and sequence-dependent changeovers. They

tested and verified the efficiency of the formulation by means of a case study. How-

ever, similar to the approach of Marinelli et al (2007), they only consider the pack-

aging stage and ignore all potential limitations regarding the rest of the processing

system.

Kopanos et al (2010) addressed the scheduling problem in a yogurt production line.

They developed a MILP formulation of the scheduling problem. Their formulation

is essentially similar to the one of Doganis and Sarimveis (2008). They employed

a cost-based objective function and used a hybrid discrete- and continuous-time

representation. They implemented their approach in a case study and illustrated its

efficiency. However, they impose timing and capacity constraints on the processing

stage on an aggregate level, and the scheduling problem they consider only involves

the packaging stage.

The brief overview of the relevant literature reveals that most research efforts to-

wards process scheduling in make-and-pack plants concentrate on the packaging
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stage, and do not integrate the rest of the production system into the scheduling

problem. We also observe that capacity limitations in the intermediate storage are

often neglected. These could mainly be attributed to the computational complex-

ity of the mathematical problems which reflects upon real-life processing systems

as a whole. These problems can be modeled as large-scale mathematical programs.

However, the respective formulations often do not lead to high quality solutions in

reasonable computational times (Mendez et al, 2006). Nevertheless, the applicabil-

ity of the models which focus on a single production stage strongly depends on the

availability and the efficiency of the production resources carrying out the rest of

the processing and/or storage operations. Another important observation derived

from the literature review is that the literature does not suggest an approach to-

wards addressing traceability in the context of process scheduling in make-and-pack

plants.

4.3 Description of the production system

In this section, we provide a detailed description of the production process of evap-

orated milk, and discuss the specifications of the production system under consider-

ation.

4.3.1 Production process of evaporated milk

Evaporated milk is a shelf-stable milk preserve with considerably reduced water

content. It is one of the most widely available milk preserves since its nutritive

content is not significantly different from fresh milk when deluded with water. It is

also very attractive for transportation purposes because it is produced by reducing

the water content of fresh milk and offers a much longer shelf-life.

There are several variants of evaporated milk production systems. The reader is

referred to Walstra et al (2006, Chapter 19) for a detailed description of those vari-

ants. Here, we are rather interested in the production process and the production

layout of the dairy plant which motivated this study. Figure 4.1 illustrates the steps

within this process which we briefly discuss below.

Pre-heating. The fresh milk is heated before it is further processed. This treatment

increases the stability of the milk, inactivate enzymes, and decreases the level of

bacteria. It also prevents coagulation during storage. The preferred heat treatment
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Pre-heating Evaporation Homogenization

Standardization Filling Sterilization

Figure 4.1: Production process of evaporated milk

is called the High Temperature Short Time (HTST) method which continuously heats

the milk to temperatures exceeding 75◦C for about 15 seconds.

Evaporation. The milk is concentrated by evaporation. The main concern in evap-

oration is to standardize the dry-matter content of the milk. Through evaporation

the boiling point of the milk is significantly lowered. The warm milk continuously

goes through an evaporator where it is concentrated to a lower portion of its dry-

matter content.

Homogenization. The evaporated milk is homogenized by breaking large fat glob-

ules to smaller ones by forcing the milk through small holes under high pressure.

This prevents creaming and coalescence while improving the color and texture of

the product. The evaporated milk is continuously piped through a homogenizer

immediately after evaporation.

Standardization. It is not uncommon that the viscosity of the evaporated milk

does not comply with quality specifications. Thus, in order to ensure quality, a series

of tests are performed on samples, and if necessary milk is standardized by using a

stabilizing salt such as sodium hydrogen phosphate or potassium phosphate. This

treatment is applied batch-wise. Thus further production operations need to be

postponed until it is completed. The evaporated milk is kept in storage tanks during

standardization. Nevertheless, long storage times are prohibitive due to the risk of

bacterial growth and age thickening.

Filling. Condensed milk products are usually meant for use in regions where milk

is scarce. Thus, cans are the commonly preferred packaging material due to storage

and shelf life concerns. The evaporated milk is continuously piped into pre-sterilized

cans which are then vacuum-sealed.
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Sterilization. The evaporated milk is in-can sterilized. This treatment is mainly

intended for the same purpose as pre-heating. However, it is rather extensive. Here,

the milk is continuously heated to 121◦C for about 8 minutes. In order to assure

that the evaporated milk is heated in a standard way, cans are agitated during ster-

ilization.

4.3.2 Specifications of the production system

The production process of evaporated milk can be encapsulated in two continuous

production stages: processing fresh milk into evaporated milk and putting evapo-

rated milk into customer packaging. In between those, evaporated milk is stored

and batch-wise standardized in the intermediate storage. These primary production

stages are highlighted in Figure 4.1. The layout of the processing system is orga-

nized in line with this two-stage configuration. The fresh milk first goes through

processing lines where pre-heating, homogenization and evaporation take place,

then standardized in storage tanks, and finally packaged and sterilized in packaging

lines. This process structure is a typical example of the make-and-pack systems.

The processing plant manufactures a large variety of end products characterized by

their product recipes and packaging types. In the processing stage, different types

of product recipes are processed in several parallel processing lines. The process-

ing rate varies among product recipes. Throughout processing runs, evaporated

milk products are continuously piped into intermediate storage tanks where they

are temporarily stored. The storage tanks are identical in size and they are capable

to store products belonging to all types of product recipes. Before they are put into

customer packaging, evaporated milk products are batch-wise standardized in stor-

age tanks. The standardization of materials requires a significant amount of time.

The time required to standardize a batch differs from one recipe to another but it is

independent from the batch size. In the packaging stage, evaporated milk products

are packaged in cans of different sizes following customer order preferences. Each

standardization batch serves a single or multiple customer orders. This production

stage is carried out by several parallel packaging lines each of which is dedicated to

a particular can size. The packaging rates are often higher for cans with larger sizes.

While they are being packaged, evaporated milk products are continuously depleted

from storage tanks. It is an important concern to maintain the traceability of mate-

rials through the production process. The company policy towards traceability has

important consequences on the coordination of the flow of materials: first, the stan-

dardization batches should be processed and customer orders should be packaged in
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uninterrupted continuous production runs, and second, each customer order should

be filled by materials associated to a single standardization batch. These together

lead to a divergent material flow structure which guarantees the integrity of mate-

rials used in customer orders, and ensures that materials can easily be traced back

and recalled once a problem is identified.

Because of varying dry-matter concentrations of different product recipes and hy-

giene requirements, processing and packaging lines need to be cleaned. There are

two types of cleaning. The first is the time-dependent cleaning which calls for a

maximum amount of time that a production line can be used without cleaning. The

second is the sequence-dependent cleaning which necessitates the cleaning of pro-

duction lines whenever switching from a higher to a lower concentrated recipe. The

cleaning requirements towards storage tanks are rather extensive. It is necessary to

clean storage tanks after each time they are used even if the same product recipe is

stored.

The dairy plant operates in a make-to-order setting because of the variety of end

products and fluctuating demands. Since advance demand information is rather

limited, scheduling is done on a weekly basis. The production system is mostly au-

tomated and it runs 24 hours a day and 7 days a week. Therefore, the scheduling

problem of the plant involves the coordination of production operations so as to

fill customer orders within a continuous time-frame of a week. The plant sched-

uler weekly develops a production schedule concerning the specifications and the

timing of production operations and the assignment of those operations to suitable

resources. The synchronization of production stages is difficult due to the difference

between processing and packaging rates, and the limitations on the intermediate

storage. Furthermore, the technical constraints such as cleaning and traceability

requirements interfere with the timing and assignment decisions. In particular, im-

proper scheduling decisions deprive materials from availability of suitable process-

ing and packaging lines, and also give rise to an excess usage of storage tanks. These

all together make the scheduling of the processing system a challenging task.

There is a variety of performance measures that can be adopted to assess to the

quality of the production schedule. For example, it is important to limit the number

of standardization batches because of the long waiting times required to guarantee

the conformity of evaporated milk products. It is also an important concern to avoid

extensive down times due to cleaning. However, the main managerial concern of

the dairy plant is to increase the throughput of the production system. This goal is

coupled with the objective to minimize the makespan which is in line with the other

performance measures.
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4.4 Modeling approach

We use a decomposition method to tackle the process scheduling problem under

consideration. The most essential decision in designing a decomposition approach

is how to break the overall problem in such a way that the resulting sub-problems

can be managed efficiently while obtaining optimal or near-optimal solutions. Here,

respecting the manual scheduling process currently in practice, we decompose and

solve the problem in two phases: the matching phase and the scheduling phase.

In these respective phases, we first determine the specifications regarding material

flows, and then we build a complete production schedule to realize these mate-

rial flows. The separation of these decisions enables us to coordinate material flows

while respecting traceability requirements. This decomposition scheme is essentially

similar to the one proposed by Neumann et al (2002) for batch process scheduling

problems. However, for the purposes of this study, in the first phase we not only con-

vert aggregate requirements into production batches, but also assign those batches

to individual customer orders.

The flow of materials can be expressed in terms of two key entities: standardization

batches and customer orders. Thus, the specifications (i.e. the recipe and the size)

of these entities define the flow of materials. The specifications of customer orders

are known in advance. The specifications of standardization batches, on the other

hand, are decided upon in the matching phase. More specifically, the matching phase

determines the set of standardization batches of each product recipe, and allocates

those batches to particular customer orders. The standardization of an evaporated

milk batch requires an extensive amount of time. Thus, it is favorable to standardize

materials in large batches. Following this, in the matching phase, we aim at finding

the minimum number of standardization batches that can fill all customer orders,

and formulate the respective decision problem as a straightforward MILP model.

When the specifications of standardization batches and customer orders become

known, it is possible to identify all types of production operations that will be car-

ried out through the planning horizon. We distinguish three types of production

operations: processing tasks, packaging tasks, and storage tasks. A processing task

is a continuous processing run of a particular standardization batch, and it is carried

out by a single processing line which feeds a single storage tank. A packaging task

is a continuous packaging run of a particular customer order, and it is carried out by

a single packaging line which is fed by a single storage tank. A storage task refers

to the process of accumulation, storage, and the depletion of materials associated

with a particular standardization batch, and it is carried out by a single storage tank.
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Figure 4.2 illustrates the timing interactions among those operations my means of

an example where a standardization batch serves three customer orders. The time

axis is divided into three time periods. The first one covers the processing task. The

second one is the time period between the end of the processing task and the start of

the packaging task that starts the earliest. Obviously, this time period is longer than

the time required to standardize the batch. The third one involves the packaging

tasks. It starts with the packaging task that starts the earliest and ends with the one

that ends the latest. Throughout these three time periods a storage task must be

active to handle material flows.

Packaging #1

Packaging #2

Packaging #3

Processing

Storage

Standardization

Figure 4.2: An illustration of the timeline of production operations

The scheduling phase of the proposed approach is devoted to assign production op-

erations to suitable production resources and to determine the timing of production

operations to realize the material flows specified in the matching phase. An im-

portant consideration in formulating the scheduling problem is time- and sequence-

dependent cleaning requirements in production lines. We employ the block planning

approach which was also used by Entrup et al (2005) to facilitate modeling those

in both processing and packaging stages. The approach relies on the idea of orga-

nizing the production schedule as a repeated cycle of blocks which are associated

with particular product recipes. The blocks within each cycle follow a predefined se-

quence which requires only a little or no cleaning effort. Thus a complete cleaning

has to take place only between each cycle. Figure 4.3, illustrates the block planning

approach on a fragment of the schedule of an arbitrary production line. Notice that

product recipes are sequenced in increasing order on the basis of their dry-matter

concentration (i.e. low-, medium-, and high-concentrated product recipes).

Entrup et al (2005) used the block planning approach in a daily framework where

each cycle is coupled with a day in the planning horizon. This is a reasonable ap-

proach for systems which need to be switched on and off on a daily basis. However,
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Figure 4.3: Block planning approach

the production system under consideration essentially works without interruptions.

Thus, we do not pre-specify the timing of production cycles, and determine those in

the context of the scheduling problem. Furthermore, we extend the block planning

approach by considering time-dependent cleaning requirements. We model these

by imposing upper bounds on cycle lengths. The selection of the number of cycles

is also critical. There must be sufficient number of cycles to sustain flexibility in

synchronizing production tasks. However, a large number of cycles should not be

preferred in order to avoid extensive cleaning times. Therefore, in our formula-

tion, we enforce an upper bound on the number of cycles in the processing and the

packaging stages.

We formulate the scheduling problem by using the constraint-based modeling par-

adigm which is referred to as constraint programming (CP). The most widely used

method in formulating process scheduling problems is MILP due to its flexibility in

terms of modeling (Floudas and Lin, 2005). However, it is usually often difficult

to solve large-scale real-life scheduling problems by using this exact approach. For

instance, as we mentioned in the literature review, Jain and Grossmann (2000) de-

veloped a MILP formulation for a process scheduling problem similar to the one

addressed in this study. Their problem is less demanding because it reflects a case

where each customer order is processed and packaged as a single entity, and it

does not involve time- and sequence-dependent cleaning requirements. Neverthe-

less, they report that finding the optimal solution for problems with more than 15

customer orders was not possible, and finding even a feasible solution for problems

with more than 20 customer orders required an extensive computational time. The

evaporated milk plant which has motivated this study usually receives 40 – 60 cus-

tomer orders every week. This benchmark motivated us to employ a CP approach.

CP is known to be capable of finding good solutions for highly constrained real-life

scheduling problems within reasonable computational times (Baptiste et al, 2001).

This mainly stems from the fact that it searches for feasibility rather than optimality.

When used in an optimization concept, CP sequentially finds better feasible solutions

by bounding the objective function.
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4.5 Problem statement

The dairy plant under consideration produces a variety of end products which are

specified by their product recipe and packaging type. We are given the following

data regarding these product recipes and packaging types:

Z the set of product recipes

W the set of packaging types

λproc
z /λpack

w the processing/packaging rates for every product recipe z/pack-

aging type w

gz the standardization time for product recipe z

sz the dry-matter concentration of product recipe z

The production system involves facilities to process, store, and package evaporated

milk products. The following data are available with respect to those facilities:

Πproc/Πpack the set of processing/packaging lines

Πproc
z /Πpack

w the set of processing/packaging lines which are suitable for pro-

cessing/packaging product recipe z/packaging type w

Nproc/Npack the set of production cycles for processing/packaging lines

y the number of storage tanks

q the volume of a storage tank

cproc/cpack/cstor the cleaning time for processing/packaging/storage units

hproc/hpack the maximum amount of time that processing/packaging lines can

be used without cleaning

The production is driven by customer orders for end products. We are given the

following data regarding the customer orders:

J the set of customer orders

Jz/Jw the set of customer orders concerning product recipe z/packaging

type w

uj the size of customer order j

The problem is to find a production schedule minimizing the overall makespan. This

requires to decide upon the specifications regarding material flows:

I the set of standardization batches

Iz the set of standardization batches concerning product recipe z

Γz the matching of standardization batches to customer orders of

recipe z, i.e. if (i, j) ∈ Γ, then standardization batch i serves

customer order j
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and the allocation of production resources and the timing of production operations:

Λproc/Λpack the allocation of processing/packaging lines to standardization

batches/customer orders, i.e. if (i, p, n) ∈ Λproc, then standard-

ization batch i is processed in processing line p at cycle n, and if

(j, p, n) ∈ Λpack then customer order j is packaged in packaging

line p at cycle n

υproc
i /υstor

i /υpack
j the time interval where standardization batch i/customer order j

is processed/stored/packaged

while also respecting the constraints on sequence- and time-dependent cleaning re-

quirements, and storage capacity limitations.

4.6 Mathematical model

In this section, we explain the modeling approaches taken in the matching and the

scheduling phases. In these respective phases, we first determine the specifications

of material flows, and then build the production schedule.

4.6.1 The matching phase

The objective in the matching phase is to find the minimum number of standard-

ization batches that can serve all customer orders. Here, the main limitation is that

the size of each standardization batch is bounded by the capacity of storage tanks.

Thus, the total size of the customer orders served by the same standardization batch

cannot exceed the capacity of a storage tank. We assume that the size of customer

orders is smaller than the capacity of a storage tank. Nevertheless, if this is not the

case, then large orders can be broken into several orders with smaller sizes.

It should be clear that all orders served by the same standardization batch must be

of the same product recipe. Therefore, it is possible to determine the minimum num-

ber of standardization batches that can fill customer orders of a particular product

recipe independent from other recipes. In the following, we formulate the matching

problem of a particular product recipe as a MILP model.

Let us consider a particular recipe z ∈ Z, and the respective set of customer or-

ders Jz. If each customer order were standardized as a batch, then the number

of standardization batches would equal the number of customer orders. Thus, the

cardinality of Jz is an upper bound on the number of standardization batches of
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product recipe z. Let Ĩz be the set of prospective standardization batches, such that

|Jz| = |Ĩz|. We define the following binary indicator variables:

ηi =





1, if prospective standardization batch i is active,

0, otherwise.

αij =





1, if prospective standardization batch i is used

to serve customer order j,

0, otherwise.

By means of these indicator variables, we can express the number of active stan-

dardization batches as
∑
i∈Ĩz ηi, and the size of prospective standardization batch

i as
∑
j∈Jz ujαij . Then, we can represent the matching problem by the following

MILP.

min
∑

i∈Ĩz

ηi (4.1)

∑

j∈Jz

ujαij 6 qηi ∀i ∈ Ĩz (4.2)

∑

i∈Ĩz

αij = 1 ∀j ∈ Jz (4.3)

ηi−1 > ηi ∀i ∈ Ĩz : i > 1 (4.4)

Eq. (4.1) sets the objective function which minimizes the number of active standard-

ization batches. Eq. (4.2) guarantees that a standardization batch can only be used

to serve customer orders if it is active, and if so, its size cannot exceed the capacity of

a storage tank. Eq. (4.3) ensures that all customer orders are met. Eq. (4.4) enforces

a numerical ordering of standardization batches for symmetry breaking purposes.

When solved for product recipe z, the aforementioned MILP yields the set of active

standardization batches Iz = {i | i ∈ Ĩz and ηi = 1}, and the set of matchings be-

tween batches and customer orders Γz = {(i, j) | i ∈ Iz, j ∈ Jz and αij = 1}. It

is important to recall that the formulation is meant for a particular product recipe.

When approaching the overall problem, we solve a matching problem for each prod-

uct recipe to obtain all the necessary information regarding material flows.

4.6.2 The scheduling phase

We develop the scheduling model with the high-level modeling language ILOG OPL

(Van Hentenryck, 1999) by using ILOG OPL Development Studio 6.0 (ILOG, 2008).

81



The efficiency of CP lies in its ability to effectively prune variable domains so that a

large part of the search space does not have to be explored. The main tool employed

in pruning the search space is the so-called constraint propagation. It relies on the

idea of removing inconsistent values from variable domains which can be proven

not to be a part of a feasible solution. This process is carried out by constraint-

specific propagators which encapsulate efficient algorithms to deduce information

in constraint propagation. Hence, an important factor concerning the computational

performance of a CP model is the selection of constraint operators employed. Here,

we make use of the special variables and operators ILOG OPL offers for scheduling

purposes. These are explicitly mentioned in the text whenever necessary, and their

semantics are provided in Appendix 4.A.

The building blocks of the proposed model are the interval variables expressing the

timing of production tasks. An interval variable is defined by a set of attributes

involving its start and end time, duration, and whether it is optional or not. These

attributes may vary subject to the definition of the variable and the constraints of

the model. The key modeling issues in the scheduling phase are the assignment

of production tasks to production resources, and the configuration of production

cycles. We model task assignments by using auxiliary tasks representing possible

assignment options. Also, we use auxiliary tasks representing the start and end of

production cycles. All the aforementioned tasks are modeled as interval variables as

listed below:

υproc
i /υstor

i /υpack
j the interval variable representing the processing/storage/pack-

aging task of standardization batch i/customer order j

υproc
ipn /υproc

jpn the optional interval variable representing the auxiliary process-

ing/packaging task of standardization batch i/customer order j

being assigned to the processing/packaging line p at cycle n

τproc
pn /τpack

pn the interval variable representing the start of cycle n on process-

ing/packaging line p

ςproc
pn /ςpack

pn the interval variable representing the end of cycle n on process-

ing/packaging line p

It is important to remark that all υproc
i and υpack

j are defined with fixed durations since

the amount of materials undergo those tasks and the respective production rates are

known in advance. That is, for all standardization batches of recipe z, the length

of υproc
i equals

∑
(i,j)∈Γz

uj/λ
proc
z , and for all customer orders of packaging type w,

the length of υpack
j equals uj/λ

pack
w . This is not the case for υstor

i since their lengths

are determined in connection with the timing of processing and packaging tasks.

The auxiliary variables υproc
ipn and υpack

jpn have equivalent lengths with the respective
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variables υproc
i and υpack

j . The variables τproc
pn /τpack

pn and ςproc
pn /ςpack

pn merely refer to

points in time, and they are defined with null durations.

In what follows, we introduce the objective function and the constraints of the pro-

posed CP model. For the sake of notational brevity, we first define the respective sets

reflecting all possible processing and packaging assignments.

Λ̃proc = {(i, p, n) | z ∈ Z, i ∈ Iz, p ∈ Πproc
z and n ∈ Nproc}

Λ̃pack = {(j, p, n) | w ∈W, j ∈ Jw, p ∈ Πpack
w and n ∈ Npack}

Objective function. The objective function minimizes the overall makespan. We

express the objective function in Eq. (4.5). The endOf operator simply returns the

time instance where the underlying interval ends. Thus the objective function equals

the latest end time among all packaging tasks.

min max
j∈J
{endOf(υpack

j )} (4.5)

Timing constraints. Timing constraints guarantee that processing, packaging, and

storage tasks are correctly synchronized. We make use of the operators startAtStart,

endBeforeEnd, and endBeforeStart to specify these constraints (see Appendix 4.A).

We express timing constraints in the following.

startAtStart(υproc
i , υstor

i ) ∀i ∈ I (4.6)

endBeforeEnd(υstor
i , υpack

j , cstor) ∀z ∈ Z, ∀(i.j) ∈ Γz (4.7)

endBeforeStart(υpack
j , υproc

i , gz) ∀z ∈ Z, ∀(i.j) ∈ Γz (4.8)

Eq. (4.6) ensures that processing and storage tasks of a standardization batch start

concurrently. Eq. (4.7) states that the packaging tasks of the customer orders served

by the same standardization batch should end at least cstor time units before the end

of the storage task of the associated batch. Here, cstor stands for the time required to

clean a storage tank. Thus, rather than modeling the cleaning time of storage tanks

explicitly, we extend the duration of storage tasks to cover the cleaning time. This

approach significantly simplifies modeling the storage allocation. Eq. (4.8) guar-

antees that the necessary amount of time – which equals gz for batches of product

recipe z – is reserved for the standardization of batches before they are packaged.

Assignment constraints. Assignment constraints make sure that processing/pack-

aging tasks are assigned to a particular cycle of a processing/packaging line. We use
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the alternative operator to express these constraints (see Appendix 4.A). Assignment

constrains are given below.

alternative(υproc
i , {υproc

ipn | (i, p, n) ∈ Λ̃proc}) ∀i ∈ I (4.9)

alternative(υpack
j , {υpack

jpn | (j, p, n) ∈ Λ̃proc}) ∀j ∈ J (4.10)

Eq. (4.9) and Eq. (4.10) enforce that every processing and packaging task is assigned

to a single cycle of a single production resource, and the optional interval variable

corresponding to that assignment is active and synchronized with the interval vari-

able representing the underlying task.

Sequencing constraints. Sequencing constraints state that production tasks that

are carried out within the same cycle of a production line are sequenced in increasing

order based on their dry-matter concentration. We use the sequence variable and

the noOverlap operator to model sequencing constraints (see Appendix 4.A). We

define Θproc
pn /Θpack

pn as the sequence of optional interval variables that are carried out

within the production cycle n of the processing/packaging line p. Thus, Θproc
pn /Θpack

pn

is a sequence of all υproc
ipn /υproc

jpn with p ∈ Πproc/Πpack and n ∈ Nproc/Npack. We also

introduce the |Z| × |Z| transition matrix V such that V [z, z′] = M if sz < sz′ and

0 otherwise. Here, M refers to a large number. Then, we can write the sequencing

constraints as follows.

noOverlap(Θproc
pn , V ) ∀n ∈ Nproc, ∀p ∈ Πproc (4.11)

noOverlap(Θpack
pn , V ) ∀n ∈ Npack, ∀p ∈ Πpack (4.12)

Eq. (4.11) and Eq. (4.12) ensure the desired succession of tasks in processing and

packaging units by imposing very large transition times when changing from a high

concentrated recipe to a low concentrated one.

Storage constraints. Storage constraints guarantee that sufficient number or stor-

age tanks are available to carry out storage operations. We model storage constraints

by using a cumulative function expression (see Appendix 4.A). We define the cumu-

lative function F stor =
∑
i∈I pulse(υstor

i , 1) to express the usage of storage tanks.

Then, Eq. (4.13) guarantees that the number of storage tanks used simultaneously

cannot exceed the number of available storage tanks – which is equal to y.

F stor 6 y (4.13)

Cycle constraints. Cycle constraints mediate the production cycles on processing

and packaging lines. We make use of the precedence operators endBeforeStart and
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startBeforeEnd to formulate these constraints (see Appendix 4.A). Below we articu-

late three types of cycle constraints.

endBeforeStart(τproc
pn , υproc

ipn ) ∀(i, p, n) ∈ Λ̃proc (4.14)

endBeforeStart(υproc
ipn , ς

proc
pn ) ∀(i, p, n) ∈ Λ̃proc (4.15)

endBeforeStart(τpack
pn , υpack

jpn ) ∀(j, p, n) ∈ Λ̃pack (4.16)

endBeforeStart(υpack
jpn , ς

pack
pn ) ∀(i, p, n) ∈ Λ̃pack (4.17)

Eq. (4.14) – Eq. (4.17) make sure that the optional interval variables reflecting the

assignment of production tasks to particular cycles must lie within the time frame of

the respective cycles.

startBeforeEnd(ςproc
pn , τproc

pn ,−hproc) ∀p ∈ Πproc, ∀n ∈ Nproc (4.18)

startBeforeEnd(ςpack
pn , τpack

pn ,−hpack) ∀p ∈ Πpack, ∀n ∈ Nproc (4.19)

Eq. (4.18) and Eq. (4.19) reflect the time-dependent cleaning requirements by re-

stricting the length of processing and packaging cycles to the respective time limits

hproc and hpack.

endBeforeStart(ςproc
pn−1, τ

proc
pn , cproc) ∀p ∈ Πproc, ∀n ∈ Nproc : n > 1 (4.20)

endBeforeStart(ςpack
pn−1, τ

pack
pn , cpack) ∀p ∈ Πpack, ∀n ∈ Npack : n > 1 (4.21)

Eq. (4.20) and Eq. (4.21) provides a numerical ordering of cycles so as to guarantee

that cycles follow each other based on a numerical succession.

4.7 Case study

In this section, we first provide the details of the evaporated milk production system

which motivated this study, and then conduct a numerical study where we develop

production schedules for several real-life cases by using the proposed approach. The

data originates from a processing plant of a dairy company. However, they are

slightly modified because of confidentiality concerns.

The plant manufactures over 200 evaporated milk products which differ in terms of

product recipe and packaging type. Following customer orders, each week around

8 to 10 recipes are produced. Product recipes can be classified into three groups

based on dry-matter concentration: low-, medium-, and high-concentrated recipes.

The specifications of recipes, i.e. processing rate and standardization time, signifi-

cantly differ from one recipe to another. The data regarding the most demanded 10

85



product recipes are provided in Table 4.1. There are two processing lines. The first

one can handle all types of product recipes. The second one is only capable of pro-

cessing low-concentrated recipes. Processing lines require cleaning after operating

for 16 hours, and whenever they switch to a recipe with a lower concentration. The

cleaning of a processing line takes 4 hours. The plant offers evaporated milk prod-

ucts with two different can sizes. Packaging rate is higher for the larger cans. The

data regarding packaging rates are provided in Table 4.2. Packaging operations are

carried out by four dedicated packaging lines – for each size two lines. Packaging

lines require cleaning after operating for 72 hours, and whenever they switch to a

recipe with a lower concentration. The cleaning of a packaging line takes 3 hours.

There are eight storage tanks each with a capacity of 120 tons. These storage tanks

can be used for any production recipe. However, they need to be cleaned each time

they are used. It takes half an hour to clean a storage tank.

Recipe Dry-matter Processing rate Standardization

concentration (tons/minute) time (minutes)

R1 Low 0.45 150

R2 Low 0.30 250

R3 Low 0.30 250

R4 Low 0.25 150

R5 Low 0.40 250

R6 Medium 0.30 350

R7 Medium 0.30 400

R8 Medium 0.30 650

R9 Medium 0.40 500

R10 High 0.50 550

Table 4.1: Data for product recipes

Packaging Can size Packaging rate

type (grams) (tons/minute)

C1 170 0.15

C2 410 0.25

Table 4.2: Data for packaging types

We consider 4 case examples. All these cases are known to be challenging because

they required more than 6 days of production time following the manual scheduling
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approach in practice. They involve around 50 – 70 customer orders for products

concerning 8 – 10 different product recipes and 2 different packaging types. The

characteristics of the case examples are provided in Table 4.3. The historical data

reveals that the plant employs around 6 – 7 cycles in the processing stage and 3 – 4

cycles in the packaging stage. Thus, in our application, we set the maximum number

of cycles to reasonable limits of 10 and 6 for the processing and packaging stages

respectively.

We implemented the model by using ILOG OPL Studio 6.0 modeling environment on

an Intel i5 2.67 Ghz CPU platform with 4GB RAM. The MILP models in the match-

ing phase are solved by using CPLEX 11.1, and the CP models in the scheduling

phase is solved by employing CP 2.0. All computational runs are performed with a

CPU time limit of 600 seconds. The computational results of the case examples are

summarized in Table 4.3.

Case 1 Case 2 Case 3 Case 4

Data

# of customer orders 60 52 65 55

# of product recipes 10 8 8 9

# of packaging types 2 2 2 2

Total demand volume (tons) 3924 3688 4012 3902

Results of the matching phase

# of standardization batches 40 32 41 37

Results of the scheduling phase

# of processing cycles – max 7 6 7 6

# of packaging cycles – max 4 4 5 4

Makespan (minutes) 8069 7742 8191 7965

Table 4.3: Characteristics and computational results of case examples

It is important to note that the matching phase was solved to optimality in a marginal

computational time in all case examples. However, optimality was not achieved in

the scheduling phase of any case example within the given computational time limit.

This is not unexpected given the complexity of the scheduling problem. Neverthe-

less, we observed that, for all case examples, the proposed method was able to find

a feasible schedule with a makespan less than 6 days.

The results regarding the number of cycles are mostly in line with the data from the

company. The best schedules found by the proposed model employs around 6 – 7
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cycles for the processing stage and 3 – 4 cycles for the packaging stage. However, it

appears that, as opposed to the traditional setting which often calls for 3 cycles, it

may be a good option to employ at least 4 cycles in the packaging stage. This can

mainly be attributed to the relatively short cleaning time required for the packaging

stage.

For illustrative purposes we report the results of Case 1 in detail. The detailed order

data for Case 1 are provided in Table 4.4. This case involves 60 customer orders with

sizes varying between 10 and 120 tons. The total demand volume is around 4000

tons, and most of this demand (around 45% in volume) concerns a single product

recipe labeled as R2.

The matching phase of the proposed approach yields 40 standardization batches for

Case 1. These are listed together with their matchings with individual customer

orders in Table 4.5. We observe that most of the standardization batches serve 2

customer orders. Nevertheless, there are also examples where a standardization

batch serves 1 or 3 customer orders.

Figure 4.4 graphically illustrates the best schedule obtained for Case 1 by means of

a Gantt chart with time on the horizontal and processing and packaging units on the

vertical axis. The standardization batches and customer orders are represented with

boxes shaded with three different intensities. These reflect the dry-matter concen-

tration of the underlying product recipes.

A closer look at the Gantt chart reveals that the utilization is higher in the processing

stage as compared to the packaging stage. We know that in general the processing

rates are higher than the packaging rates. However, it appears that the advantage

of having a larger number of units in the packaging stage overcomes the advantage

of higher processing rates in the processing stage.

The intermediate storage tank usage profile corresponding to the best schedule is

shown in Figure 4.5. As can be expected, the number of storage units used in the

beginning and the end of the planning horizon is rather small, whereas it fluctuates

around the limit the rest of the time. We also conducted a sensitivity analysis on the

number of available storage tanks. We saw that decreasing the number of storage

tanks even by a single unit significantly diminish performance. However, we ob-

served that increasing the number of storage tanks has a marginal effect. It should

be obvious that a simple sensitivity analysis is not sufficient to draw reliable conclu-

sions. Nevertheless, it appears from the aforementioned observations that current

storage capacity is probably sufficient to synchronize the two production stages. No-

tice that there are eight storage tanks available in the current setting. These can
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Table 4.5: Results of the matching phase for Case 1
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Figure 4.4: Gantt diagram illustrating the best solution for Case 1
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simultaneously feed all four packaging lines, serve both two processing lines, and

provide room for two batches for standardization.
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Figure 4.5: The storage tank usage profile for Case 1

The scheduling approach currently being used in the case company is mainly based

on ad-hoc rules, and it is carried out by individual planners by hand. Thus, it is

rather difficult to assess the performance of the proposed approach against manual

scheduling in a one-to-one fashion. Nevertheless, the case examples show that the

proposed approach looks very promising at the least.

4.8 Conclusions and extensions

In this study, we addressed a real-life scheduling problem encountered in a dairy

plant specialized in evaporated milk products. The problem is computationally chal-

lenging, and it requires the consideration of the industry-specific characteristics of

the underlying production environment. Therefore it necessitates an efficient and

flexible modeling approach. We contribute to the literature by presenting such a
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mathematical approach which could be used in the context of a computer-aided

scheduling system. The proposed approach comprises of two phases. In the first

phase, it determines the specifications regarding material flows. Then, in the sec-

ond phase, it builds a complete production schedule to realize the specified material

flows. The isolation of material flow and scheduling decisions makes it straight-

forward to account for the traceability requirements which are critical in food pro-

cessing industries. We applied the proposed approach in a case originated from a

real-life evaporated milk plant, and observed that it significantly outperforms the

manual scheduling approach currently in use.

The majority of scheduling research on food processing systems focuses on a partic-

ular production stage and ignores the effects of the respective scheduling decisions

on the overall system performance. Thus, there is still a gap in the literature in coor-

dinating local and global scheduling objectives. The current study can be regarded

as an effort towards filling this gap by presenting an approach that reflects upon the

system as a whole. We particularly targeted evaporated milk production processes.

However, we addressed many characteristics which are common in food processing

systems of make-and-pack configuration. Thus, the proposed approach can also be

adapted to be employed in other production environments.

There are several interesting directions for further research. First, it is substantial

to develop an optimal approach which can simultaneously handle the matching and

the scheduling phases that are dealt with separately in the current study. It should

be obvious that the practicality of such an approach is questionable since it would re-

quire a tremendous computational effort. However, it would provide a yardstick that

could be used to assess the solution quality of alternative approaches. The adequacy

of the proposed approach can be improved by addressing further elements which

are of interest in the food processing industry. Rong and Grunow (2010) recently

introduced the notion of chain dispersion in the context of traceability. They defined

chain dispersion as a measure in which production batches are spread among differ-

ent customers, and pointed out the importance of limiting the extent of dispersion

to improve food safety. This concept can easily be embedded into the proposed ap-

proach by adopting the mathematical model employed in the matching phase. This

could be done either by penalizing dispersion in the objective function, or by limit-

ing dispersion by introducing a new set of constraints. The decomposition scheme

employed in the current study simplified the overall problem significantly. This en-

abled us to find good solutions in reasonable computation times. Nevertheless, the

mathematical problem considered in the scheduling phase is still very demanding.

This is evident from the fact that we were not able solve the case problem to opti-
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mality. We employed a CP model in formulating the scheduling problem. This model

also supports employing user-defined search procedures to specify how the search

space is explored. Hence, more sophisticated search algorithms could be embedded

into the proposed CP model in order to increase its effectiveness. Finally, an im-

portant research direction for further research is to extend the proposed approach

to account for possible revisions in customer orders. This is a common issue in the

food processing industry since customers tend to revise their orders before they are

dispatched. There are two main approaches towards handling such fluctuations:

safety stocks and safety times. As recently pointed out by Van Kampen et al (2010)

safety time appears be more promising in make-to-order environments such as the

one considered in the current study.

Appendix 4.A Semantics of CP operators

The CP formulation provided in Section 4.6.2 makes use of special scheduling op-

erators of ILOG OPL modeling language. Here, we provide the semantics of these

operators. We discuss the interval and sequence variables, cumulative function ex-

pressions, and related built-in constraint structures. The reader is referred to (ILOG,

2008) for the complete overview of the OPL modeling language.

Interval variables. Interval variables represent tasks or operations characterized

by a start and an end time. An important feature of interval variables is that they

can be optional. Thus based on the presence of an interval variable its execution

can be modeled as a decision variable. The domain of an interval variable a, i.e.

dom(a), is a subset of {⊥} ∪ {[s, e) | s, e ∈ Z+, s 6 e}. For and interval variable a

which is not optional ⊥/∈ dom(a). The value of the interval variable a is denoted as

a. An interval variable a is absent if a =⊥, and present if a = [s, e). We respectively

denote the presence status, the start, and the end of a as x(a), s(a), and e(a). If an

interval variable a is absent then x(a) = 0 and the start and end are undefined.

Sequence variables. Sequence variables represent the total ordering of a set of

interval variables. Thus, an interval sequence variable p defined on a set interval

variables A is a decision variable whose possible values are the permutations of the

intervals of A. It is important to note that any absent interval variables are not

considered in the sequence. Let A represent the values of a set of interval variables

and n denote the cardinality of A. A permutation π of A is a function π : A →
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{⊥} ∪ [1, n], and has the properties that ∀a ∈ A⇔ (π(a) 6=⊥) and ∀a, b ∈ A, (x(a) ∧
x(b) ∧ a 6= b)⇒ (π(a) 6= π(b)).

Cumulative function expressions. Cumulative function expressions represent the

cumulated usage of renewable resources over time. A cumulative function expres-

sion f is an expression defined on Z to Z+. The individual contributions of interval

variables to cumulative function expressions are described via elementary cumula-

tive functions. For the purposes of this study we are only interested in the elemen-

tary function pulse. Let a be an interval variable and h ∈ Z. Then, pulse(a, h) can

be characterized by a function F such that F (t) = h if t ∈ [s(a), e(a)), and F (t) = 0

otherwise. Here, h stands for the consumption of the cumulative resource by the

activity represented by the interval variable a. Algebraic sums of elementary cu-

mulative functions construct cumulative function expressions. They have the form

f =
∑
i εifi where εi ∈ {−1,+1} and fi is an elementary function expression.

Constraints on interval and sequence variables. Constraints on interval and se-

quence variables are used to confine the relative positioning of interval variables,

create logical links between interval variables, and model disjunctive resources.

The noOverlap constraint on a sequence variable p states that the intervals com-

prised in p do not overlap. Furthermore, it specifies the minimum time gap that

must separate consecutive intervals in p. Let A be the set of interval variables in

the permutation π of p, and A represent their values. Also, let T (a) denote the type

of interval variable a, and V be the transition distance matrix defining the mini-

mum distance between different types of interval variables. Then, the constraint

noOverlap(p, V ) is defined as:

noOverlap(p, V )⇔ ∀a, b ∈ A,¬x(a) ∨ ¬x(b)∨

((π(a) < π(b))⇔ (e(a) + V [T (π, a), T (π, b)] 6 s(b)))

The alternative constraint models a specific statement with regard to the presence

of a set of interval variables. Let a, b1, . . . , bn be interval variables. The constraint

alternative(a, {b1, . . . , bn}) states that if interval a is present then exactly one of in-

tervals {b1, . . . , bn} is present and synchronized with a. Thus, alternative constraint
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holds if and only if:

¬x(a)⇔ ∀i ∈ [1, n] ¬x(bi)

x(a)⇔ ∃k ∈ [1, n]




x(bk) ∧ (s(a) = s(bk)) ∧ (e(a) = e(bk))

∀j ∈ [1, n]\{k} ¬x(bj)

The relative positioning of interval variables can be controlled by means of the prece-

dence constraints startAtStart, endBeforeEnd, endBeforeStart, and startBeforeEnd.

Let a and b be two interval variables, and z be an integer. Then, the aforementioned

precedence constraints are defined as follows.

startAtStart(a, b, z)⇔ x(a) ∧ x(b)⇒ s(a) + z = s(b)

endBeforeEnd(a, b, z)⇔ x(a) ∧ x(b)⇒ e(a) + z 6 e(b)

endBeforeStart(a, b, z)⇔ x(a) ∧ x(b)⇒ e(a) + z 6 s(b)

startBeforeEnd(a, b, z)⇔ x(a) ∧ x(b)⇒ s(a) + z 6 e(b)
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Chapter 5

Order acceptance in food

processing systems with

random raw material

requirements

This chapter is published as Kilic, Van Donk, Wijngaard, and Tarim (2010), Order

acceptance in food processing systems with random raw material requirements, OR

Spectrum, 32(4): 905 - 925.

Abstract. This study considers a food production system that processes a single perish-
able raw material into several products having stochastic demands. In order to process
an order, the amount of raw material delivery from storage needs to meet the raw mate-
rial requirement of the order. However, the amount of raw material required to process
an order is not exactly known beforehand as it becomes evident during processing. The
problem is to determine the admission decisions for incoming orders so as to maximize
the expected total revenue. It is demonstrated that the problem can be modeled as a
single resource capacity control problem. The optimal policy is shown to be too complex
for practical use. A heuristic approach is proposed which follows rather simple decision
rules while providing good results. By means of a numerical study, the cases where it
is critical to employ optimal policies are highlighted, the effectiveness of the heuristic
approach is investigated, and the effects of the random resource requirements of orders
are analyzed.
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5.1 Introduction

The food processing industry is characterized by divergent product structures where

a small number of (agricultural) raw materials are used to produce a large variety

of customer specific end products (e.g. Akkerman and Van Donk, 2009). Due to

the large variety of end products it is often not possible or at least inefficient to

produce all end products in make-to-stock fashion. Hence, make-to-order (MTO) is

the typical production setting in the food processing industry.

Food processing industry involves highly perishable raw materials which are usually

replenished periodically during their relatively short harvest seasons. The raw mate-

rial procurement costs are relatively high compared to operational costs. Therefore,

firms often face the issue of covering demands with limited amounts of raw materials

being significantly of less value at the end of the season.

Another important characteristic of the food processing industry is the variability in

production yield. This issue basically derives from two sources. First, the food pro-

cessing industry involves raw materials whose qualities are often variable (Fransoo

and Rutten, 1994). Most quality parameters, such as protein, fat, and sugar con-

tent are usually hard to measure reliably. Some others, such as texture, smell and

taste can only be measured in a subjective way. Hence, it is hard to know the exact

amount of raw material that is needed to process a given amount of end product

(Somsen and Capelle, 2002). Second, the production process itself involves vari-

ability (Fransoo and Rutten, 1994; Flapper et al, 2002). The yield variability due

to the production process is often associated with the type of the operation and

production quantities involved (Murthy and Ma, 1996). The yield of a production

run is affected by the inconsistencies in processing operations (involving chemical

reactions), disturbances (i.e. starting up, changeovers, finishing), and packaging

operations. Henceforth, either a part of the batch or all of it may fail to fulfill cer-

tain quality specifications and may need to be disposed of as waste or by-product.

In such cases, additional production runs, and hence, additional raw materials are

required. This issue is particularly important in MTO environments where demands

are rigid and shortages are not allowed (Grosfeld-Nir and Gerchak, 2004).

In the production environments discussed above, an important planning problem is

how to allocate available raw material to incoming orders over time according to

their relative importance in order to achieve better operational performance (Fran-

soo and Rutten, 1994; Van Donk, 2000). This study is motivated by this practical

and pervasive issue encountered in food processes.
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A typical real-life example of the above mentioned problem can be found in the

potato starch industry. The basic and most obvious process is the conversion of

potatoes into starch during the harvest season. Starch is used in many different ap-

plications such as food, textile, paper, adhesives, and detergents. Given the size of

the industry and technologies involved, products are made and marketed in differ-

ent business units. Since the main aim of a potato starch company is to sell all starch

during the year in order to get the highest value, it is common practice to allocate

a certain amount of raw material to each business unit with the explicit demand to

transform it into marketable products at the highest possible price. Some alloca-

tions depend upon the specific characteristics of the starch, for example, starch from

modified potatoes. It should be obvious that there is a considerable drawback in

still having inventory at the end of the year, if new potato starch is then available.

Some products made out of potato starch are technologically advanced and highly

customized, and they show a rather erratic almost lumpy demand pattern. In these

cases product orders require specific types of processing operations usually involving

chemical reactions, which lead to order-specific revenues and variable raw material

requirements, often because the production process is insufficiently under control.

Throughout the year, orders for various products arrive and they are subsequently

either accepted or rejected, as a business unit aims at maximizing its returns. The

admission decisions are given according to revenues and raw material requirements

associated with incoming orders. The revenue gained by accepting a particular order

is known at the time of making the acceptance decision. However, the raw material

requirement of an order is not known with certainty due to the variability in yield.

As already noted, given the nature of the company and its policies, and due to the

relatively perishable nature of the raw material, the remaining inventory (if there

is any) has to be disposed of at a low value, for example, as waste or a by-product.

The key problem here is to establish decision rules that coordinate the admission

decisions for incoming orders. Similar types of decision situations can be found in

milk processing (where a certain amount has to be processed into products) and

other food industries.

The problem we consider in this study falls into the category of capacity control

problems in revenue management which have attracted great interest from both

practitioners and researchers. Revenue management is used in situations where a

finite amount of products/services have to be allocated to several classes of cus-

tomer. The reader is referred to Talluri and Van Ryzin (2004) for an overview of

this field. Revenue management literature offers a large variety of studies concen-

trating on establishing optimal policies for capacity control problems especially for
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airline management practices. Lee and Hersh (1993) is one of the first studies to

characterize the structure of the optimal policy for the basic capacity control prob-

lem. They showed that the optimal policy is threshold-type relying on the remaining

time and the remaining resource level. In other words, for a given resource level, a

given order is accepted only if the remaining time is less than an order-specific time

threshold; and similarly, for a given remaining time, a given order is accepted only

if the remaining inventory is larger than an order-specific resource level threshold.

However, these easily implementable threshold-type policies are only optimal when

the resource requirements of orders are unit-sized as is the case for airline seat allo-

cation problems (see e.g. Lee and Hersh, 1993; Papastavrou et al, 1996; Van Slyke

and Young, 2000; Kleywegt and Papastavrou, 2001; Brumelle and Walczak, 2003).

From a modeling point of view, order-specific resource requirements do not pose

much difficulty. However, they have a profound impact on the structure of the op-

timal policy since the optimal expected revenue function no longer preserves some

of the basic monotonicity properties (Talluri and Van Ryzin, 2004). In the case of

non-unit resource requirements, the behavior of the optimal admission decision is

rather complex, since the optimal policy is not threshold-type. As a result, practical

use and implementation is limited, since a very careful and precise examination of

the resource level throughout time is required.

The literature mentioned above provides a strong background for the problem we

address. However, there are some specific characteristics of the food processing

industry, such as, the random resource requirements of orders and disposal costs,

which have not yet been addressed. In this study, we stylize and streamline the raw

material allocation problem in the food processing industry by addressing the above

mentioned characteristics. We build on the well-established revenue management

models. We do not aim to characterize the optimal policy since it is known that it

does not possess a simple structure. Rather, we are rather interested in: (i) point-

ing out the cases where it is critical and necessary to employ optimal/near-optimal

admission policies; (ii) developing a heuristic approach possessing a rather simple

structure while providing satisfactory performance; and (iii) analyzing the effects of

the stochasticity of resource requirements of orders.

The remainder of this paper is organized as follows. In Section 5.2, we provide the

formal problem definition. In Section 5.3, we present a dynamic program (DP) to

compute the optimal policy. In Section 5.4, we discuss the structural properties of

the optimal policy. In Section 5.5, we propose two simple and easily implementable

heuristics for the problem. In Section 5.6, we conduct a numerical study and in-

vestigate the effects of different problem settings on the performance of the optimal
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policy and heuristics. Finally, in Section 5.7, we draw our conclusions and propose

some extensions of the study.

5.2 Problem definition

Consider a food processing system where a key perishable resource (raw material)

is used to process a set of order types indexed by i = 1, . . . ,m. The planning horizon

is composed of t discrete time periods indexed by n = 0, . . . , t − 1. The resource

inventory at the beginning of period 0 involves s units of material. The remaining

resource at the end of period t− 1 (or the fictitious period t) is disposed of as waste

or by-product with a unit disposal cost of c. Customer orders arrive throughout

the planning horizon. In each time period at most a single order may arrive. In

time period n there is a probability pin of a type-i order arrival and p0n = 1 −∑m
i=1 pin > 0 of no order arrival. Orders are either accepted or rejected as a whole

(i.e. complete admission). Upon the arrival of an order, its type and associated

revenue become known. The revenue gained by accepting a type-i order is denoted

as ri. However, the resource requirement of a type-i order, denoted as wi, is random

as it emerges during processing the order. Hence, the decision maker accepts or

rejects an incoming order without knowing the exact resource requirement. The

resource requirement of a type-i order follows a known probability mass τi which

depends on the process technology and product recipe used in processing type-i

orders. When the resource inventory is insufficient to fulfill an accepted order, the

shortage can be covered from an external source at a unit shortage (penalty) cost of

z. We assume that z is large enough that it is not profitable to accept an order when

there is no resource on hand. Otherwise, it would be optimal to accept all incoming

orders. The resource inventory is reviewed throughout the planning horizon and the

decision maker knows the resource level when an order arrives.

The admission decisions depend on: (i) arrival processes, profitabilities, and re-

source requirements of incoming orders; (ii) the current resource level and the time

remaining until the end of the planning horizon; and (iii) associated cost parame-

ters. The basic intuition is that, when the resource level is low and the time remain-

ing until the end of the planning horizon is long, it would be reasonable to reject

less profitable orders in order to preserve resources so as to be able to accept more

profitable future orders. Also, for high levels of raw material and a short planning

horizon, accepting every order seems reasonable. We analyze the admission poli-

cies, characterized by decision rules for given resource levels, and time periods for
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accepting/rejecting orders, maximizing expected revenue accumulated throughout

the planning horizon.

5.3 Dynamic program

The problem we define in Section 5.2 can be modeled as a dynamic program. Let

gn(·) be the optimal revenue function at period n, that is, gn(x) represents the ex-

pected revenue if the initial resource level is x units and the optimal admission de-

cisions are made throughout the rest of the planning horizon. Then, we can write:

gn(x) =

m∑

i=1

pinvin(x) + p0ngn+1(x) (5.1)

where

vin(x) = max{ri + E [gn+1(x− wi)] , gn+1(x)} (5.2)

with the terminal revenues

gt(x) = −c(x)+ − z(x)− (5.3)

incorporating both disposal and penalty costs where (x)+ := max{0, x} and (x)− :=

max{0,−x}. As stated in the problem definition, the penalty cost of shortage is

independent of time and z is large enough to prevent any acceptance decision when

there is no resource available. These enable us to express the penalty cost in the

terminal revenue function and set gn(x) = −zx for all x 6 0.

It is clear that an optimal policy for the dynamic program accepts a type-i order

when the resource level is x in period n only if

ri > gn+1(x)− E [gn+1(x− wi)] . (5.4)

The left-hand side of Eq. (5.4) represents the immediate incremental revenue, and

the right-hand side is the expected loss in future revenue by accepting a type-i order.

In order to solve the DP, one needs to compute gn(x) for x = 1, . . . , s and n =

0, . . . , t− 1 by backward recursion. Note that there is no need to evaluate gn(x) for

x 6 0 explicitly since they are all equal to −zx.
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5.4 Structural properties

In this section, we explore some monotonicity properties of the DP given in Sec-

tion 5.3 which may result in acceptance policies that are easy to implement. We

begin our discussion by considering a simple version of the problem. Let us assume

that each order is characterized by the same constant unit-sized resource require-

ment, that is, wi = 1 for all i = 1, . . . ,m. Furthermore, let us assume that the

disposal cost is zero and there is no shortage option. In this case, the problem is

reduced to the basic seat allocation problem in airline revenue management with

multiple demand classes. It can be shown that the optimal revenue function pos-

sesses some important structural properties (see e.g. Lee and Hersh, 1993). For this

problem, Eq. (5.4) can be re-written as

ri > gn+1(x)− gn+1(x− 1). (5.5)

Notice that now the expected loss in future revenue by accepting an order is inde-

pendent of the order type. Based on this observation, Lee and Hersh (1993) state

the main properties of gn(x) by means of the following theorem:

Theorem 5.4.1 (Lee and Hersh (1993)). When all orders have unit-sized resource
requirements,

1. gn(x)− gn(x− 1) is non-increasing in x for any given n,
2. gn(x)− gn(x− 1) is non-increasing in n for any given x.

Theorem 5.4.1 shows that the expected loss in future revenue by accepting an order

(or the marginal value of an additional unit of resource) is higher when the resource

level is relatively low and/or the remaining time until the end of the planning hori-

zon is relatively long. The monotonicity of gn(x) leads to the following implications:

1. For each order type i and any given period n there exists a critical resource

level x∗ satisfying ri > gn+1(x)− gn+1(x− 1) for all x > x∗ such that a type-i

order is rejected whenever x < x∗ and accepted otherwise.

2. For each order type i and any given resource level x there exists a critical time

period n∗ satisfying ri > gn+1(x)−gn+1(x−1) for all n > n∗ such that a type-i

order is rejected whenever n < n∗ and accepted otherwise.

Let us illustrate these results by means of a simple numerical example.

Example 5.4.1. Consider a five-period problem with two order types (Type-1 and Type-
2) both having unit-sized resource requirements. The arrival probabilities of order types
are stationary over time and they are both equal to 0.5, that is, p1n = p2n = 0.5 for all
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n = 0, . . . , 4. The respective rewards of orders are r1 = 1 and r2 = 2. Since there are
only two order types to be considered, each with unit-sized resource requirements, it is
clear that the more profitable order type, that is, Type-2, would be accepted whenever
there are sufficient resources available (i.e. x > 1). However, Type-1 orders can be
rejected in order to allocate the available resources for Type-2 order arrivals in later
periods.

We evaluate initial resource levels [0, 5]. Since there are only five periods in each of
which at most one order can arrive, the initial resource level of 5 units is the maximum
amount of resources that could possibly be used. Table 5.1 presents the optimal expected
rewards and optimal admission decisions corresponding to each decision period and
resource level.

x/n 0 1 2 3 4

5 7.500 (1, 1) 6.000 (1, 1) 4.500 (1, 1) 3.000 (1, 1) 1.500 (1, 1)

4 6.469 (0, 1) 6.000 (1, 1) 4.500 (1, 1) 3.000 (1, 1) 1.500 (1, 1)

3 5.281 (0, 1) 4.938 (0, 1) 4.500 (1, 1) 3.000 (1, 1) 1.500 (1, 1)

2 3.781 (0, 1) 3.625 (0, 1) 3.375 (0, 1) 3.000 (1, 1) 1.500 (1, 1)

1 1.969 (0, 1) 1.938 (0, 1) 1.875 (0, 1) 1.750 (0, 1) 1.500 (1, 1)

0 0.000 (0, 0) 0.000 (0, 0) 0.000 (0, 0) 0.000 (0, 0) 0.000 (0, 0)

Rows and columns stand for the respective resource level x and the decision period n and each entry presents the
expected revenue and the admission decisions (1 = acceptance and 0 = rejection) for Type-1 and Type-2 orders,
respectively.

Table 5.1: The optimal expected revenues and admission decisions for Example 5.4.1

Let us consider Type-1 orders which are less preferable as compared to Type-2 orders.
The critical resource levels of Type-1 orders are 5, 4, 3, 2, 1 in periods 0, 1, 2, 3, 4 respec-
tively. For the given periods, Type-1 orders are accepted only when the resource level is
higher than the critical level. The critical time periods for Type-1 orders are 4, 3, 2, 1, 0

for resource levels 1, 2, 3, 4, 5 respectively. For the given resource levels, Type-1 orders
are accepted only when the time period is later than the critical time period. The re-
lationship between the acceptance decisions and the optimal average rewards can also
be observed in Table 5.1. For instance, consider the last period, that is Period 4. Here,
any incoming order would be accepted as long as x > 1. Hence, the optimal expected
reward equals 0.5× 1 + 0.5× 2 = 1.5 for all x > 1 and 0 for x = 0. Then, we can say
that the marginal value of an additional resource at n = 4 is 0 for all x > 1 and 1.5
for x = 0. Consequently, since the revenue gained by accepting a Type-1 order is equal
to 1, a Type-1 order at period 3 is accepted for all x > 2 and rejected for all x < 2.

The above example illustrates the threshold-type behavior of the optimal policy.
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However, the problem addressed in this paper possesses a number of additional

features which may affect this behaviour. Below, we investigate whether the simple

threshold policies apply to the problem we address.

First, we consider the non-zero disposal costs and shortage penalty costs. Introduc-

ing non-zero disposal costs and shortage penalty costs leads to a terminal reward

gt(x) = −c(x)+ − z(x)− which is linearly decreasing on x > 0 with rate c and lin-

early increasing on x 6 0 with rate z. Henceforth, in this case, gt(x) is a concave

function of x which preserves the property that gt(x) − gt(x − 1) is non-increasing

in x. This shows that non-zero disposal costs and shortage penalty costs do not

interfere with the critical resource levels and decision periods. Hence, the optimal

policies are still threshold-type.

Second, we consider non-unit resource requirements. When requirements are not

unit sized, the behavior of the optimal policy is rather complex. In general, the

monotonicity properties of gn(x) discussed so far do not hold in case of non-unit re-

source requirements (see e.g. Lee and Hersh, 1993; Brumelle and Walczak, 2003).

This is due to the combinatorial behavior of the problem which derives from the

large variety of options to match available resources with the resource requirements

of orders of different types. We illustrate the effect of non-unit resource require-

ments with a simple example.

Example 5.4.2. Consider again the problem explained in Example 5.4.1. Here we
make a simple change in the parameter values of order Type-2. Let the resource re-
quirement of Type-2 orders w2 be 2 units rather than 1, and let the revenue gained
by fulfilling a Type-2 order be 4 rather than 2. We leave the rest of the parameters
unchanged.

We evaluate initial resource levels [0, 10]. Since w2 = 2, the initial resource level of
10 units is the maximum amount of resource that could possibly be used in this exam-
ple. Table 5.2 presents the optimal expected rewards and optimal admission decisions
corresponding to each decision period and resource level.

It is easy to observe that the critical resource levels are non-existent in this case. Let
us consider the admission decisions regarding Type-1 orders in period 0. The optimal
admission decision here is to accept Type-1 orders at resource levels 1, 3, 5, 7, 8, 9, 10,
and to reject them at resource levels 2, 4, 6. Hence, there is no critical resource level
for Type-1 orders. It is easy to interpret this result. When the resource level is an
odd number, after allocating the available resource to more profitable orders, that is,
Type-2 orders which have a resource requirement of 2 units, the remaining 1 unit of
slack resource can only be allocated to Type-1 orders. This is a simple illustration of
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x/n 0 1 2 3 4

10 12.500 (1, 1) 10.000 (1, 1) 7.500 (1, 1) 5.000 (1, 1) 2.500 (1, 1)

9 12.375 (1, 1) 10.000 (1, 1) 7.500 (1, 1) 5.000 (1, 1) 2.500 (1, 1)

8 11.906 (1, 1) 10.000 (1, 1) 7.500 (1, 1) 5.000 (1, 1) 2.500 (1, 1)

7 10.938 (1, 1) 9.750 (1, 1) 7.500 (1, 1) 5.000 (1, 1) 2.500 (1, 1)

6 9.969 (0, 1) 9.063 (1, 1) 7.500 (1, 1) 5.000 (1, 1) 2.500 (1, 1)

5 8.313 (1, 1) 7.813 (1, 1) 7.000 (1, 1) 5.000 (1, 1) 2.500 (1, 1)

4 7.344 (0, 1) 6.875 (0, 1) 6.125 (1, 1) 5.000 (1, 1) 2.500 (1, 1)

3 4.875 (1, 1) 4.750 (1, 1) 4.500 (1, 1) 4.000 (1, 1) 2.500 (1, 1)

2 3.906 (0, 1) 3.813 (0, 1) 3.625 (0, 1) 3.250 (0, 1) 2.500 (1, 1)

1 0.969 (1, 0) 0.938 (1, 0) 0.875 (1, 0) 0.750 (1, 0) 0.500 (1, 0)

0 0.000 (0, 0) 0.000 (0, 0) 0.000 (0, 0) 0.000 (0, 0) 0.000 (0, 0)

Rows and columns stand for the respective resource level x and the decision period n and each entry presents the
expected revenue and the admission decisions (1 = acceptance and 0 = rejection) for Type-1 and Type-2 orders,
respectively.

Table 5.2: The optimal expected revenues and admission decisions for Example 5.4.2

matching available resources to the resource requirements of different order types. It is
not profitable to preserve e.g. the first, the third, or the fifth unit of resource for possible
future orders of Type-2. Hence they should be allocated to orders of Type-1.

It is also possible to show that the optimal policy possesses an irregular behavior

with respect to the remaining decision periods. The interested reader is referred to

Brumelle and Walczak (2003) for further examples illustrating this type of irregu-

larity.

Example 5.4.2 clearly shows that the optimal admission policy presents an irregular

behavior with respect to the available resource level in case of non-unit resource

requirements. In other words, the optimal admission decision regarding an order

type may switch from acceptance to rejection and then from rejection to acceptance

a number of times on the resource level axis given a decision period. Implementing

such a policy in practice is very difficult, since it would require a careful examination

of the resource level upon arrival of an order over time. There has been some

work on characterizing the special cases where optimal admission policies are still

threshold-type (see e.g. Papastavrou et al, 1996; Brumelle and Walczak, 2003). For

example, if splitting orders is allowed (i.e. partial admission), then the optimal

policy is still threshold-type. However, these special cases are rather restrictive, and

do not hold for the problem addressed in this study.

Finally, we will discuss the stochasticity of resource requirements. So far we have
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not explicitly considered this specific characteristic of the problem we address in

this study. Nonetheless, the discussion provided in this section can be generalized to

the problem with stochastic requirements. The problem with deterministic resource

requirements is a special case of the problem with random resource requirements.

Consequently, we know that the optimal revenue function of the stochastic problem

shows an irregular behavior as in the deterministic case. Thus the non-optimality

of the simple threshold-type policies also applies to the problem with stochastic

resource requirements.

Taken all together, these observations show that it is fairly easy to model and solve

the resource allocation problem in food processes via standard approaches from

the literature. However, the resulting policies are rather complex and difficult to

implement in practice.

5.5 Heuristic approaches

We have shown that the optimal admission policy of the problem under considera-

tion does not have an easily implementable structure. In this section, we propose

two heuristic approaches which follow simple decision rules and, therefore, can eas-

ily be implemented in practice. In the following subsections we provide the details of

these approaches which we refer to as two-band heuristic and first-come-first-served

heuristic.

5.5.1 The two-band heuristic

The two-band (TB) heuristic limits the irregular behavior of the optimal policy and

provides simple decision rules regarding resource levels. The underlying intuition of

the TB heuristic is based on two simple arguments:

1. It must be profitable to accept an order when the resource level is “sufficiently

high” that it is not necessary to preserve resources for future orders with higher

rewards.

2. It must be profitable to accept an order when the resource level is “sufficiently

low” that it is not possible to accept future orders with higher rewards because

of their larger resource requirements.

Henceforth, one can think of two bands on the resource level axis for each order

type such that an incoming order is accepted whenever the resource level lies within
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one of these bands. We refer to those bands as the higher and the lower acceptance

bands. Each band can be characterized by the critical resource levels setting its upper

and lower bounds. In other words, the higher and lower acceptance bands of order

type-i in period n involves the respective resource levels within [xhigh
in , xhigh

in ] and

[xlow
in , x

low
in ]. Since there are only two acceptance bands along the resource levels axis,

the resulting admission policy under the TB heuristic is very simple. The admission

decision regarding a given order type only switches at the boundaries of the two

acceptance bands and remains the same for all other resource levels.

When those bounds characterizing the higher and the lower acceptance bands are

known, the revenue function of the TB heuristic gTB
n (x) can be written as:

gTB
n (x) =

m∑

i=1

pinv
TB
in (x) + p0ng

TB
n+1(x) (5.6)

where

vTB
in (x) =




ri + E

[
gTB
n+1(x− wi)

]
if xlow

in 6 x 6 xlow
in or xhigh

in 6 x 6 xhigh
in

gTB
n+1(x) otherwise

(5.7)

with the terminal revenue function given in Eq. (5.3).

We design the TB heuristic as a simplified version of the optimal policy, which ig-

nores most of the irregularities in the optimal revenue function. Hence, the critical

resource levels can be obtained by a simple search procedure within the backward

recursion used for the optimal DP. Since the higher acceptance band corresponds

to sufficiently high resource levels, we can assume that xhigh
in = ∞. In other words,

type-i orders are accepted in period n whenever the resource level is higher than

xhigh
in . The remaining bounds xhigh

in , xlow
in , and xlow

in are then obtained by means of the

following equations.

xhigh
in = sup

{
x+ 1 : ri < E

[
gTB
n+1(x− wi)

]
− gTB

n+1(x)
}

(5.8)

xlow
in = inf

{
x : ri > E

[
gTB
n+1(x− wi)

]
− gTB

n+1(x)
}

(5.9)

xlow
in = inf

{
x− 1 : ri < E

[
gTB
n+1(x− wi)

]
− gTB

n+1(x), x > xlow
in

}
(5.10)

There are three possible cases regarding the existence of the acceptance bands for

a given order type i and decision period n: (i) both acceptance bands exist, that

is, there are at least two non-consecutive resource levels where an order will be

accepted (xhigh
in > xlow

in ); (ii) only a single acceptance band exists, that is, there is

at least one block of resource levels where an order will be accepted (xhigh
in = xlow

in );

and (iii) neither the upper nor the lower band exist, that is, there is no resource

level where an order will be accepted ({x : ri < E[gTB
n+1(x− wi)− gTB

n+1(x)} = ∅).
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For all periods, the search procedure systematically evaluates resource levels in

terms of the condition ri > E[gTB
n+1(x − wi)] − gTB

n+1(x) which specifies whether ac-

cepting a type-i order leads to a non-negative increment in the expected revenue.

The procedure first checks the existence of acceptance bands. Then, it sets the up-

per and lower bounds of the higher and lower bands from the initial resource level

downwards and from 0 upwards, respectively. At each iteration the procedure also

computes the revenue function of the TB heuristic following Eq. (5.6) and Eq. (5.7).

We illustrate the basic principles of the TB heuristic by means of a simple example.

Example 5.5.1. Let us consider again the problem sketched in Example 5.4.2 and use
the TB heuristic rather than the optimal policy. Table 5.3 presents the expected rewards
and admission decisions corresponding to each decision period and each resource level.

x/n 0 1 2 3 4

10 12.500 (1,1) 10.000 (1,1) 7.500 (1,1) 5.000 (1,1) 2.500 (1,1)
9 12.375 (1,1) 10.000 (1,1) 7.500 (1,1) 5.000 (1,1) 2.500 (1,1)
8 11.906 (1,1) 10.000 (1,1) 7.500 (1,1) 5.000 (1,1) 2.500 (1,1)
7 10.938 (1,1) 9.750 (1,1) 7.500 (1,1) 5.000 (1,1) 2.500 (1,1)
6 9.969 (0,1) 9.063 (1,1) 7.500 (1,1) 5.000 (1,1) 2.500 (1,1)
5 8.250 (0,1) 7.813 (1,1) 7.000 (1,1) 5.000 (1,1) 2.500 (1,1)
4 7.344 (0,1) 6.875 (0,1) 6.125 (1,1) 5.000 (1,1) 2.500 (1,1)
3 4.813 (0,1) 4.688 (0,1) 4.500 (1,1) 4.000 (1,1) 2.500 (1,1)
2 3.906 (0,1) 3.813 (0,1) 3.625 (0,1) 3.250 (0,1) 2.500 (1,1)
1 0.969 (1,0) 0.938 (1,0) 0.875 (1,0) 0.750 (1,0) 0.500 (1,0)
0 0.000 (0,0) 0.000 (0,0) 0.000 (0,0) 0.000 (0,0) 0.000 (0,0)

Rows and columns stand for the respective resource level x and the decision period n and each entry presents the
expected revenue and the admission decisions (1 = acceptance and 0 = rejection) for Type-1 and Type-2 orders,
respectively.

Table 5.3: The expected revenues and admission decisions for Example 5.5.1

We can observe the acceptance bands in all decision periods characterizing the TB
heuristic. For example, in period 0, for Type-1 orders, the higher acceptance band
involves resource levels [7,∞) and the lower acceptance band involves the resource level
of 1 unit. When compared to the results regarding the optimal policy (see Table 5.2) we
can see that the admission policy of the TB heuristic is more stable. However, there is
also a loss in the expected revenue due to not making the optimal admission decisions.
Consider period 0 with the initial resource level of 5 units. If the optimal admission
policy is implemented then the expected revenue will be 8.313, whereas, if the heuristic
admission policy is implemented then the expected revenue will be 8.250.
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5.5.2 The first-come-first-served heuristic

The first-come-first-served (FCFS) heuristic is an approach where incoming orders

are attended to in the sequence they arrive. It thus addresses the case where no

action is taken to ration the resource inventory. Henceforth, it is a logical benchmark

to gauge the effectiveness of any allocation policy. In our numerical analysis, we use

the FCFS heuristic to assess the optimal policy and the TB heuristic.

The optimal admission policy depends on the revenues gained as immediate results

of the acceptance/rejection actions and the expected revenues associated with en-

suing resource levels. The FCFS heuristic considers only the former and accepts any

incoming order which will lead to an immediate nonnegative increment in the ex-

pected revenue. That is, a type-i order is accepted in period n if ri > z E [(x− wi)−].

Note that the decision rule is independent of the possible revenues associated with

the subsequent periods. Furthermore, it does not rely on the period in which the

decision is made. Hence, it can be translated into a static acceptance threshold for

each order type. That is, the FCFS policy accepts a type-i order only if the resource

level is higher than an order specific threshold. We denote this threshold by xi. We

can then write:

xi = inf
{
x : ri > z E

[
(x− wi)−

]}
. (5.11)

Consequently, the revenue function of the FCFS heuristic gFCFS
n (x) can be written as:

gFCFS
n (x) =

m∑

i=1

pinv
FCFS
in (x) + p0ng

FCFS
n+1 (x), (5.12)

where

vFCFS
in (x) =




ri + E

[
gFCFS
n+1 (x− wi)

]
if x > xi

gFCFS
n+1 (x) otherwise

(5.13)

with the terminal revenue function given in Eq. (5.3).

5.6 Numerical study

We conduct numerical studies in order to analyze:

1. The performances of the FCFS and the TB heuristics

2. The effects of considering the stochasticity of resource requirements

3. The effects of penalty and disposal costs
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5.6.1 Experiment settings

As we discussed, the complex structure of the optimal admission policy is due to the

combinatorial behavior of the problem. This behavior derives from the large variety

of options to match available resources with the resource requirements of orders of

different types. Hence, in our numerical study our aim is to investigate cases with a

variety of order types and parameters characterizing different system configurations.

An arbitrary problem instance is characterized by a set of parameters: rewards ri,

probability mass functions τi, and arrival probabilities pin associated with each order

type i; the number of periods t, the initial inventory level s, the penalty cost z, and

the disposal cost c. We assume that the resource requirements of orders follow a

discretized truncated normal distribution. We characterize the stochasticity of the

resource requirements by a coefficient of variation ρ common for all order types.

Notice that this assumption enables us to uniquely characterize the probability mass

of each order type τi for a given mean wi and a coefficient of variation ρ.

We consider three main classes of random instances involving m ∈ {2, 5, 10} types of

orders. For each of these classes, we generate four sub-classes by imposing the coef-

ficient of variation levels ρ ∈ {0.00, 0.05, 0.15, 0.25}. For each sub-class, we randomly

generate 103 instances with various rewards ri, average resource requirements wi,

and arrival probabilities pin. The rewards and average resource requirements of

each order type are selected from the set {10, 20, . . . , 100}2 with uniform probabil-

ity. The arrival probabilities are assumed to be stationary over time, that is, pin = pi.

The probability of no order arrival p0 is set to 0.2. The arrival probability of each or-

der is selected from (0, 1) with uniform probability. They are then normalized such

that the arrival probabilities of orders and the no arrival probability sum up to 1.

The number of periods t is fixed at 20.

For all instances we set the number of periods and compute the expected revenues

of both the optimal policy and the heuristic approaches g, gFCFS, and gTB (we omit

indices for simplicity’s sake). In order to characterize the respective performances

of the FCFS and the TB heuristics we define ∆TB = (1 − gTB/g) × 100 and ∆FCFS =

(1− gFCFS/g)× 100.

We consider the initial inventory levels x ∈ [0, 2ξ] where ξ is the expected total

resource requirement, i.e. ξ =
∑m
i=1

∑t−1
n=0 pinwi. It is hard, however, to reflect

all x values within the given range individually. Hence, rather than reporting the

expected revenue for each x, we report the average expected revenues for a set of x

values. In order to do so, we divide the whole domain [0, 2ξ] into 20 intervals with
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equal lengths each covering 10% of the domain. For each interval k ∈ {1, . . . , 20}
we report the average g, gFCFS, and gTB for (k − 1)ξ/20 < x 6 kξ/20. The number

of random instances sums up to 4 × 103 for each sub-class and to 12 × 103 in total.

We believe that this broad collection of instances should allow us to address some

practical cases found in real-life applications.

Having generated a collection of random instances, we can now investigate the per-

formance of any admission policy given a penalty cost z and a disposal cost c.

5.6.2 Numerical results and insights

In what follows, we discuss our findings in detail regarding the points raised at the

beginning of this section.

The performances of the FCFS and the TB heuristics

In this sub-section we analyze the performances of the FCFS and the TB heuristics

with respect to the optimal policy. We conduct a set of experiments considering all

random instances with the respective penalty and disposal costs z = 10 and c = 0.5.

For all resource level intervals k ∈ {1, . . . , 20} we report on g, ∆TB, and ∆FCFS. The

results can be found in Table 5.4, 5.5 and 5.6. These results show that g, ∆FCFS, and

∆TB are severely affected by the resource level, the coefficient of variation, and the

number of order types.

To start with, it is interesting to examine the behavior of the revenue function g.

From our discussion we know that g is not necessarily concave on the resource level.

Nevertheless, we can observe that g first tends to increase and then to decrease with

increasing resource levels in general. It is obvious that the optimal policy is more

selective in accepting orders for resource levels where g tends to increase. Thus

employing admission policies is mainly critical when resource levels are low.

The behavior of g is also reflected in the performance of the heuristic approaches.

Both ∆FCFS and ∆TB tend to decrease with increasing resource levels. That is, the

importance of making the optimal admission decisions decreases with increasing re-

source levels. One exception is the case with extremely low resource levels. Then

∆FCFS and ∆TB may increase moving from the resource level interval k = 1 to k = 2

(see e.g. Table 5.4). This result is also intuitive since the number of order types for

which sufficient resources can be provided is very limited for those resource levels.

As a result, the optimal policy in this case cannot be very selective in accepting or-
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ders. It is important to note that the TB heuristic is very competitive for all resource

levels with a maximum ∆TB of 0.96%.

Obviously the expected revenue decreases with the degree of stochasticity of the

resource requirements of orders, regardless of the policy employed. Since the op-

timal policy is the one best suited to handle stochasticity, one may expect that it

will perform relatively better than the other heuristics for high ρ values. However,

the numerical results show that both ∆FCFS and ∆TB decrease with increasing ρ,

especially for low resource levels. This result shows that the optimal policy is not

robust with respect to the degree of stochasticity whereas both the FCFS and the TB

heuristics are. This is a rather interesting result in the sense that simple control rules

perform relatively better when a complicating factor such as stochasticity is higher.

It is clear that the optimal policy is more selective when the number of order types is

large, since this leads to a variety of options to preserve resources for more profitable

orders. This can be observed by considering the performance of the FCFS policy

which does not preserve resources for future orders. Regardless of the resource level

or the degree of the stochasticity, ∆FCFS increases with the number of order types. In

contrast to the FCFS heuristic, the performance of the TB heuristic improves as the

number of order types increases. This can be clarified by considering the structure

of the TB heuristic. The gap between the optimal policy and the TB heuristic stems

from the irregular behavior of the revenue function which is mostly neglected by the

TB heuristic. This irregular behavior arises because of the dissimilarity of the order

types in terms of revenues and resource requirements. Note that the order types are

picked randomly from a bounded set. As a consequence the similarity between them

increases with the number of order types. Thus larger number of order types result

in a more lenient optimal policy and thus positively affects the performance of the

TB heuristic.

The effects of considering the stochasticity of resource requirements

We analyze here what happens if we ignore the stochasticity of resource require-

ments and follow the admission decisions tailored to the set of instances with de-

terministic resource requirements (i.e. ρ = 0.00) for instances characterized by

stochastic resource requirements (i.e. ρ ∈ {0.05, 0.15, 0.25}). Here, we only con-

sider the class of random instances involving five order types for simplicity’s sake,

since the results are analogous with the other sub-classes. We use the respective

penalty and disposal costs z = 10 and c = 0.5. We only consider the initial inventory

levels corresponding to k = {1, . . . , 5}, since the importance of stochasticity becomes
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Table 5.4: The optimal expected reward and relative errors of heuristic approaches

averaged over the class of random instances involving 2 order types with z = 10 and

c = 0.5
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Table 5.5: The optimal expected reward and relative errors of heuristic approaches

averaged over the class of random instances involving 5 order types with z = 10 and

c = 0.5

115



ρ
=

0
ρ

=
0
.0

5
ρ

=
0
.1

5
ρ

=
0
.2

5

k
g

∆
FC

FS
∆

TB
g

∆
FC

FS
∆

TB
g

∆
FC

FS
∆

TB
g

∆
FC

FS
∆

TB

20
45

9.
91

0.
00

0.
00

45
9.

91
0.

00
0.

00
45

9.
91

0.
00

0.
00

45
9.

91
0.

00
0.

00

19
50

3.
70

0.
00

0.
00

50
3.

70
0.

00
0.

00
50

3.
70

0.
00

0.
00

50
3.

64
0.

00
0.

00

18
54

7.
47

0.
00

0.
00

54
7.

47
0.

00
0.

00
54

7.
46

0.
00

0.
00

54
7.

35
0.

00
0.

00

17
59

1.
22

0.
00

0.
00

59
1.

21
0.

00
0.

00
59

1.
19

0.
00

0.
00

59
0.

99
0.

00
0.

00

16
63

4.
87

0.
00

0.
00

63
4.

86
0.

00
0.

00
63

4.
78

0.
00

0.
00

63
4.

41
0.

00
0.

00

15
67

8.
15

0.
01

0.
00

67
8.

12
0.

01
0.

00
67

7.
88

0.
01

0.
00

67
7.

10
0.

01
0.

00

14
72

0.
07

0.
02

0.
00

71
9.

98
0.

02
0.

00
71

9.
31

0.
03

0.
00

71
7.

65
0.

04
0.

00

13
75

7.
84

0.
09

0.
00

75
7.

62
0.

09
0.

00
75

6.
08

0.
11

0.
00

75
2.

86
0.

13
0.

00

12
78

5.
78

0.
33

0.
00

78
5.

37
0.

33
0.

00
78

2.
62

0.
36

0.
00

77
7.

46
0.

40
0.

00

11
79

7.
07

1.
02

0.
01

79
6.

48
1.

02
0.

01
79

2.
66

1.
04

0.
00

78
5.

96
1.

08
0.

00

10
78

9.
08

2.
62

0.
02

78
8.

37
2.

63
0.

01
78

3.
97

2.
60

0.
01

77
6.

60
2.

57
0.

00

9
76

5.
44

5.
55

0.
02

76
4.

66
5.

55
0.

02
76

0.
04

5.
44

0.
01

75
2.

56
5.

26
0.

01

8
73

0.
17

9.
65

0.
03

72
9.

34
9.

65
0.

02
72

4.
64

9.
41

0.
01

71
7.

21
9.

03
0.

01

7
68

4.
61

14
.3

7
0.

05
68

3.
74

14
.3

6
0.

03
67

9.
02

14
.0

1
0.

01
67

1.
72

13
.4

3
0.

01

6
62

9.
02

19
.3

2
0.

07
62

8.
13

19
.3

2
0.

04
62

3.
43

18
.8

6
0.

02
61

6.
32

18
.0

9
0.

01

5
56

3.
08

24
.3

6
0.

10
56

2.
17

24
.3

6
0.

06
55

7.
54

23
.8

1
0.

02
55

0.
69

22
.8

5
0.

01

4
48

5.
68

29
.4

5
0.

15
48

4.
75

29
.4

5
0.

09
48

0.
26

28
.7

9
0.

03
47

3.
75

27
.6

2
0.

02

3
39

3.
79

34
.3

8
0.

23
39

2.
89

34
.4

0
0.

14
38

8.
65

33
.6

0
0.

05
38

2.
64

32
.1

4
0.

03

2
27

9.
78

38
.1

4
0.

34
27

8.
98

38
.1

9
0.

23
27

5.
26

37
.1

1
0.

09
27

0.
05

35
.0

3
0.

05

1
11

4.
17

28
.9

9
0.

40
11

3.
75

29
.1

2
0.

32
11

1.
57

27
.8

3
0.

19
10

8.
42

24
.9

8
0.

15

Table 5.6: The optimal expected reward and relative errors of heuristic approaches

averaged over the class of random instances involving 10 order types with z = 10

and c = 0.5
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negligible for higher resource levels. The results related to this set of experiments

are given in Table 5.7.

One obvious observation is that as ρ increases the gap between the stochastic and

deterministic approaches gradually increases. In addition to this, for all policies, the

gap between the deterministic and stochastic approach is relatively higher when the

resource level is lower. This is due to the fact that the variation with respect to the

total resource requirements of all prospective orders is lower than the sum of the

variations of each prospective order. This is usually referred to as the pooling effect.

We can also observe that ignoring the uncertainty results in relatively larger losses

for the heuristic approaches as compared to the optimal policy. Thus, especially

when a heuristic approach is being used one should be certain that the stochasticity

in material requirements is correctly accounted for.

The effects of penalty and disposal costs

Finally, we analyze the effects of penalty and disposal costs. Here, we only consider

the sub-class of random instances involving five order types for simplicity’s sake.

Nevertheless, we would like to note that the results are very similar for the other sub-

classes. We first fix the number of periods at 20 and consider the initial inventory

levels corresponding to k = {1, . . . , 5}. In order to analyze the effect of penalty cost,

we fix the disposal cost at 0.5, and consider the penalty costs {10, 12, 14}. Similarly,

in order to analyze the effect of disposal costs, we fix the penalty cost at 10, and

consider the disposal costs {0.5, 1.0, 2.0}. We compute and report on the expected

revenues of all proposed policies, that is, g, gFCFS, and gTB. The results can be seen

in Tables 5.8 and 5.9.

The effects of penalty and disposal costs on the proposed policies are rather straight-

forward. As can be observed, increasing penalty and disposal costs negatively effects

the expected rewards of all proposed policies. This effect is stronger when the re-

source level is rather low. Furthermore, the effects of those cost parameters are more

severe when the stochasticity of resource requirements is larger.

5.7 Conclusions and extensions

We addressed the problem of determining the order acceptance/rejection decisions

in a food processing system where a single raw material is processed into a set of

different orders. We considered some specific characteristics of the food process-
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Table 5.7: The expected rewards of the optimal policy and heuristic approaches:

The comparison of policies computed for the stochastic and deterministic resource

requirements cases both applied in the stochastic resource requirements case. Re-

sults are averaged over the class of random instances involving 5 order types with

z = 10 and c = 0.5
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Table 5.8: The expected rewards of the optimal policy and heuristic approaches:

The comparison of policies with respect to different levels of penalty costs z ∈
{10, 12, 14}. Results are averaged over the class of random instances involving 5

order types with c = 0.5
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Table 5.9: The expected rewards of the optimal policy and heuristic approaches:

The comparison of policies with respect to different levels of disposal costs c ∈
{0.5, 1.0, 2.0}. Results are averaged over the class of random instances involving 5

order types with z = 10
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ing industry, such as random raw material requirements of orders, shortage penalty

costs and disposal costs which have not yet been addressed in the literature. Our

contribution is three-fold. First, we showed that the problem can be modeled and

solved as a dynamic program. Second, since the optimal admission policy does not

follow simple decision rules, we provided a heuristic approach, which we referred

to as the TB heuristic, based on intuitive decision rules which can obtain good re-

sults. Third, with an extensive numerical study we examined the effects of various

parameters on admission policies and pointed out those cases where it is critical to

employ admission policies.

The main conclusions of our numerical study can be summarized as follows. We

compared the optimal policy with the FCFS heuristic in order to see how critical it

is to employ the optimal policy. We observed that employing the optimal admission

policy is essentially important in case of limited resource levels. Obviously, when the

initial inventory level can be set freely, there is hardly any need to use an admission

policy since it will be optimal to accept most of the orders. We also saw that the

penalty of not using the optimal policy is higher when there is a larger number of

order types with a lower degree of stochasticity in their resource requirements. We

observed that the overall performance of the TB approach is very good. The relative

gap between the optimal policy and the TB heuristic quickly narrows down as the

resource level increases. Also, the TB heuristic performs relatively better in cases

characterized by a large number of order types and a high degree of stochasticity

of the resource requirements of orders. We saw that considering the stochasticity of

the resource requirements is very critical especially when heuristic approaches are

being used. We also observed that the effects of disposal and penalty costs are larger

when the degree of stochasticity of the resource requirements of orders is higher.

There are two directions for further research worth exploring. First, the production

capacities and lead-times could be considered. Our model neglects the production

side of the system. As a result, our results do not readily apply to cases where

production capacities are limited and/or lead-times are not negligible. It would

be specifically interesting to consider a case where during processing an order (with

unknown material consumption), other orders might arrive that have to be accepted

or rejected without exactly knowing the resource level. Second, the model can be

extended for systems involving multiple raw materials. Referring to the analogy with

revenue management problems, this case corresponds to capacity control problems

with multi-leg flights.

121



122



Chapter 6

Conclusions and directions for

further research

Abstract. The final chapter presents the research findings of the thesis, discusses the
conducted research and points out some directions for future research.

This thesis is concentrated on planning and scheduling in the process industry. The

work carried out in the thesis stands apart from the existing literature by consid-

ering industry-specific characteristics of processing systems. A specific emphasis is

laid on the combinations several industry-specific characteristics and the interac-

tions between them. The main research objectives of the thesis are defined as: (i) to

contribute to the development of mathematical models that can be used as decision

aids in scheduling processing systems with industry-specific characteristics, and (ii)

to provide some insight into the order acceptance function in the process industry

with respect to limitations in raw material availability. The thesis is organized as

a collection of research papers which attend to these research objectives. The first

research objective is confronted in Chapter 2, Chapter 3 and Chapter 4. These chap-

ters addressed particular scheduling problems originating from specific production

environments and developed models and methods thereof. The second objective

is confronted in Chapter 5. This chapter considered the order acceptance problem

in a processing system subject to limited raw material availability and variable raw

material quality.

The research papers included in this thesis addressed and elaborated mathemati-

cal problems inspired by specific production environments. These problems differ
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from each other in terms of their technological specifications and managerial ob-

jectives. The extent to which the proposed models and methods are applicable in

other production environments strongly depends on the degree of contingency be-

tween the characteristics of the proposed approaches and the underlying production

environments. This thesis exercised both case-specific and general approaches. For

example, Chapter 3 adopted the general discrete time formulation of batch processes

which is not tailor-made for a specific application. Chapter 4, however, presented

an approach building on the structure of the underlying production environment. It

is obvious that case-specific approaches are more efficient than general approaches

since they make use of the specific characteristics of the targeted production en-

vironments. However, often they are not easily applicable in problems originating

from different production environments. In the following, the results are summa-

rized and directions for further research are suggested for each individual chapter

included in the thesis.

Chapter 2 addressed a scheduling problem confronted in two-stage food process-

ing systems with production and storage capacity limitations. The problem also

entails the use of flexible product recipes, and involves the selection of a set of inter-

mediates and end product recipes characterizing how those selected intermediates

are blended into end products. In this regard, the problem is an extension of the

production lot scheduling problem with integrated design decisions. A comprehen-

sive mixed integer linear programming (MILP) model is developed for the problem

which integrates the decisions regarding production schedule as well as the spec-

ifications of intermediates and end products with the objective to minimize total

operational costs. The model is then applied to a data set collected from a real-life

case. The results derived from the numerical study are assessed to better under-

stand the dynamics of the problem. It is shown that cost parameters and capacity

limitations have significant effects on the production schedule and the selection of

product recipes. It is observed that the fixed production setup costs and inventory

holding costs can be regulated by altering the number of intermediates and end

product recipes as well as the production schedule. Also, the trade-offs between

capacity limitations and operational costs are investigated. It is shown that the limi-

tations on production and storage capacities interact with each other. Thus, whether

a particular type of capacity limitation is binding depends on its relative magnitude.

It is observed, for the case example, that the storage capacity limitation is binding

whereas the processing and the blending capacities are not. On this account, the

extent of possible cost reductions that can be achieved by expanding the storage

capacity is investigated. The results showed that the cost reduction due to an extra
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storage unit is not decreasing on the actual storage capacity because of the interac-

tions between the decisions on the selection of intermediates and the scheduling of

production operations. This points out that a careful investigation is required when

expanding the storage capacity. Although the research carried out in this chapter

particularly targets the food processing industry, it takes into account several char-

acteristics common in many other processing systems. Hence, it could be possible to

adopt the proposed model to be used in different production environments. A possi-

ble example could be the batch processing counterpart of the flow processing system

addressed in this chapter. Also, the proposed approach can be extended by relax-

ing some of its restrictive assumptions. The problem is analyzed under a common

cycle scheduling policy. This policy is widely used in practice due to its simplicity.

Nevertheless, it is known that it may perform badly in some production settings.

Thus, the problem can be analyzed under more sophisticated scheduling policies.

Another restriction is that the storage units are assumed to be identical and they

can only be assigned to a single type of intermediate. However, in many practical

cases storage units are different in terms of their volume, and it may be possible to

use storage units for several types of materials. Therefore, it is important to direct

further research efforts towards these cases.

Chapter 3 is concentrated on the detailed short-term scheduling problem in multi-

product/multipurpose batch processes. The work carried out in this chapter extends

the conventional discrete time MILP formulation for scheduling batch processes by

introducing storage capacity and storage time limitations. These limitations are very

common in many industries involving perishable intermediates and end products.

A mathematical model is developed for the problem which is shown to be capa-

ble of handling various storage configurations involving single/multiple and dedi-

cated/multipurpose storage vessels. By means of a numerical study it is illustrated

that storage capacity and storage time limitations have significant effects on produc-

tion and storage operations and significantly degrade the cost performance of batch

processing systems. Also, it is shown that these effects can be averted to some extent

by means of using multipurpose storage vessels. The proposed approach builds on

the general discrete time formulation of batch processes. There is a variety of studies

based on this formulation which aim at capturing different characteristics of batch

process scheduling problems. Therefore, the proposed model can easily be extended

by employing methods already suggested in the literature. Among those extensions

the integration of sequence- and frequency-dependent setups, the use of time-based

objective functions, and the application of reformulations designed to enhance the

computational performance can be mentioned. An important direction for further
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research is to adopt the proposed batch process model to account for continuous and

semi-continuous processes where storage limitations addressed in this chapter are

of concern. Also, research efforts can be directed towards modeling the problem by

using a continuous time formulation. Although continuous time formulations have

various drawbacks, in principle they are more realistic since they yield more precise

solutions.

Chapter 4 investigated a real-life scheduling problem which originates from an evap-

orated milk processing system. The system has a semi-continuous structure. There

are two continuous production stages: processing and packaging. These stages are

connected by intermediate storage where materials are batch-wise standardized.

The problem requires the consideration of the industry-specific characteristics of the

underlying production environment. These involve traceability requirements, and

time- and sequence-dependent cleaning of production units. These characteristics

result in a computationally challenging scheduling problem which also requires an

efficient, yet flexible modeling approach. This chapter contributes to the literature

by presenting such a mathematical approach. The proposed approach decomposes

and solves the overall problem in two-phases where the specifications regarding

material flows are determined and a complete production schedule is developed in

succession. The decomposition scheme not only simplifies the overall problem but

also facilitates modeling traceability requirements by isolating material flow and

scheduling decisions. The respective sub-problems concerning the two phases of

the decomposition are formulated by using different modeling paradigms. The first

sub-problem is formulated by using MILP. The second sub-problem, however, is for-

mulated by employing constraint programming (CP). The approach is tested on a

data set collected from a real-life evaporated milk plant and shown to be efficient.

The novelty of the approach lies in coordinating the system as a whole. The major-

ity of research contributions on scheduling food processing systems concentrate on

a single production stage which is regarded as the bottleneck. However, this could

only be justifiable when product and routing variety is fairly limited. This chap-

ter mainly concentrated on the evaporated milk production process. Although this

production environment is not very common within the domain of the processing

industry, there are many examples of food processing systems characterized by a

make-and-pack configuration. The proposed approach can be particularity appeal-

ing for such processing systems. Furthermore, it could be possible to make use of

the flexibility of the current modeling scheme in order to address further elements

which could be of interest in the food processing industry. For instance, the concept

of chain dispersion – a measure in which production batches are spread among dif-
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ferent customers – can easily be integrated into the proposed approach. A variety of

potential directions for further research can be acknowledged. The decomposition

approach taken in this chapter, in principle, leads to sub-optimal schedules. Thus,

it is important to focus on approaches which can integrate the two sub-problems

which are solved sequentially in the current study. Also, the computational perfor-

mance of the scheduling problem comprised in the second phase can be increased

by embedding more sophisticated search procedures into the CP model. Another

important research direction is the consideration of possible revisions in customer

orders prior to their dispatch. A possible proposal towards this issue is to integrate

safety stocks and/or safety times into the scheduling approach.

Chapter 5 addressed the order acceptance problem in a food processing system

where a single raw material is processed into a variety of different end products.

The essence of the problem lies in the limited availability of the key raw material

and the variability in yield. The customer orders for end products arrive following a

stochastic process. The objective is to maximize the expected total revenue by mak-

ing the optimal admission decisions for incoming orders. This chapter demonstrated

that the problem can be modeled as a single resource capacity control problem, and

it can be solved by means of dynamic programming (DP). However, since the struc-

ture of the optimal admission policy is found to be very complex for practice, a

threshold-based heuristic policy is developed. An extensive numerical study is then

conducted to compare the optimal admission policy against the new heuristic policy.

The first-come-first-served policy is also included in the numerical analysis in order

to reflect upon the case where no explicit admission policy is employed. This also

helped to point out the cases where admission policies are critical. The results of the

numerical study revealed that the heuristic policy performs very good on the overall.

Also, it is observed that employing the optimal admission policy is relatively critical

when the availability of the key resource is very limited, the variety of the type of

customer orders is large, and the yield variability is low. The study carried out in

this chapter has two main limitations. The proposed approach essentially neglects

the production capacities and lead-times. Thus, the results derived in this chapter

do not immediately apply to cases where production capacities are strictly limited

and/or lead-times are significant. Thus, it is important to consider the problem

where admission decisions must be taken in connection with both the raw material

availability and the workload of the system. Nevertheless, it could be justifiable to

expect that the importance of limited raw material availability diminishes in such

cases since this limitation is an issue only if there is sufficient production capacity to

process the raw material. Another limitation of the current study is the consideration
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of a single key raw material. In many production environments several raw materi-

als are processed into end products all together. Thus, it is important to extend the

current analysis to account for such systems.
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Samenvatting (Summary in

Dutch)

De procesindustrie heeft te maken gehad met toenemende logistieke eisen, een

groeiende verscheidenheid in producten en toenemende concurrentie. De combi-

natie van deze trends heeft in deze bedrijfstak gezorgd voor een sterke focus op de

toepassing van efficiënte planning en scheduling. Het doel van dit proefschrift is om

bij te dragen aan de kennis over planning en scheduling in de procesindustrie waar-

bij in het bijzonder rekening wordt gehouden met de industriespecifieke kenmerken

van productiesystemen.

De procesindustrie kent specifieke product- en proceskenmerken die het beheersen

van de productie aanzienlijk bëınvloeden. Het gaat hierbij om overwegingen met

betrekking tot de beschikbaarheid en opbrengst van grondstoffen, flexibele pro-

ductrecepten, bederfelijke materialen, traceerbaarheidsvereisten, opslagcapaciteit

beperkingen, en productie omstellingen. Ieder van deze kenmerken is van praktisch

belang. Echter, in veel productieomgevingen komen een aantal van deze kenmerken

tegelijkertijd voor. Daarom moet er in de planning en scheduling vaak rekening

gehouden worden met een combinatie van een aantal industriespecifieke kenmerken

en tegelijkertijd met de interacties tussen deze kenmerken. De literatuur biedt een

verscheidenheid aan modellen en methoden die deze kenmerken afzonderlijk in

ogenschouw nemen. Toch lijkt het erop dat de relatie tussen de kenmerken onvol-

doende aan bod is gekomen. Het onderzoek in dit proefschrift kan worden gezien

als een poging om dit hiaat in de literatuur te vullen.

Hoofdstuk 1 introduceert de relevante product- en proceskenmerken en bespreekt

de scheduling methoden die gebruikt worden in de procesindustrie. Dit hoofdstuk

geeft een kritische beschouwing van de literatuur en onderzoekt de mate waarin

de industriespecifieke kenmerken worden meegenomen in planning en scheduling
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in de procesindustrie. Dit overzicht vormt de basis van de onderzoeksagenda. De

rest van het proefschrift is georganiseerd als een collectie van wetenschappelijke

artikelen rond het hoofdthema van het proefschrift. Deze artikelen zijn gewijd

aan afzonderlijke en praktisch-relevante problemen afkomstig uit specifieke produc-

tieomgevingen. Elk individueel paper ontwerpt een wiskundig model en ontwikkelt

vervolgens oplossingsmethoden voor het probleem op basis van goed gefundeerde

optimalisatiemethoden.

Hoofdstuk 2 behandelt een schedulingsprobleem in twee fase productiesystemen

van levensmiddelen met productie- en opslagcapaciteit beperkingen. De essentie

van dit probleem betreft het gebruik van flexibele productrecepten. In wezen is het

probleem een uitbreiding van het production lot scheduling probleem met gëınte-

greerde ontwerpbeslissingen. Een uitgebreid Mixed Integer Linear Programming

(MILP) model is ontwikkeld dat de beslissingen ten aanzen van het productieschema

alsmede de specificaties van halffabricaten en eindproducten integreert, met als doel

de totale operationele kosten te minimaliseren. Het model is vervolgens toegepast

op een dataset die betrekking heeft op een werkelijk probleem. De resultaten uit

de numerieke studie zijn gebruikt om beter inzicht te krijgen in de dynamiek van

het probleem. Aangetoond wordt dat de kostenparameters en capaciteitsbeperkin-

gen het productieschema en de selectie van productrecepten significant bëınvloe-

den. De studie demonstreert dat de vaste productie omstelkosten en voorraadkosten

beinvloed worden door het veranderen van het aantal tussenproducten en de re-

cepten van de eindproduct maar ook door het productieschema. Ook de afwegingen

tussen de capaciteitsbeperkingen en operationele kosten zijn onderzocht. Aange-

toond wordt dat er een wisselwerking is tussen de beperkingen van de productieca-

paciteit en de beperkingen van de opslagcapaciteit. Dus de vraag of een bepaald

type capaciteitsbeperking bindend is hangt af van zijn relatieve grootte.

Hoofdstuk 3 concentreert zich op het gedetailleerde kortetermijn schedulingsprob-

leem in multiproduct/multifunctionele batchprocessen. In dit hoofdstuk wordt het

conventionele discrete tijd MILP model voor het plannen van batch-processen uit-

gebreid door het introduceren van opslagcapaciteit- en opslagtijdbeperkingen. Deze

beperkingen komen veel voor in bedrijfstakken die te maken hebben met beder-

felijke halffabricaten en eindproducten. Er wordt een wiskundig model voor dit

probleem ontwikkeld en er wordt aangetoond dat dit model geschikt is voor ver-

schillende opslagconfiguraties: zowel enkele als meervoudige en productspecifieke

als multifunctionele opslagtanks. Door middel van een numerieke studie wordt

gëıllustreerd hoe opslagcapaciteit- en de opslagtijdbeperkingen een significant effect

kunnen hebben op productie- en opslagactiviteiten en hoe de kosten van dergelijke
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batch-gewijs verwerking systemen significant kunnen worden verminderd. Daar-

naast wordt aangetoond dat deze effecten tot op zekere hoogte kunnen worden

verminderd door middel van het gebruik van multifunctionele opslagtanks.

Hoofdstuk 4 onderzoekt een schedulingsprobleem dat afkomstig is uit een bedrijf

dat gespecialiseerd is in de productie van gecondenseerde melk. Het productiepro-

ces heeft een semicontinue structuur. Er zijn twee continue productiestappen: ver-

werking en verpakking. Deze stappen zijn verbonden door een tussentijdse opslag

waar materialen batch-gewijs worden gestandaardiseerd. De productieomgeving

heeft een aantal industriespecifieke kenmerken zoals traceerbaarheidsvereisten en

tijd- en volgordeafhankelijke reiniging van productie-installaties. Het hoofdstuk pre-

senteert een wiskundige benadering voor dit probleem bestaande uit twee fasen.

In deze fasen wordt achtereenvolgens de specificaties ten aanzien van de materi-

aalstromen bepaald en een volledig productieschema gebouwd. Deze decomposi-

tie vereenvoudigt niet alleen het algemene probleem maar vergemakkelijkt ook

het modelleren van traceerbaarheidsvoorschriften door het isoleren van de mate-

riaalstroom en de schedulingsbeslissingen. De sub-problemen behorende bij de

twee fasen van de decompositie worden gemodelleerd met behulp van verschillende

modelleringsparadigma’s. Het eerste subprobleem is gemodelleerd door gebruik te

maken van MILP. Het tweede subprobleem is gemodelleerd door middel van Con-

straint Programming. De aanpak is getest op een dataset afkomstig van deze pro-

ducent van gecondenseerde melk en de testen tonen aan dat de gebruikte aanpak

efficiënt is.

Hoofdstuk 5 richt zich op het orderacceptatie probleem in een productieproces van

een voedingsmiddelenproducent waarin een enkele grondstof verwerkt wordt tot

een verscheidenheid aan verschillende eindproducten. De essentie van het probleem

ligt in de beperkte beschikbaarheid van de belangrijkste grondstof en de variabiliteit

in opbrengst. De doelstelling van het probleem is om de verwachte totale op-

brengst te maximaliseren door het maken van optimale acceptatiebeslissingen voor

binnenkomende orders. Aangetoond wordt dat het probleem kan worden gemod-

elleerd als een capaciteitsbeheersingsprobleem met een enkele productie-eenheid.

Echter, aangezien de structuur van het optimale acceptatiebeleid zeer complex bli-

jkt te zijn voor de praktijk is een eenvoudig heuristische beslisregel ontwikkeld die

op basis van een bepaalde drempelwaarde orders accepteert. Een uitgebreide nu-

merieke studie is uitgevoerd om het optimale acceptatiebeleid te vergelijken met de

heuristische regels. De resultaten van de numerieke studie tonen aan dat de heuris-

tische beslisregel in het algemeen zeer goed presteert. Ook constateren we dat het

gebruik van het optimale toelatingsbeleid cruciaal is wanneer de beschikbaarheid
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van de belangrijkste productie-eenheid zeer beperkt is, de verscheidenheid van het

type orders groot is, en de variabiliteit van de opbrengst laag is.

Hoofdstuk 6 presenteert tot slot de onderzoeksresultaten van het proefschrift, geeft

een reflectie op het uitgevoerde onderzoek en formuleert enkele suggesties voor

toekomstig onderzoek.
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