In Bacillus subtilis LutR is part of the global complex regulatory network governing the adaptation to the transition from exponential growth to stationary phase
İrigül-Sönmez, Öykü; Köroğlu, Türkan E.; Öztürk, Büşra; Kovács, Ákos T.; Kuipers, Oscar; Yazgan-Karataş, Ayten; Zuber, P.

Published in:
Microbiology

DOI:
10.1099/mic.0.064675-0

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 18-10-2018
Supplementary Figure Legends

Fig. S1. Regulatory regions of genes with no gel-shift observed. Electrophoretic Mobility Shift Assays were performed in the presence of putative regulatory regions of genes under the control of LutR and purified LutR-His6 at the indicated concentrations. In each assay, 25 μl total reaction mixture supplemented with competitor DNA polydIdC (1 μg/μl), BSA (1 mg/ml). Promoter region of the unrelated gene ywbH was used as negative control. Positive and negative controls were run together with each EMSA employed. For detection, gels were treated with SYBR Green I Nucleic Acid Gel Stain (1/10,000, v/v) (Roche) and visualized with a UV transilluminator. Each gel-shift assay was repeated at least two times.

Fig. S2. Putative LutR binding motif is displayed as sequence LOGO. Each stack represents a position in the sequence. The height of the individual letters in a stack is the probability of the letter at that position multiplied by the total information content of the stack.

Fig. S3. Effect of lutR mutation on the expression of spoIIE. Cells were grown in DSM medium at 37°C and spoIIE-directed β-galactosidase activity was determined at the indicated times. Time zero denotes the end of exponential growth thus initiation of sporulation in DSM. β-galactosidase activity of spoIIE::lacZ fusion (squares) and its isogenic derivative lutR mutant (spoIIE::lacZ::cat, lutR::Tn10::spc) (triangle). Error bars indicate the standard deviation of the mean of three independent experiments (n=3).
Supplementary Table:

Table S1: Genes that are up (A)- and down (B)- regulated by LutR during early-stationary phase (OD$_{600}$7)

<table>
<thead>
<tr>
<th>Gene</th>
<th>Microarray Value</th>
<th>qPCR \pm Standard Deviation</th>
<th>EMSA \pm Standard Deviation</th>
<th>Function</th>
<th>Transcriptional Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>aprX</td>
<td>1.57</td>
<td>2.98(±0.17)</td>
<td>-</td>
<td>serine protease</td>
<td>#aprXymacymaD #ebuB</td>
</tr>
<tr>
<td>atpI</td>
<td>1.19</td>
<td>0.56(±0.03)</td>
<td>+</td>
<td>ATP synthase subunit I</td>
<td>#atpCatpD atpG atpA atpH</td>
</tr>
<tr>
<td>atpB</td>
<td>1.93</td>
<td></td>
<td></td>
<td>ATP synthase subunit A</td>
<td>#atpF atpE atpB atpI#</td>
</tr>
<tr>
<td>atpE</td>
<td>2.02</td>
<td>1.53(±0.15)</td>
<td></td>
<td>ATP synthase subunit C</td>
<td>#atpEyuF bacB bacC bacD</td>
</tr>
<tr>
<td>atpF</td>
<td>1.99</td>
<td></td>
<td></td>
<td>ATP synthase subunit B</td>
<td>bacEyuFg # ywfH # ywfI</td>
</tr>
<tr>
<td>atpH</td>
<td>1.93</td>
<td></td>
<td></td>
<td>ATP synthase subunit delta</td>
<td></td>
</tr>
<tr>
<td>atpA</td>
<td>2.01</td>
<td>1.13(±0.10)</td>
<td></td>
<td>ATP synthase subunit alpha</td>
<td></td>
</tr>
<tr>
<td>atpG</td>
<td>1.91</td>
<td></td>
<td></td>
<td>ATP synthase subunit gamma</td>
<td></td>
</tr>
<tr>
<td>bacA</td>
<td>ND</td>
<td>+</td>
<td></td>
<td>bacilysin biosynthesis protein, dehydratase</td>
<td># ywfA # bacA bacB bacC bacD</td>
</tr>
<tr>
<td>bacB</td>
<td>ND</td>
<td></td>
<td></td>
<td>isomerase component of bacilysin synthetase</td>
<td>bacEyuFg # ywfH # ywfI</td>
</tr>
<tr>
<td>bacC</td>
<td>NR</td>
<td></td>
<td></td>
<td>bacilysin biosynthesis oxidoreductase</td>
<td></td>
</tr>
<tr>
<td>bacD</td>
<td>ND</td>
<td></td>
<td></td>
<td>alanine-anticapsin ligase</td>
<td></td>
</tr>
<tr>
<td>bacE</td>
<td>NR</td>
<td></td>
<td></td>
<td>efflux protein for bacilysin excretion, self-protection against bacilysin transaminase</td>
<td></td>
</tr>
<tr>
<td>ywfG</td>
<td>NR</td>
<td>+</td>
<td></td>
<td>carrier protein reductase of bacilysin biosynthesis</td>
<td>bacEyuFg # ywfH # ywfI</td>
</tr>
<tr>
<td>ywfH</td>
<td>ND</td>
<td></td>
<td></td>
<td>6-carboxyhexanoate--CoA ligase</td>
<td></td>
</tr>
<tr>
<td>bioW</td>
<td>1.99</td>
<td>1.46(±0.06)</td>
<td>-</td>
<td>adenosylmethionine--8-amino-7-oxononanoate transaminase</td>
<td>biol# biolB bioD bioF bioA bioH</td>
</tr>
<tr>
<td>bioA</td>
<td>1.38</td>
<td></td>
<td></td>
<td>8-amino-7-oxononanoate synthase</td>
<td>#ytaFmsmR</td>
</tr>
<tr>
<td>bioF</td>
<td>1.45</td>
<td></td>
<td></td>
<td>dithiobiotin synthetase</td>
<td></td>
</tr>
<tr>
<td>bioD</td>
<td>2.06</td>
<td></td>
<td></td>
<td>biotin synthase</td>
<td></td>
</tr>
<tr>
<td>bioB</td>
<td>0.36</td>
<td></td>
<td></td>
<td>6-carboxyhexanoate--CoA ligase</td>
<td></td>
</tr>
<tr>
<td>bslA</td>
<td>3.33</td>
<td>2.70(±0.25)</td>
<td>+</td>
<td>hypothetical protein</td>
<td>yuaC # bslA # yuaAyubG #</td>
</tr>
<tr>
<td>cwlO</td>
<td>2.24</td>
<td>1.70(±0.05)</td>
<td>+</td>
<td>secreted cell wall DL-endopeptidase</td>
<td>cwlOBtrxC # cwlO ydwDywC #</td>
</tr>
<tr>
<td>czcD</td>
<td>NR</td>
<td>2.25(±0.22)</td>
<td>+</td>
<td>potassium/proton-divalent cation antiporter</td>
<td>yrDyrQ # trkA czcD # yrDyrN#</td>
</tr>
<tr>
<td>trkA</td>
<td>1.76</td>
<td>1.02(±0.06)</td>
<td>-</td>
<td>potassium uptake oxidoreductase</td>
<td></td>
</tr>
<tr>
<td>epsD</td>
<td>2.21</td>
<td>2.63(±0.05)</td>
<td>-</td>
<td>extracellular matrix biosynthesis enzyme</td>
<td></td>
</tr>
<tr>
<td>epsE</td>
<td>2.08</td>
<td>1.34(±0.31)</td>
<td></td>
<td>Glycosyltransferase</td>
<td></td>
</tr>
<tr>
<td>epsK</td>
<td>1.49</td>
<td>1.10(±0.21)</td>
<td>-</td>
<td>extracellular matrix component exporter</td>
<td></td>
</tr>
<tr>
<td>epsN</td>
<td>0.79</td>
<td>1.02(±0.01)</td>
<td></td>
<td>aminotransferase</td>
<td></td>
</tr>
<tr>
<td>epsO</td>
<td>1.79</td>
<td>0.94(±0.05)</td>
<td></td>
<td>pyruvyl transferase</td>
<td></td>
</tr>
<tr>
<td>fabHA</td>
<td>1.87</td>
<td>1.00(±0.12)</td>
<td>-</td>
<td>3-oxoacyl-(acyl carrier protein) synthase III</td>
<td>zir</td>
</tr>
<tr>
<td>Gene</td>
<td>Value</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fabF</td>
<td>1.89</td>
<td>3-oxoacyl-(acyl carrier protein) synthase II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fabHB</td>
<td>3.00</td>
<td>3-oxoacyl-(acyl carrier protein) synthase III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fabR</td>
<td>1.36</td>
<td>fatty acid biosynthesis transcriptional factor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plsX</td>
<td>1.66</td>
<td>putative glycerol-3-phosphate acyltransferase PlsX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fabD</td>
<td>2.42</td>
<td>malonyl CoA-acyl carrier protein transacylase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fabG</td>
<td>2.28</td>
<td>beta-ketoacyl-acyl carrier protein reductase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acpA</td>
<td>2.29</td>
<td>acyl carrier protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ftsE</td>
<td>1.11</td>
<td>cell-division ABC transporter (ATP-binding protein)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ftsX</td>
<td>1.68</td>
<td>cell-division ABC transporter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gtaC</td>
<td>1.52</td>
<td>integral inner membrane protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hepS</td>
<td>1.35</td>
<td>Heptaprenyl diphosphate synthase component I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hepT</td>
<td>1.52</td>
<td>Heptaprenyl diphosphate synthase component II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndk</td>
<td>1.37</td>
<td>nucleoside diphosphate kinase (purine nucleotide biosynthesis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lip</td>
<td>2.38</td>
<td>secreted alkaliphilic lipase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>murE*</td>
<td>ND</td>
<td>UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminopimelate synthetase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mraY</td>
<td>1.45</td>
<td>UDP-N-acetylmuramoyl-pentapeptide-transferase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mraD</td>
<td>1.53</td>
<td>UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pksD</td>
<td>1.90</td>
<td>enzyme involved in polyketide synthesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pksE</td>
<td>1.59</td>
<td>enzyme involved in polyketide synthesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acpK</td>
<td>1.77</td>
<td>acyl-carrier protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pksF</td>
<td>ND</td>
<td>malonyl-ACP decarboxylase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pksG</td>
<td>2.10</td>
<td>acetyl-S-AcpK beta-ketothioester polyketide intermediate transferase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pksH</td>
<td>0.42</td>
<td>enzyme involved in polyketide synthesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pksI*</td>
<td>0.36</td>
<td>enzyme involved in polyketide synthesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pksJ</td>
<td>2.73</td>
<td>polyketide synthase of type I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pksL</td>
<td>3.95</td>
<td>polyketide synthase of type I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pksM</td>
<td>2.17</td>
<td>polyketide synthase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pksN</td>
<td>2.96</td>
<td>polyketide synthase of type I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pksR</td>
<td>2.46</td>
<td>polyketide synthase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ppsA*</td>
<td>NR</td>
<td>plipastatin synthetase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ppsB</td>
<td>1.10</td>
<td>plipastatin synthetase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ppsC*</td>
<td>NR</td>
<td>plipastatin synthetase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ppsD</td>
<td>1.24</td>
<td>plipastatin synthetase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ppsE</td>
<td>2.42</td>
<td>plipastatin synthetase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene</td>
<td>p</td>
<td>q</td>
<td>Function</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>--</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>pyrR</td>
<td>2.52</td>
<td>2.79 (±0.32)</td>
<td>+ bifunctional pyrimidine regulatory protein PyrR uracil phosphoribosyltransferase uracil permease</td>
<td>pyrR ≠ pyrF ≠ pyrB ≠ pyrC</td>
<td></td>
</tr>
<tr>
<td>pyrP*</td>
<td>NR</td>
<td>3.48 (±0.18)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrB</td>
<td>1.37</td>
<td>4.34 (±0.01)</td>
<td>+ aspartate carbamoyltransferase catalytic subunit</td>
<td>pyrR ≠ pyrF ≠ pyrE pyrC</td>
<td></td>
</tr>
<tr>
<td>pyrC</td>
<td>1.89</td>
<td></td>
<td>Dihydroorotase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrAA</td>
<td>2.31</td>
<td>5.85 (±0.20)</td>
<td>+ carbamoyl-phosphate synthetase (glutaminase subunit)</td>
<td>pyrAA ≠ pyrAB pyrR pyrD pyrE ≠ cysH</td>
<td></td>
</tr>
<tr>
<td>pyrAB</td>
<td>2.00</td>
<td></td>
<td>carbamoyl-phosphate synthetase (catalytic subunit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrK</td>
<td>0.85</td>
<td></td>
<td>dihydroorotate dehydrogenase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrD</td>
<td>1.32</td>
<td></td>
<td>dihydroorotate dehydrogenase (catalytic subunit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrF</td>
<td>1.21</td>
<td></td>
<td>orotidine 5'-phosphate decarboxylase orotate phosphoribosyl transferase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrE</td>
<td>1.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rnc</td>
<td>2.41</td>
<td>1.64 (±0.03)</td>
<td>- ribonuclease III, cleaves both 5'- and 3'-sites of the small cytoplasmic RNA precursor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>smc</td>
<td>1.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ftsY</td>
<td>1.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rplJ</td>
<td>1.69</td>
<td>3.42 (±0.30)</td>
<td>50S ribosomal protein L10</td>
<td>yuaV rdpsAsdpEsdpC ≠</td>
<td></td>
</tr>
<tr>
<td>rplL</td>
<td>1.66</td>
<td></td>
<td>50S ribosomal protein L7/L12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sdpA</td>
<td>1.26</td>
<td>1.08 (±0.22)</td>
<td>+ sporulation delay protein-export of killing factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sdpB</td>
<td>2.2</td>
<td>1.68 (±0.08)</td>
<td>+ sporulation delay protein-export of killing factor SpbC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sdpC</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>spoIIE3</td>
<td>ND</td>
<td></td>
<td>+ serine phosphatase</td>
<td>spoIIE yabSyabTyacAhprT</td>
<td></td>
</tr>
<tr>
<td>tapA</td>
<td>0.96</td>
<td>2.65 (±0.06)</td>
<td>+ lipoprotein for biofilm formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sipW</td>
<td>2.12</td>
<td>1.42 (±0.14)</td>
<td>+ type I signal peptidase</td>
<td>sinl sinr ≠ tapA sipW tapA</td>
<td></td>
</tr>
<tr>
<td>tasA</td>
<td>1.50</td>
<td>2.65 (±0.17)</td>
<td>+ major biofilm matrix component</td>
<td>yqzG yqzE</td>
<td></td>
</tr>
<tr>
<td>tig</td>
<td>1.68</td>
<td>1.11 (±0.01)</td>
<td>- trigger factor (prolyl isomerase), catalyze in vitro protein folding, essential for growth under starvations conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tsf</td>
<td>1.69</td>
<td>1.31 (±0.53)</td>
<td>- Ts elongation factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrH</td>
<td>1.52</td>
<td>1.74 (±0.15)</td>
<td>- uridylyl kinase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>frr</td>
<td>1.55</td>
<td>1.11 (±0.08)</td>
<td>- ribosome recycling factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ydjM</td>
<td>2.33</td>
<td></td>
<td>+ hypothetical protein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ydjN</td>
<td>1.48</td>
<td></td>
<td>+ hypothetical protein</td>
<td>ydjL ydjM ≠ ydjN ≠ ydjO</td>
<td></td>
</tr>
<tr>
<td>yhdN</td>
<td>ND</td>
<td></td>
<td>- aldo/keto reductase</td>
<td>yhdN ≠ plsC ≠ yhdPyrdQyhdR ≠</td>
<td></td>
</tr>
<tr>
<td>plsC</td>
<td>1.49</td>
<td>1.05 (±0.14)</td>
<td>- 1-acyl-sn-glycerol-3-phosphate acyltransferase (lipid metabolism)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yhfE</td>
<td>1.63</td>
<td>3.65 (±0.04)</td>
<td>+ putative endoglucanase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yhfF</td>
<td>1.40</td>
<td>2.18 (±0.09)</td>
<td>+ hypothetical protein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yjeM</td>
<td>1.48</td>
<td></td>
<td>hypothetical protein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ylxM</td>
<td>1.32</td>
<td></td>
<td>- hypothetical, DNA-binding protein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene</td>
<td>Microarray</td>
<td>qPCR</td>
<td>EMSA</td>
<td>Function</td>
<td>Transcriptional Organisation</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>--</td>
<td>------------------------------</td>
</tr>
<tr>
<td>abh*</td>
<td>NR</td>
<td>-4.57(±0.28)</td>
<td>-</td>
<td>transcriptional regulator of transition state genes (AbfB-like)</td>
<td>ykpCmreBHab kincCykqA</td>
</tr>
<tr>
<td>acoA</td>
<td>-1.57</td>
<td>-3.07(±0.22)</td>
<td>+</td>
<td>acetoin dehydrogenase E1 component (TPP-dependent alpha subunit)</td>
<td>yfM yfl ycoA acoE acoL</td>
</tr>
<tr>
<td>acoB</td>
<td>-1.54</td>
<td></td>
<td></td>
<td>acetoin dehydrogenase E1 component (TPP-dependent beta subunit)</td>
<td>aco1 acoO acoR ssoPH</td>
</tr>
<tr>
<td>acoC</td>
<td>-1.56</td>
<td></td>
<td></td>
<td>branched-chain alpha-keto acid dehydrogenase subunit E2 dihydrolipoamide dehydrogenase</td>
<td></td>
</tr>
<tr>
<td>acoL</td>
<td>-1.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aprE</td>
<td>-2.35</td>
<td>-3.07(±0.91)</td>
<td>+</td>
<td>extracellular alkaline serine protease (subtilisin E)</td>
<td>yhfM yhfN aprE yhfG yhfF</td>
</tr>
<tr>
<td>argC</td>
<td>-1.63</td>
<td>-1.98(±0.22)</td>
<td>-</td>
<td>N-acetyl-gamma-glutamyl-phosphate reductase</td>
<td>yitY yitZ argC argD argB argD</td>
</tr>
<tr>
<td>argJ</td>
<td>-1.89</td>
<td></td>
<td></td>
<td>bifunctional ornithine acetyltransferase/N-acetylglutamate synthase protein</td>
<td>carA carB argC argD argE argF</td>
</tr>
<tr>
<td>argB</td>
<td>-2.08</td>
<td></td>
<td></td>
<td>acetylornithine aminotransferase</td>
<td>yysC</td>
</tr>
<tr>
<td>argD</td>
<td>-2.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene</td>
<td>Value</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carA</td>
<td>-2.22</td>
<td>carbamoyl phosphate synthase small subunit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carB</td>
<td>-2.15</td>
<td>carbamoyl phosphate synthase large subunit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>argF</td>
<td>-2.16</td>
<td>ornithine carbamoyltransferase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>argG</td>
<td>-1.68</td>
<td>argininosuccinate synthase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>argH</td>
<td>-2.04</td>
<td>argininosuccinate lyase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bceA</td>
<td>ND</td>
<td>bacitracin ABC efflux transporter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bceB</td>
<td>ND</td>
<td>ATP-binding protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>citA</td>
<td>-1.50</td>
<td>citrate synthase 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>citB</td>
<td>-1.38</td>
<td>aconitate hydratase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glnR</td>
<td>-1.31</td>
<td>transcriptional regulator (nitrogen metabolism)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gltA</td>
<td>-1.31</td>
<td>glutamate synthase (large subunit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gltB</td>
<td>-1.45</td>
<td>Glutamate synthase [NADPH] small chain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ispA</td>
<td>-2.01</td>
<td>intracellular serine protease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liaI</td>
<td>-1.65</td>
<td>putative transmembrane protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liaH</td>
<td>-1.78</td>
<td>similar to phage-shock protein A(PspA) of E. coli</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liaG</td>
<td>-1.31</td>
<td>putative membrane-anchored hypothetical protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liaF</td>
<td>-1.05</td>
<td>membrane protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liaS</td>
<td>-1.02</td>
<td>LiaRS: two component regulatory system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liaR</td>
<td>-0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>msmR</td>
<td>-1.48</td>
<td>transcriptional regulator (LacI family) multiple sugar-binding lipoprotein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>msmE</td>
<td>-1.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pbpE</td>
<td>ND</td>
<td>penicillin-binding protein 4* (spore cortex) amino acid racemase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>racX</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rapI*</td>
<td>-1.84</td>
<td>response regulator aspartate phosphatase RapI regulator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phrI*</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sigW</td>
<td>ND</td>
<td>RNA polymerase sigma factor sigW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ybbM</td>
<td>ND</td>
<td>hypothetical protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trpE</td>
<td>-1.9</td>
<td>anthranilate synthase component I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trpD</td>
<td>-2.1</td>
<td>anthranilate phosphoribosyltransferase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trpC</td>
<td>-2.62</td>
<td>indole-3-glycerol-phosphate synthase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trpF</td>
<td>-2.22</td>
<td>N-(S'-phosphoribosyl) anthranilate isomerase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trpB</td>
<td>-2.00</td>
<td>tryptophan synthase subunit beta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trpA</td>
<td>-1.04</td>
<td>tryptophan synthase subunit alpha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ybfD</td>
<td>-1.76</td>
<td>hypothetical protein; similar to erythromycin esterase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ybyB</td>
<td>-1.48</td>
<td>hypothetical protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yceC</td>
<td>-1.00</td>
<td>putative stress adaptation protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene</td>
<td>Log2 Ratio</td>
<td>Description</td>
<td>Operon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>--</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yceD</td>
<td>-1.44</td>
<td>putative stress adaptation protein</td>
<td>ycdI yceA yceB yceC yceD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yceE</td>
<td>-1.39</td>
<td>putative stress adaptation protein</td>
<td>yceE yceF yceG yceH yceI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yceF</td>
<td>-1.73</td>
<td>putative stress adaptation transporter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yceH</td>
<td>-1.43</td>
<td>putative stress adaptation protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yneN</td>
<td>-1.41</td>
<td>putative membrane-bound protein with a thioredoxin-like domain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yotH</td>
<td>-1.80</td>
<td>hypothetical protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yuaF</td>
<td>-1.72</td>
<td>membrane integrity integral inner membrane protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>floT</td>
<td>-1.46</td>
<td>putative flotillin-like protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yuaI</td>
<td>-1.62</td>
<td>putative acetyl-transferase</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Numbers indicate the log 2 transformed expression ratio’s.
- Numbers indicate the log 2 transformed expression ratio’s. (The mean of minimum three independent replicate experiments is given and standart deviation of the mean is shown in paranthesis).
- A (+) indicates that a gel retardation was observed.
- Bayes P value higher than acceptable value (>0.01)
- NR no reproducible data obtained
- ND no differential expression observed
- † Expression profiles were elucidated by lacZ-fusion analysis.
Supplementary Figures

Fig.S1

Fig.S2
Fig.S3

- γ-galactosidase (Miller)

Time:
- T-2
- T-1
- T0
- T1
- T2
- T3
- T4

Y-axis: 0-100
Supplementary Methods:

Detailed information about the results of EMSA analysis performed in the presence of both LutR and SinR

It has been previously suggested that LutR and SinR seem to act cooperatively to repress *lutABC* (Chai *et al.*, 2009). To analyze the overlap between LutR and SinR DNA targets, we performed EMSA with the addition of either or both proteins to given promoters. As a first step, we analyzed the interaction in the case of the *lutA* promoter. As shown in Fig. 5, an apparent mobility shift was observed only at the highest LutR concentration tested (4 µM): neither 2 nor 3 µM LutR alone was able to produce a detectable mobility shift, but the presence of 3 µM SinR, which by itself had not shifted the DNA probe, greatly stimulated the binding capacity of LutR, almost all of the DNA probe was shifted even at 2 µM LutR. Consistently, only 4 µM SinR alone was able to produced a detectable shifted DNA complex, but its binding was stimulated by the presence of 3 µM LutR, almost all of DNA probe was shifted at 2 µM SinR, which itself had not shifted the DNA probe. On the other hand, neither LutR nor SinR alone, nor a mixture of them was able to shift the control DNA probe (the regulatory region of the unrelated *ywhB*), at all of the protein concentrations tested. These results elucidated not only the specific interactions of SinR and LutR with the *P_lutA* but also the cooperative nature of their interaction. Besides the *lutABC* operon, *tapA* operon and *aprE* gene were previously known to be under direct control of SinR and were found in our study to be directly regulated by LutR. Under light of these findings, we then wondered whether SinR would interact with the regulatory regions of all or only some LutR-target genes and it could stimulate the LutR binding capacity for those genes. For this, EMSA analysis described above were performed with the regulatory regions of all of the LutR-target genes identified in our study. Interestingly, as shown in Fig. 5, SinR was capable to interact with the regulatory regions of all of the LutR-target genes tested, but they exhibited variations in the nature of their interactions. Both LutR and SinR apparently stimulate each other’s binding to the regulatory regions of *lip* and *bslA*. As an example, only 4 µM SinR alone could shift the regulatory regions of *lip*, but in the presence of 3 µM LutR which itself had not shifted the DNA probe, almost all of the DNA probe was shifted even at 2 µM SinR, which itself had not shifted the DNA probe SinR. Similarly, in the presence of 3 µM SinR, even 2 µM LutR, which itself had not shifted the DNA probe, shifted all of the DNA probe. Besides to cooperative interactions, they exhibited additive or simultaneous binding to the regulatory regions of *acoA*, *aprE*, *atpI*, *bacA*, *becA*, *czaD*, *cwlO*, *fisE*, *glnR*, *gltA*, *hepS*, *ispA*, *liaA*, *msmR*, *mraY*, *phpE*, *ppsA*, *pyrB*, *pyrR*, *rapI*, *sdpA*, *tapA*, *ybfO*, *yceC*, *ydjM*, *yneN*, *yhfE*, *ywfH*, *yuaF*, *yukE*, *yvcA*, *yokD*, *yydF*, *yybN*. In these cases, both LutR and SinR alone was able to produce a mobility shift with the
regulatory regions. Addition of increased amount of LutR in the presence of fixed amount of SinR or addition of increased amount of SinR in the presence of fixed amount of LutR resulted in an additional retardation in the electrophoretic mobility of SinR-bound or LutR bound-DNA probes, suggesting a co-binding to these regions without promoting each other’s binding activity. Interestingly, in the case of the spoIIE gene, LutR apparently stimulated the binding capacity of SinR while SinR did not affect the binding capacity of LutR which itself had produced a mobility shift at all concentrations tested in a concentration dependent manner. SinR alone was not capable to produce a mobility shift at 2 or 3 µM protein concentrations even it produced at 4 µM concentration, but in the presence of 3 µM LutR, resulted in an additional retardation in the electrophoretic mobility of LutR bound-DNA probes. Specific inhibition of sporulation stage II genes: spoIIA, spoIIE and spoIIG by SinR had been reported previously (Mandic-Mulec et al., 1995) that provides an in vivo support for the in vitro interaction of SinR with the spoIIE regulatory region detected in this study.

Detailed information on the DNA-microarray analysis

Total RNA isolated from all samples using the Macaloid/Roche protocol (van Hijum et al., 2005). 10-20 µg of total RNA was first reverse transcribed into cDNA with the Superscript III Reverse Transcriptase kit (Invitrogen) and labeled with a Cy3- or Cy5-monoreactive dye (GE Healthcare, Amersham). Purification of CyDye labeled cDNA was executed using NucleoSpin Extract II columns (Machery Nagel). Concentrations of Cy3 and Cy5 were expected to be at least 0.5 pmol/µl in a total volume of 50 µl. The labeled and purified cDNA samples were hybridized to oligonucleotide microarrays in Ambion Slidehyb #1 buffer (Ambion Europe Ltd) at 48 °C for more than 16 hours. The arrays were constructed as described elsewhere (van Hijum et al., 2003a). Furthermore, slide spotting, slide treatment after spotting and also slide quality control were done as before (van Hijum et al., 2005). Following hybridization, slides were washed for 5 min in 2x SSC with 0.5% SDS, 2 times 5 min in 1x SSC with 0.25% SDS, 5 min in 1x SSC 0.1% SDS for the removal of hybridization buffer and unbound cDNAs. Finally slides were dried by centrifugation (2 min at 2000 rpm) and scanning of the slides was performed in a GenePix 4200AL Microarray Scanner (Axon Instruments, CA, USA). Fluorescent signals were quantified using ArrayPro 4.5 (Media Cybernetics Inc., Silver Spring, MD). Following the acquisition of expression data,
expression levels were processed and normalized with Micro-Prep which is a helpful software tool that enables scientists to handle microarray data and transform raw data into processable Excel data through avoidance of inconsistencies (van Hijum et al., 2003b). Then the expression difference ratio of the lutR mutant and wild type PY79 strains during stationary growth were further processed using the Cyber-T tool, which is a software program that works on a t-test variant combined with a Bayesian statistical framework (Baldi & Long, 2001). Parameter use in the Cyber-T tool was followed as recommended, giving 2 as ‘minimum non-zero replicates’, a ‘sliding window’ of 101 and a confidence value of 10. Accepted Cyber-T (Bayes) p value was set to 0.01.

Primers used in this study

abh forward 5’ gat gaa tta ggc cgc att 3’
abh reverse 5’ ggc tgt aat ttc ttc gag 3’
abh EMSA forward 5’ gtc aat ccc gat ttc agt tga 3’
abh EMSA reverse 5’ gac aat gcg gcc taa ttc atc 3’
acoA EMSA.forward 5’ggc ggt att gga tat gtc aaa 3’
acoA EMSA.reverse 5’gta cat cca cag cgc ttt ttc 3’
acoA forward 5’ ctg gag atc agg gcc ttt 3’
acoE reverse 5’ aca gcc ttt ggc gat aca 3’
acpA EMSA forward 5’ cgg tgt aac caa atc ttc tgc 3’
acpA EMSA reverse 5’ tac gat gat ttt cgt tac acg 3’
aprE EMSA forward 5’ atc cat tgt tct cac gga agc 3’
aprE EMSA reverse 5’ egc aaa caa caa get gat cca 3’
aprE Forward 5’ ggc ttc age aac atg tct 3’
aprE Reverse 5’ cac ata tgc aac get cgg 3’
aprX EMSA forward 5’ gcc ggtcc tct cac aat aat tgt tct 3’
aprX EMSA Reverse 5’ cgg gaa ttc cca atc tag ctt gtg agc att 3’
aprX F 5’ tgg act cct tgc ttc ttg 3’
aprX R 5’ tgc tgt gag agt aac ctc 3’
argC EMSA forward 5’ ggc ttt ctc get gac ttt ttc 3’
argC EMSA reverse 5’ tcc tgt agc acc tac aat tcc 3’
argC forward 5’ agc gag ggt tat cct cat 3’
argC reverse 5’ cag atc acc tga cag atc 3’
argG EMSA forward 5’ caa tca tgt cga gag caa ctc 3’
argG EMSA reverse 5’ acc tcc tgt gta tgc taa tac 3’
argG forward 5’ gag ggc aaa gat ttc gca 3’
argG reverse 5’ acg aac ctg gtc att tcc 3’
atpA reverse 5’ acc aac agg aac ctc cat 3’
atpA forward 5’ gtc atc caa gtc ggt gac 3’
atpE reverse 5’ gaa tgc gat aac gac agc
atpE forward 5’ gca gct ggc att gca att 3’
atpI EMSA forward 5’- gcc ggatcc tca tgt gtc ttg tag cag cgc-3’
atpI EMSA reverse 5’- cgg gaattc cat tct tct gac gag cag taa-3’
atpI forward 5’ ttg gca gti tct gta ctg ggt-3’
atpI reverse 5’ cgg gaa ttc cat tct tct gac gag taa-3’
bioW EMSA forward 5’ aca ggg agc tgc tga ttg cta 3’
bioW EMSA reverse 5’ cat tga agc cct cat tct gac gag taa-3’
bioW forward 5’ gtc aga atg agg gct tca 3’
bioW reverse 5’ cac agg caa tgg ctg aat 3’
citA EMSA forward 5’ gcc ttc atc agt cag ctg gat 3’
citA EMSA reverse 5’ aca tgt aat tcc ctt taa tcc 3’
citA forward 5’ agc ttt gaa gaa gcg gct 3’
citA reverse 5’ cgg atg gaa tgt gta cgt 3’
citB EMSA forward 5’ cgt ttt caa tat agc cgg cgc 3’
citB EMSA reverse 5’ cgc ttg gaa aac gtc ttt tga 3’
citB forward 5’ aag gtt tgc aag ctt cct 3’
citB reverse 5’ cag tga agc cag atc tac 3’
czcD forward 5’ tct gat gca ggc cat atg ctc 3’
czcD reverse 5’ aag cat gcc ggt tgt tgc tae 3’
czcD EMSA forward 5’ ttg tag tgt aat act acc ctc 3’
czcD EMSA reverse 5’ tgc tcc ttc att atg att gtg 3’
fabD EMSA forward 5’ ctg gaa ggc tct gcg tgt tea 3’
fabD EMSA reverse 5’ tga tcc ctg acc cgg gaa taa 3’
fabHA EMSA forward 5’ cgg gct tga ttt gat caa gag 3’
fabHA EMSA reverse 5’ acg tcc aac acc aag tat tcc 3’
fabHA forward 5’ gac gag tgg att cgt aca 3’
fabHA reverse 5’ gcc gag tgg ttc ttc aat 3’
fabHB EMSA forward 5’ gca gta cat aaa cat gaa cgc 3’
fabHB EMSA reverse 5’ ata ggt gcc gat agc tgt aat 3’
fabHB forward 5’ gaa tgg atc gtt cag cgc 3’
fabHB reverse 5’ gct cca gcc gaa ata 3’
ffh EMSA forward 5’ tat cag tcg ttg tgt acg tca 3’
ffh EMSA reverse 5’ tcg gtc ggc taa tcc ttc aaa 3’
ffh forward 5’ atg atg cgt gag gtc cgt ctt-3’
ffh reverse 5’ aac ttt aat gac ctg ctg gcc-3’
frf forward 5’ tat tac gga gcc cag cga 3’
frf reverse 5’ ccc tct ctc tgt tag 3’
ftsE EMSA forward 5’ taa aaa cgg cgg cgg caa tat 3’
ftsE EMSA reverse 5’ gcc gtg cgg ata ggc ttt ata 3’
ftsE forward 5’ tat gtt gtt tgt cgg cag 3’
ftsE reverse 5’ cac ttc aag gcc aaa tgt 3’
glnR forward 5’ cca gcc aga agt gaa gga 3’
glnR reverse 5’ tct cag ttc gtc atc gga 3’
glnR EMSA forward 5’ tacatgcctggatacgaggat 3’
glnR EMSA reverse 5’ tgg aaa taa agg cat tga cgc 3’
gltA EMSA forward 5’ gat att tct ccc ttc acg ctc 3’
gltA EMSA reverse 5’ acg gta gag acc tgt agc ttt 3’
gltA forward 5’ atc gcc cta tat gca cac 3’
gltA reverse 5’tcc tac ccc gta acg ttc 3’
hepS EMSA forward 5’gcc gtt gag gac gga gtg aat 3’
hepS EMSA reverse 5’gtt cag att ggc taa agt tcc 3’
hepS forward 5’ gcg aag cat att tct gcg 3’
hepS reverse 5’ gag aag agt caa ttg gcg 3’
ispA forward 5’ aag gcg cca gaa atg tgg 3’
ispA reverse 5’ agc tgc aat tgt tcc ggc 3’
ispA EMSA forward 5’act gtt gca tta tgt agg gcg 3’
ispA EMSA reverse 5’cac ata cgg gat caa gcg gat 3’
lip EMSA forward 5’aat ggt gtc gtc aca cca aac 3’
lip EMSA reverse 5’tac aag tgt gat cct tct 3’
lip forward 5’ gtc gtt atg gtt cac ggt 3’
lip reverse 5’ cat gct gtg agc gac aat 3’
murE.EMSA.forward 5’gat acg cgt gta ttt gac tga3’
murE.EMSA.reverse 5’ggt tgt taa gta tgt aag cag 3’
murE.forward 5’ gtc gat gtg aat gtt cct 3’
murE.reverse 5’ agg aag tgt ttc gtc tcc 3’
mraY forward 5’gga ccg aaa tca cat cag 3’
mraY reverse 5’gcg ctt cat gac aac ctt 3’
msmR EMSA forward 5’aat gtc tca aca ctg att ggc 3’
msmR EMSA reverse 5’gga aac ttt agc ttt caa ggc 3’
msmR forward 5’ ctt tgt ggc ggc gaa 3’
msmR reverse 5’ ccc ttt ccg aat gga aga 3’
ndk forward 5’ gtc caa cgt cag ctc att 3’
ndk reverse 5’ cag ctc tgt cgt cac tcc 3’
pbpE EMSA forward 5’gat tgc aac tgg tgt att ttc 3’
pbpE EMSA reverse 3’taa cgt ctg aag atg ctt tct 3’

pbpE forward 5’- cag ttt aac ggg acg gtt-3’

pbpE reverse 5’-ctg ata cgg aaa acc ggg-3’

pksD EMSA forward 5’aac cat cgc tcc cac atc tag 3’

pksD EMSA reverse 5’ata gta ttg gga acc ttg ccc 3’

pksD forward 5’ cga atc ggc aca tcc att 3’

pksD reverse 5’ cca gac tga tcc caa tac 3’

pksG EMSA forward 5’gaa tta aag ggc ctc cgt gca 3’

pksG EMSA reverse 5’att cat cgc ttc tat tcc ggc 3’

pksG forward 5’ ett gat gtc atg gag ctg 3’

pksG reverse 5’ gtt ggc gtt gag acc taa 3’

pksJ forward 5’ ccg gct cca tta gcc gtt 3’

pksJ reverse 5’ tcc cgt act gcc tga aat 3’

pksL EMSA forward 5’age gcc gct ttg tcc cat ttt 3’

pksL EMSA reverse 5’ett ttt cac gtt aga cct cca 3’

pksL forward 5’ aag gct gac atg cac gca 3’

pksL reverse 5’ caa atg att ggc acc cac 3’

ppsA EMSA forward 5’caa tta gaa gaa tga tgc aca 3’

ppsA EMSA reverse 5’ttg ggc atg ggt taa aga ata 3’

ppsB forward 5’ aat cta tgc gtc gac tcg 3’

ppsB reverse 5’ agc atc aat cag cgt ctg 3’

pyrAA forward 5’ tct tac tgc gga cag atc 3’

pyrAA reverse 5’ atc aat tcc ctg gag tcc 3’

pyrB EMSA forward 5’ cag tta tcc ttg tca tcg gtcg 3’

pyrB EMSA reverse 5’ agt gct aag ttc act cat cgt 3’

pyrB forward 5’ ttc gaa cgc agc acg aga 3’
pyrB reverse 5’ ctg gct gac aag ctc ttc 3’
pyrH forward 5’atc gct gag ctt gaa gtc gaa 3’
pyrH reverse 5’gga tgt ttg cac tcg gta 3’
pyrP forward 5’gtc gga atg agt cct gct 3’
pyrP reverse 5’ caa taa gga aat cag ccc 3’
pyrR EMSA forward 5’ctt taa tgg cca acc gct tca 3’
pyrR EMSA reverse 5’cag cgc ccg tct aat tgc ctg 3’
pyrR forward 5’agg att gct cac gaa atg 3’
pyrR reverse 5’ tac cgg aat atc tgc acc 3’
rapI EMSA forward 5’gca gtc tgg att gtt tgg gta-3’
rapI reverse 5’-ctt gac taa gtc gta cgg aat-3’
rapI BamHI reverse 5’ cgg gga tcc ttc agc tat tcg ata 3’
rapI HindIII forward 5’ gcc aag ctt ttg cgg ggt gtt ttc tta 3’
rnc EMSA forward 5’taa cga aaa tca tcg tag atc 3’
rnc EMSA reverse 5’ttt atc ttt ata atg tga gtg 3’
rnc forward 5’-caa gaa cgg att tcg gtt cac-3’
rnc reverse 5’- cct ttc att atc ttc ata cgg-3’
rplJ forward 5’-cgc gga ctt aac gtt tct gaa-3’
rplJ reverse 5’-aag ctc agc ttg ttc aac cgc-3’
sigW forward 5’- gcg gac atc tga gat att-3’
sigW reverse 5’-aga ata cat ggt caa gcc-3’
sipW forward 5’- tca gtt ctg tca ggt tcg atg-3’
sipW reverse 5’-aac aat tct gtg ggt gac cgc-3’
spoIIE EMSA forward 5’tac ggt tca tac ccg tga ggt 3’
spoIIE EMSA reverse 5’tgg ccc gtt cac tct tct ttc 3’
tasA forward 5’-aag ccg gga gat aag ttg aca -3’
tasA reverse 5’-ctg gct gag gaa atc ttc tgg-3’
tig EMSA forward 5’tta cga gat gca cgg gat tga 3’
tig EMSA reverse 5’cgt taa aac gcc ttc gtt gcc 3’
tig forward 5’- caa gtt tca att cct gga ttc-3’
tig reverse 5’- agg gta ttc tac agg aag agg-3’
trkA(czcO) EMSA forward 5’tgg tct atc aca age gga ttg 3’
trkA(czcO) EMSA reverse 5’ttg acc age ccc gat tac tat 3’
trkA(czcO) forward 5’ ata gta atc ggg gct ggt 3’
trkA(czcO) reverse 5’ tcc ttc aag atg cat tcc 3’
trpE EMSA forward 5’gac aga tgt ccc tca gga tca 3’
trpE EMSA reverse 5’gct gtc ctc taa aaa tgc gga 3’
trpE forward 5’ gag aag ctt gag agg gag 3’
trpE reverse 5’ agg aat gcc aag ctc agg 3’
trpE EMSA forward 5’cat ccc tat cat cgg tat cgt 3’
trpE EMSA reverse 5’cat gcc cgc gcc agt ttt ttc 3’
trpE forward 5’ gcg tta act gaa act gag gga 3’
trpE reverse 5’ tgc aag aag gtc gtc agc taa 3’
ybfO EMSA forward 5’cga gaa gtg tgc tgg ccg atc 3’
ybfO EMSA reverse 5’cag cgg cag ggt cat tct cac 3’
ybfO forward 5’ gaa cga cat gca cag cct 3’
ybfO reverse 5’ atc agg aca gcc gga ttc 3’
yceC EMSA forward 5’tgc tta aat gaa tca aaa ggc 3’
yceC EMSA reverse 5’atc aat tgc tta aat gcc ttc 3’
yceC forward 5’ aaa ttg atg gtc ggt ctc 3’
yceC reverse 5’ cag gtt gtc gcc tgt atg 3’
yceF forward 5’ ggt tga atc ggt tcc ett 3’
yceF reverse 5’ cac ctt gat cca cca gaa 3’
ydjM EMSA forward 5’ aaa ggg tct cgc aca ctc ttt 3’
ydjM EMSA reverse 5’ tcc tac taa gat aaa agc gge 3’
yhdN EMSA forward 5’ gct gtg atc ata gga gtt aat 3’
yhdN EMSA reverse 5’ ggc ttc tat tcc tgt atc tgc 3’
yhdO forward 5’ atc gcg tgt aca cat tcc 3’
yhdO reverse 5’ egg cgt ttt aat act get 3’
yhfE reverse 5’-tcc cga ggc ggt ttc aat ttg-3’
yhfE forward 5’-gaa acg gtt cgg aac cac aag -3’
yhfE EMSA forward 5’ ggg tca tca gaa tat ttc tga 3’
yhfE EMSA reverse 5’ aat gag ctc cat cgt ttt aeg 3’
yhfF forward 5’- ctc att cag cag atc ctt gcc -3’
yhfF reverse 5’- aat tcg gtc tcc att gcc ctc -3’
ylpC EMSA forward 5’ aaa caa agc gga atg ccg gaa 3’
ylpC EMSA reverse 5’ ttc ctg gcg ttc tct ctt att 3’
ylpC forward 5’ gat gaa gaa cta gcg ggt 3’
ylpC reverse 5’ aat gga tat cge ctc ate 3’
ylxM EMSA forward 5’ tgt ccg taa ttg att tta ceg 3’
ylxM EMSA reverse 5’ cag ata att cat tct cgt tgt 3’
yneN EMSA forward 5’ tgc gga tac act cgg ctt aac 3’
yneN EMSA reverse 5’ cat gat aag cag gat ccc tgc 3’
yneN forward 5’ gtc ggt tat aeg gga tgg 3’
yneN reverse 5’ tgt cag ctt ttc cat cgc 3’
yokD forward 5’ aat ggt gga gct tgt gc 3’
yokD reverse 5’ gge tgg cat act ttc tct 3’
yokD EMSA reverse 5’ tgg aaa agt tgt act ttc aac-3’
yokD EMSA forward 5’gta gct ata cta aga gag caa-3’
yqxM forward 5’ gcc gca ata tgc tta caa-3’
yqxM reverse 5’ett aag ttt ctc acc tgt-3’
yqxM EMSA forward 5’gtg cca aag acg aga aga gat-3’
yqxM EMSA reverse 5’ctt cgc ctt ttg ctg att gtg-3’
ytsC forward 5’- ggc gaa ttc gtc agt att-3’
ytsC reverse 5’-gat cga taa agg cag aag-3’
ytsC EMSA forward 5’tcc aaa aga tgt acc gcg tat-3’
ytsC EMSA reverse 5’ctg ttt att cag ctt gtt tcc-3’
ytsD forward 5’ gtc acg ctg cag tat gat-3’
ytsD reverse 5’ tac ccc gat cgc taa tga 3’
yuaB forward 5’- gca cct aca gct tct ttc-3’
yuaB reverse 5’-aaa tcc gct tgg caa tgt-3’
yuaB forward EMSA 5’-gat cag ctg gaa agc tct-3’
yuaB reverse EMSA 5’-ccc gag act taa tgc act-3’
yuaF EMSA forward 5’ aat ggt caa gaa ctt ccc gta 3’
yuaF EMSA reverse 5’ cat tgt ttg tat agg tac tcc 3’
yuaF forward 5’ cgc aca tta gtt ctc tca 3’
yuaF reverse 5’ tcc tct gat atc atc ttc 3’
yukE EMSA forward 5’ttc taa gaa agt cat cgg agg 3’
yukE EMSA reverse 5’tcc tgc cat att cct cat tac 3’
yukE forward 5’atg gca cag gag gta atg 3’
yukE reverse 5’ aag gtt tga gct gct cgt 3’
yvaW (sdpA) BamHI forward 5’ gcc gga tcc ttg atg cca aca ttg cgc aga 3’
yvaW (sdpA) EcoRI reverse 5’ cgg gaa ttc aat gtt ttc ttc tgt agg gct 3’
yvaW (sdpA) forward 5’ agc aat att tca cct cag aa 3’
yvaX (sdpB) forward 5’-aga agt tta ctt ggt ttc tca-3’
yvaX (sdpB) reverse 5’-agc ggt agg gat ata gac att-3’
yvcA reverse 5’ tgt ctt agg ttc att cgc-3’
yvcA forward 5’ gaa gag gaa cca gga tat-3’
yvcA EMSA forward 5’get tgt cct gct cag aga-3’
yvcA EMSA reverse 5’ act gca tcc tcc tgt cag-3’
yvcE(cwlO) reverse 5’ cac gct taa gaa aaa tgacaa-3’
yvcE(cwlO) forward 5’ gca tcg gcg gaa aca tta 3’
yvcE EMSA forward 5’-cac gct taa gaa aaa tga caa-3’
yvcE EMSA reverse 3’-agc caa acc aag tgt aat taa-3’
yveN EMSA reverse 5’aaa cct cat tca ttt gtc cgg 3’
yveN EMSA forward 5’ atc aac agt cgc gca aaa caa 3’
yveN forward 5’- aag ctg ccg tat gtt gat gag-3’
yveN reverse 5’- gtt ggc tgt gtc cag cac ctt-3’
yveO Forward 5’- tgc gat gat gcg tca aca-3’
yveO Reverse 5’-aac cac ctg ata gtt tgg gttg-3’
yvfA EMSA forward 5’ att cta caa tca cta cgg ctt 3’
yvfA EMSA reverse 5’ cgt gag att cgc get gaa att 3’
yvfA forward 5’ etc acg gct ttt etc ttg tct 3’
yvfA reverse 5’ ata cgc att tgc ttt etc cgg 3’
yvfE forward 5’ gaa gaa cag ctg gca gaa cga 3’
yvfE reverse 5’ cat att cca cgt atc agg etc 3’
yvfF forward 5’ cgc tgg aat cca gac aat ttc 3’
yvfF reverse 5’ cgt ccc ttg gag gtt gtc ttt 3’
yvfl BamHI reverse 5’ cgg gga tcc aat atc ccc aaa gca cat 3’
yvfI HindIII forward 5’ gcc aag ctt atg aaa cag gga gaa ggc 3’
yvfI EMSA forward 5’ tat gcc get aat get ttc ggc 3’
yvfI EMSA reverse 5’ gac gga gat ccc aaa tac aat 3’
yvfI forward 5’ atc ggg age tgt atg aca 3’
yvfI reverse 5’ aga age cgg ttc agg atc 3’
ywcD EMSA forward 5’ cat gcc gac ata taa agt ctt 3’
ywcD EMSA reverse 5’ cac aat ggt tgt gaa aac ccc 3’
ywcD forward 5’ gtt gcc get tgt att tgt 3’
ywcD reverse 5’ ctg gcc gac aag aat gat 3’
ywfB EMSA reverse 5’ gat cgc gga tcc tta tgc gta etc act get tgt 3’
ywfB EMSA forward 5’ get atg cag ctg tcg gat 3’
ywfH EMSA forward 5’ ccc tgt act ggc tcc cat aac 3’
ywfH EMSA reverse 5’ age cac ggt tta atc ggc cgc 3’
ywfH HindIII Forward 5’ gca agc ttt ttt ccc tcg tca tta 3’
ywfH BamHI Reverse 5’ cat ccc att cat cat act gtt tgt 3’
yybL EMSA forward 5’ ata aca gcc ttt ata ctt tta 3’
yybL EMSA reverse 5’ aca taa aat taa tag tag tct 3’
yybL forward 5’ ttc aac cag aac cac act 3’
yybL reverse 5’ acg ctt aac cat cct cat 3’
yybN forward 5’ gta cct tat ggc tat ggt 3’
yybN reverse 5’ tcc ctg get att tgc atg 3’
yybN EMSA reverse 5’ tat gcc taa age age cgc aag 3’
yybN EMSA forward 5’ ctc aat tga gca aat cgc cca 3’
yydF EMSA forward 5’ atg ggg taa gca aga get taa 3’
yydF EMSA reverse 5’ ttc taa gtt ttt cac agt ctc 3’
yydG forward 5’ gag tta gta act gaa ttt gca 3’
yydG reverse 5’act tat agt cag tgc tat cac 3’
Information of the *B. subtilis* PY79A variant used in the current study, i.e. presence of the ICEBs1 region.

Previously, common *B. subtilis* PY79 strain was reported to lack the ICEBs1 region on its chromosome (Auchtung et al., 2005). However, our microarray results suggested the *rapI* and *phrI* genes described in the ICEBs1 region are highly upregulated in the *lutR* mutant strain (TEK1). Subsequently, as a further confirmation, to construct *rapI-lacZ* transcriptional fusion strain, a 389-bp-long *rapI* gene fragment was amplified from the genome of our lab strain PY79 by PCR with the following specific primers: RapI F (5’-GCC AAGCTT TTG CGG GGT GTT TTC TTA- 3’) and RapI R (5’-CGG GGATCC TTC AGC TAT TCG ATA AGC- 3’). The resulting PCR product was cloned into pGEMT vector for sequencing. As shown in Fig. S4, our sequencing results revealed that our amplified region sequence were identical in sequence with the *rapI* gene present in *B. subtilis* 168 genome. After sequence confirmation, the 389-bp-long *rapI* gene fragment was subcloned in to pMUTIN T3 vector *rapI-lacZ* transcriptional fusion was created in our laboratory strain PY79 and used in further experiments. As mentioned above this region is missing in other PY79 strains examined before. This prompted us to examine our PY79 laboratory stock used in the current study. The PY79 laboratory stock that was used in our study has been obtained in 1985 from the laboratory of Arnold L. Demain (Fermentation Microbiology Laboratory, Department of Applied Biological Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts) gifted by Philipe Youngman. To describe our PY79 strain, we have characterized the strain using various diagnostic PCR reactions. To confirm the presence of W23 island in *panB* and *sacA* regions in our stock PY79 strain, we amplified a 396 bp DNA region stretching from 1082 bp to 1478 bp in *panB* gene and the 524 bp DNA fragment between 1402 bp and 1926 bp of the *sacA* gene using PCR reaction and the resulting fragments were cloned into pGEMT vector for sequencing. The sequenced *sacA* and *panB* regions showed similar sequence to PY79 (Fig. S5 and Fig. S6).

Further, the 17 kb DNA region from *ydzA* to *ydaQ* was shown to be absent in the genome of strain PY79 (Zeigler et al., 2008). Therefore, we tested for the presence of *topB* gene locus using PCR reaction (arbitrary selected a gene located within the region between *ydzA* to *ydaQ* in *B. subtilis* 168). The following primer set was used to amplify the *topB* gene: topB F (5’-GTGCAGCGCATGACGTGAC-3’), topB R (5’-CAGACTGCTGAGGACGGC-3’). Our PCR assays indicated that our laboratory stock PY79 strain similar to 1A147 (PY79 BGSC) likely do not contain *ydzA* to *ydaQ* region since the 480 bp fragment of the *tapB* gene could not be amplified from their genomes while this region was successfully amplified from the genome of strain 168 (Fig. S7). Thus, these additional results supported that our stock strain is originated from PY79.
Whether our laboratory stock originates from a stock during the creation of PY79 before ICEBs1 was cured, or the ICEBs1 region originates from another laboratory strain that possesses this region (i.e. ICEBs1 can be transferred between strains by conjugation) is unknown. Based on these experiments, we described our laboratory stock strain as PY79(ICEBs1+), thus as PY79 variant that contains the ICEBs1 region

Fig. S4 The DNA sequence chromatogram and blastn analysis of the 389 bp fragment of rapI gene amplified from our PY79(ICEBs1+) strain. DNA sequencing was performed by using an automated model 3730 DNA analyzer and BigDye Terminator kit (Applied Biosystems, Inc). A 389-bp-long rapI gene fragment was amplified from the genome of our lab strain primers RapI F and RapI R (see sequence above), and labeled with a box on the chromatogram.

Target reference sequence used for blastn: Bacillus subtilis subsp. subtilis str. 168 complete genome
Sequence ID: emb|AL009126.3|

Query 565 TTGCGGGGTGTTTTCTTAGATAAAGATAAAATTCCGTACGACTTAGTCACGAAAAAGTTA 624
Sbjct 547306 TTGCGGGGTGTTTTCTTAGATAAAGATAAAATTCCGTACGACTTAGTCACGAAAAAGTTA 547365
Query 625 AATGAATGGTATACATCAATAAAAAATGATCAAGTTGAGCAAGCCGAGATTATAAAAACA 684
Sbjct 547366 AATGAATGGTATACATCAATAAAAAATGATCAAGTTGAGCAAGCCGAGATTATAAAAACA 547425
Query 685 GAAGTAGAGAAAGAATTGTTAAACATGGAAGAAAATCAAGATGCCCTGTTATATTATCAA 744
Sbjct 547426 GAAGTAGAGAAAGAATTGTTAAACATGGAAGAAAATCAAGATGCCCTGTTATATTATCAA 547485
Query 745 CTATTAGAATTTAGACATGAGATAATGCTGAGTTATATGAATCTAAGGAAATAGAAGAT 804
Sbjct 547486 CTATTAGAATTTAGACATGAGATAATGCTGAGTTATATGAATCTAAGGAAATAGAAGAT 547545
Query 805 CTCAATAATGCTTATGAGACTATAAAAGAAATTGAGAAGCAAGGGCAATTAACTGGCATG 864
Sbjct 547546 CTCAATAATGCTTATGAGACTATAAAAGAAATTGAGAAGCAAGGGCAATTAACTGGCATG 547605
Query 865 TTGGAATACTATTTTTACTTTTTTAAGGGTATGTACGAGTTTAGGCGTAAAGAATTAATT 924
Sbjct 547606 TTGGAATACTATTTTTACTTTTTTAAGGGTATGTACGAGTTTAGGCGTAAAGAATTAATT 547665
Query 925 TCAGCGATAGGTGCTTATCGAATTGCTGAA 954

Sbjct 547666 TCAGCGATAAGTGCTTATCGAATAGCTGAA 547695
Fig. S5. The DNA sequence chromatogram and blastn analysis of the 524 bp long fragment of the *sacA* gene amplified from our PY79(ICEBs1+) strain. DNA sequencing was performed using an automated model 3730 DNA analyzer and BigDye Terminator (Applied Bipsystems, Inc). The 524 bp long *sacA* gene fragment was amplified from the genome of strain PY79(ICEBs1+) by PCR with the following specific primers: *sacA* F (5’-TCACGCCATTCGGGTCATTCA-3’), *sacA* R (5’-TCAATGGCGAATGTCGCACAG-3’) as labeled with a box on chromatogram.

Target reference sequence used for blastn: *Bacillus subtilis* strain PY79, sucrase-6-phosphate hydrolase (*sacA*), PTS sucrose-specific enzyme IIBC component (*sacP*), putative formate/nitrite transporter (*ywcJ*), sacPA operon antiterminator (*sacT*), and hypothetical protein Ywcl (*ywcl*) genes, complete cds; Sequence ID: gb|EU146093.1|
Query 304 GCCAAAGGCAAGGCGCGCAGCCATAGCGATCATCGGAATACCCGTTAACCCGTAAGCGTT 363

Sbjct 1642 GCCAAAGGCAAGGCGCGCAGCCATAGCGATCATCGGAATACCCGTTAACCCGTAAGCGTT 1701

Query 364 TGCAACACATATGTTAAAGACGACATATGCACCGCCCAATGCGCCTCCGATCATCGCGGC 423

Sbjct 1702 TGCAACACATATGTTAAAGACGACATATGCACCGCCCAATGCGCCTCCGATCATCGCGGC 1761

Query 424 GATAAACGGTTTTTCGCTAGCGAAGATTGACTCCGAATATGACTGGCTCAGTAATGCCGAG 483

Sbjct 1762 GATAAACGGTTTTTCGCTAGCGAAGATTGACTCCGAATATGACTGGCTCAGTAATGCCGAG 1821

Query 484 AAAAGCGGAAAATGCAGCCGGAAGCGCGATTTCTTTTGTCTTTGCCTTCTTCGCCCATAAA 543

Sbjct 1822 AAAAGCGGAAAATGCAGCCGGAAGCGCGATTTCTTTTGTCTTTGCCTTCTTCGCCCATAAA 1881

Query 544 GAAGACGCGCAAGGCCGCCACCGCCTGTGCAGCATCCCGCATTGA 588

Sbjct 1882 GAAGACGCGCAAGGCCGCCACCGCCTGTGCAGCATCCCGCATTGA 1926
Fig. S6. The DNA sequence chromatogram (above) and blastn analysis (below) of a 396 bp long fragment of the panB gene amplified from our PY79(ICEBs1+) strain. DNA sequencing was performed by using an automated model 3730 DNA analyzer and BigDye Terminator (Applied Biosystems, Inc). The 396 bp long panB gene fragment was amplified from the genome of strain PY79(ICEBs1+) by PCR with the following primer sets: panB F (5'-TCATGTCCGCAACTGTCACAC-3'), panB R (5'-ATTGGGCAGTATCGCCTGGA-3') and labeled with a box on chromatogram.

Target reference sequence used for blastn: Bacillus subtilis strain PY79 pantothenate synthetase (panC) gene, partial cds; ketopantoate hydroxymethyltransferase (panB) gene, complete cds; and transcriptional regulator and biotin acetyl-CoA-carboxylase synthetase (birA) gene, partial cds; Sequence ID: gb|EF191505.1
Query 382 CATCCCTCTGTCCCCAGTCTTTTTTTGGATCAAGGCAGACTGCTGCAATGTCTATCTATTTT 441

Sbjct 1382 CATCCCTCTGTCCCCAGTCTTTTTTTGGATCAAGGCAGACTGCTGCAATGTCTATCTATTTT 1441

Query 442 TTATAATAGGTGCAGGTTCGCGACTGCCCAAT 478

Sbjct 1442 TTATAATAGGTGCAGGTTCGCGACTGCCCAAT 1478
Fig. S7. PCR analysis of the *topB* gene using chromosomal DNA isolated from our PY79(ICEBs1+) strain (lane 1), 1A147 (PY79 BGSC) (lane 2) and 168 (lane 3) strains of *B. subtilis* as template. Lane 4 is the negative control (no template was added) and lane M denotes the DNA marker (MassRuler reverse DNA ladder Mix obtained from Thermo Scientific).