Controlling omitted variables and measurement errors by means of constrained autoregression and structural equation modeling
Suparman, Yusep

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Chapter 3 Controlling for Time-Varying Omitted Variables in Panel Data Models: Evidence from a Monte-Carlo Simulation

Abstract

Based on Monte-Carlo simulations, this paper presents evidence on the performance of latent fixed effects regression, demeaning, first order differencing, autoregression and constrained autoregression as methods to control for time-varying omitted variables in panel data models. The data are generated from a standard regression model with three explanatory variables, three time periods and one thousand cross sectional units. From the bias, the standard error and the mean squared error of the estimators of the regression coefficients of the included variables, we conclude that constrained autoregression (Suparman et al., 2014) outperforms the alternative omitted variables correction procedures. Regression of the log-transformed absolute bias on the log-transformed simulation parameters identifies the main determinants of the bias of each correction procedure.

Keywords: omitted variable bias, constrained autoregression, latent fixed effect, demeaning, first order differencing, autoregression, Monte-Carlo simulation

1. Introduction

An important, but often ignored problem in applied social science research is the omission of systematic explanatory variables from a regression model. If the omitted variables are correlated with the included controls - which is usually the case in the social sciences - ordinary least square (OLS) and standard maximum likelihood (ML) are biased
and inconsistent. This even holds if only one omitted variable is correlated with one control and the included controls are correlated.

The problem of omitted variable bias has been well addressed in standard textbooks like Greene (2003) and Wooldridge (2002). The problem can be identified by means of specification tests such as Ramsey’s (1969), Hausman’s (1978), Chamberlain’s (1982), Angrist and Newey’s (1991) and Ahn and Low’s (1996). Omitted variables can be controlled for by means of instrumental variables methods or panel data methods. The present paper is restricted to panel data methods. Below we briefly summarize the main panel data approaches. Details are presented in the next section.

Two types of panel data approaches to omitted variables can be distinguished. The first type relates to time-invariant omitted variables, the second to time-varying omitted variables. The time-invariant approaches comprise:

1. The fixed effect approach (FE) which models the omitted variables by means of a dummy variable for each cross sectional unit (see e.g. Baltagi, 2005 and Greene, 2003).

2. The latent fixed effect model (LFE) which represents the omitted variables by means of a latent variable whose variance and covariances with the explanatory variables at each time point are estimated (Bollen, 2008).

3. First order differencing (FOD) which removes the omitted variables from the model by means of differencing and performs the analysis in terms of first order differences of the included variables (Wooldridge, 2002).

4. Demeaning (DR) which also removes the omitted variables from the model by way of differencing and performs the regression in terms of the included variables with their means subtracted (Baltagi, 2005).
Most empirical studies routinely adopt a time-invariant approach to control for omitted variables. See amongst others Brückner (2013), Kim (2014) and Sobel (2012). However, application of a time-invariant approach is invalid, if the omitted variables evolve over time. Suparman et al. (in press) illustrates that such application leads to another type of bias.

Two types of time-varying approaches to control for omitted variables can be distinguished. The first, the autoregressive approach (AR), captures the omitted variables by the one-period lagged dependent variable (Wooldridge, 2002). Since the lagged dependent variable is taken as a proxy for the omitted variables, it is subject to approximation error. If the approximation error is correlated with the controls, OLS is biased. The second time-variant approach, constrained autoregression model (CAR), is based on the assumption that the omitted variables evolve according to an autoregression model. Accordingly, the omitted variables are captured by the lagged dependent and the lagged independent variables subject to constraints on the corresponding parameters. Note that CAR could also be subject to approximation bias. Applications of CAR are still very rare and no assessments of its relative performance have been undertaken.

In this study, we conduct a Monte-Carlo simulation study to evaluate the performance of the above mentioned methods to reduce the bias and the mean squared error due to the omission of a time-varying systematic variable in a regression model with three explanatory variables. Note that we exclude FE from the study since its estimates are identical to the DR estimates (Baltagi, 2005; Greene, 2003). In addition, we restrict our simulation to a large cross sectional sample for the following reasons. First, the focus of this paper is on bias reduction. A large sample size reduces the standard error and thus provides better insight into each method’s bias reduction potential. Secondly, since we use the maximum likelihood (ML) method to estimate the models, a large sample is
required to achieve its consistency and efficiency properties (Casella and Berger, 2002). Thirdly, many micro panel data sets like the Indonesia Family Life Survey (IFLS) (Suparman, 2014) and Interuniversitair Steunpunt Politieke Opinie-onderzoek (ISPO) (Angraeni et al., 2014) are based on large cross sectional samples.

2. A synopsis of methods to control for time-varying omitted variables in panel data models

Consider the regression model

$$y_{it} = \beta_0 + \sum_{j=1}^{a} \beta_j x_{jit} + \sum_{k=1}^{b} \gamma_k z_{kit} + \epsilon_{it},$$

for unit $i = 1, 2, \ldots, N$ and wave $t = 1, 2, \ldots, T$, with ϵ_{it} an independent-identically-distributed (iid) random error satisfying the zero conditional mean assumption. Suppose the variables z_k, for any $b = 1, 2, \ldots$, are omitted from (1) such that the omitted variables model

$$y_{it} = \hat{\beta}_0 + \sum_{j=1}^{a} \hat{\beta}_j x_{jit} + \hat{\epsilon}_{it}$$

is estimated. Generally, the ordinary least square (OLS) estimator of the coefficients $\hat{\beta}_j$ is biased (omitted variable bias).¹

¹ For $a=1$, $b=1$ and $z_i = \delta_0 + \delta_{z_i} x_i + \epsilon_{z_i}$ (the regression of the omitted variable on the included control variable), the bias of the OLS estimator of β_1 is $\gamma_1 \delta_1$. For $a>1$, $b=1$, the bias of the OLS estimator of each β_j is not only determined by γ_k and δ_{z_k}, but also by the covariances between the included variables and the covariances between the omitted variable and the included controls. In the case of several omitted variables, the previous set of covariances needs to be expanded to also include the covariances among the omitted variables (Wooldridge, 2002).
We summarize the various methods to control for omitted variables bias. We start with the time-invariant approaches and consider the time-invariant omitted variables z_k in (1) which we denote by the time-invariant catch-all variable η. Hence, (1) reads:

$$y_i = \beta_0 + \sum_{j=1}^{a} \beta_j x_{ij} + \eta_i + \epsilon_i.$$

(3)

Following Baltagi (2005), we call η the unobserved individual specific effect.

The first approach is the Fixed Effects (FE) model. It is derived by re-parameterization of the intercept. That is, the unobserved individual specific effect and the intercept are combined to give the individual intercepts $\beta_0 + \eta_i = \mu_i$. To estimate the individual intercepts μ_i in (3), the unit constant is replaced by N dummy variables (d_i) whose values are (Greene, 2003)

$$d_{ij} = \begin{cases} 1 & \text{for } l = i \\ 0 & \text{for } l \neq i \end{cases}.$$

This gives

$$y_i = \sum_{j=1}^{a} \beta_j x_{ij} + \sum_{l=1}^{N} \mu_l d_{il} + \epsilon_i.$$

(4)

(4) is a multiple regression model with $a + N$ explanatory variables. The OLS estimator of (4) is unbiased (Greene, 2003). However, for large N, (as in the simulations below where $N = 1000$), estimation of (4) is computationally cumbersome because of the dimensions of the data matrix which needs to be inverted. The computational aspect is especially an issue in simulation studies with large numbers of parameter combinations and large numbers of repetitions. We drop FE from the simulation, since the same estimates can be obtained from the next model.

The second model is the DR model. It is derived by subtracting the average of (3) over the waves, i.e.
\[\bar{y}_{it} = \beta_0 + \sum_{j=1}^{a} \beta_j \bar{x}_{jit} + \eta_i + \bar{\epsilon}_{it} \]

from (3). The subtraction cancels out the unobserved individual specific effect from the model and gives

\[(y_{it} - \bar{y}_{it}) = \sum_{j=1}^{a} \beta_j (x_{jit} - \bar{x}_{jit}) + (\epsilon_{it} - \bar{\epsilon}_{it}) \]

or

\[(y_{it} - \bar{y}_{it}) = \sum_{j=1}^{a} \beta_j (x_{jit} - \bar{x}_{jit}) + \epsilon_{it}^{DR}. \]

(5) is a multiple regression model without intercept. Its variables are in terms of deviations from their means over the waves. OLS is unbiased and its estimates are identical to the OLS estimates of (4) (Baltagi, 2005; Greene, 2003).

The third approach is the FOD model. It is obtained by subtracting from (3) at \(t \) its one period lag at \(t-1 \), i.e.

\[y_{it-1} = \beta_0 + \sum_{j=1}^{a} \beta_j x_{jit-1} + \eta_i + \epsilon_{it-1} \]

which gives

\[(y_{it} - y_{it-1}) = (\beta_0 - \beta_0) + \sum_{j=1}^{a} \beta_j (x_{jit} - x_{jit-1}) + (\epsilon_{it} - \epsilon_{it-1}) \]

or

\[(y_{it} - y_{it-1}) = \sum_{j=1}^{a} \beta_j (x_{jit} - x_{jit-1}) + \epsilon_{it}^{FOR} \]

(6) is a multiple regression model with differenced variables and the unobserved individual specific effect canceled out. Because of the differencing, (6) is defined for \(t = 2,3,\ldots,T \). OLS of (6) is unbiased (Greene, 2003).
The fourth approach is the LFE model. Following Bollen (2008), we formulate (3) as a structural equation model (SEM)

\[y_j = \beta_0 + \Gamma w_i + o_j \] \hspace{1cm} (7)

with

\[
\begin{align*}
 y_j' &= [y_{j1} \ y_{j2} \ \ldots \ y_{jT}]', \\
 w_i' &= [x_{i1}' \ x_{i2}' \ \ldots \ x_{iT}'], \\
 o_i' &= [o_{i1} \ o_{i2} \ \ldots \ o_{iT}], \\
 \beta'_0 &= [\beta_{01} \ \beta_0 \ \ldots \ \beta_{0T}], \\
 \Gamma &= \begin{bmatrix}
 \beta_{y_{j1}x_1} & 0 & \ldots & 0 & 1 \\
 0 & \beta_{y_{j2}x_2} & \ldots & 0 & 1 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \ldots & \beta_{y_{jT}x_T} & 1
 \end{bmatrix},
\end{align*}
\]

and

\[
\beta'_{y_{jix_i}} = [\beta_{1i} \ \beta_{2i} \ \ldots \ \beta_{ai}].
\]

It is assumed that \(\text{E}(o_i) = 0 \) for all \(i \), \(\text{cov}(o_i, o_j) = 0 \) for \(i \neq j \), and \(\text{cov}(o_i, w_j) = 0 \) for all \(i \) and \(j \). Furthermore, we set \(\beta_{0i} = \beta_0 \), \(\beta_{y_{jix_i}} = \beta_{yix} \), and \(\text{var}(o_{it}) = \text{var}(o) \) for all \(i \) and \(t \).

The parameters are estimated by fitting the sample mean vector \(\hat{\mu} \) and sample covariance matrix \(\hat{\Sigma} \) to the model implied mean vector \(\mu(\theta) \) and model implied covariance matrix \(\Sigma(\theta) \), respectively. The elements of \(\mu(\theta) \) and \(\Sigma(\theta) \) are functions of the model parameters (Bollen, 2008). They are defined as

\[
\mu(\theta) = \begin{bmatrix}
 \mathbf{y} \\
 \mathbf{w}
\end{bmatrix} = \begin{bmatrix}
 \mathbf{E}(\gamma) + \mathbf{E}(\Gamma w) + \mathbf{E}(\theta) \\
 \mathbf{E}(w)
\end{bmatrix} = \begin{bmatrix}
 \beta_0 + \Gamma \mathbf{E}(w) \\
 \mathbf{E}(w)
\end{bmatrix} = \begin{bmatrix}
 \beta_0 + \Gamma \mu_w \\
 \mu_w
\end{bmatrix}
\]
\[\Sigma(\theta) = \text{cov}\left(\begin{bmatrix} y' & w' \end{bmatrix} \right) = \begin{bmatrix} \text{cov}(y, y') & \text{cov}(y', w) \\ \text{cov}(w, y') & \text{cov}(w, w') \end{bmatrix} \]

\[= \begin{bmatrix} \text{cov}(\boldsymbol{\beta}_0 + \Gamma w + o + \Gamma w' + o') & \text{cov}(\boldsymbol{\beta}_0 + \Gamma w + o, w') \\ \text{cov}(w, \boldsymbol{\beta}_0 + \Gamma w + o) & \text{cov}(w, w') \end{bmatrix} \]

\[= \begin{bmatrix} \text{cov}(\Gamma w, w' \Gamma') + \text{cov}(o, o') & \text{cov}(\Gamma w, w') + \text{cov}(o, w') \\ \text{cov}(w, w' \Gamma') + \text{cov}(w, o') & \text{cov}(w, w') \end{bmatrix} \]

\[= \begin{bmatrix} \Gamma \Sigma_{ww} \Gamma' + \Sigma_{oo} & \Sigma_{ww} \Gamma' \\ \Gamma \Sigma_{ww} & \Sigma_{ww} \end{bmatrix} \]

\(\mu_w \) and \(\Sigma_{ww} \) are the mean vector and covariance matrix of the covariates in \(w \). \(\Sigma_{oo} \) is the covariance matrix of the error terms. The covariances between \(\eta_i \) and the other elements of \(w \) are given in the last row and column of \(\Sigma_{ww} \). The maximum likelihood estimator (ML) of (7) is consistent (Jöreskog and Sörbom, 1996).

Now, we turn to the time-variant case. The first, the AR approach, uses the lagged dependent variable as an approximation to the unobserved individual specific effect (Wooldridge, 2002). Inclusion of the lagged dependent variable into model (2) gives the following autoregression model

\[y_{it} = \beta_0^{AR} + \alpha y_{it-1} + \sum_{j=1}^{d} \beta_j x_{itj} + o_{it}^{AR}. \] (8)

Reduction of omitted variable bias by means of (8) depends on the relationship between \(y_{it} \) and \(\eta_{it} \). This relationship can be written as

\[y_{it-1} = \delta_0 + \delta_1 \eta_{it} + \nu_{it} \]

with \(\nu_{it} \) the error term. For \(T = 2 \), OLS of (8) gives a consistent estimator of \(\beta_j \), if \(\nu_{it} \) is uncorrelated with \(x_{it} \), ..., \(x_{ait} \) and \(y_{it-1} \). For \(T > 2 \), OLS is inconsistent, if the errors \(o_{it}^{AR} \) follow an AR(1) because in that case the lagged dependent variable \(y_{it-1} \) which is
correlated with the error term σ_{it-1} at $t-1$, is correlated with the current errors. Baltagi’s (2005) ML is a consistent estimator of (8) in this case.

The second time-variant approach is CAR (Suparman et al., 2014). It is based on the assumption that the aggregate of the omitted variables and the error term in (1) develop according to the autoregression model

$$
\left(\sum_{k=1}^{b} \gamma_k z_{kit} + o_{it}\right) = \alpha_0 + \alpha_1 \left(\sum_{k=1}^{b} \gamma_k z_{kit-1} + o_{it-1}\right) + \varepsilon_{it}. \tag{9}
$$

From (1) we obtain

$$
\sum_{k=1}^{b} \gamma_k z_{kit} + o_{it} = y_{it} - \beta_0 - \sum_{j=1}^{a} \beta_j x_{jit}. \tag{10}
$$

Substituting $y_{it} - \beta_0 - \sum_{j=1}^{a} \beta_j x_{jit}$ for $\sum_{k=1}^{b} \gamma_k z_{kit} + o_{it}$ in (9) and rearranging gives the constrained autoregression

$$
y_{it} = \beta_{0t} + \alpha_1 y_{it-1} - \alpha_1 \sum_{j=1}^{a} \beta_j x_{jit-1} + \sum_{j=1}^{a} \beta_j x_{jit} + \sigma_{it}^{CAR}. \tag{11}
$$

Observe that the regression coefficients of the lagged independent variables (x_{jt-1}) are constrained to be $-\alpha_i \beta_j$. As in the AR model, OLS is inconsistent for (11), if the error terms σ_{it}^{CAR} follow an AR(1). Hence, an alternative estimator like ML needs to be applied to estimate (11).

3. Simulation design

The first step in the simulations is generation of the explanatory variables. We generate 3 explanatory variables (v, x, z), for 3 different time points for 1000 cross sectional units. At the first time point, the three variables are generated according to a three-variate normal distribution with zero mean vector and covariance matrix...
At the second and third time point, the variables are generated according to the process
\[u_t = \alpha_u u_{t-1} + \varepsilon_u^t, \]
with \(\varepsilon_u^t \sim \mathcal{N}(0,1 - \alpha_u^2) \) for \(u = v, x, z \) and \(t = 2, 3 \). The following observations apply. First, we impose the standard restriction \(\text{cov}(u_{t-1}, \varepsilon_u^t) = 0 \). Secondly, to keep the variance of the dependent variable constant over time and thus to stabilize the standard errors over time, we impose \(\text{var}(\varepsilon_u^t) = 1 - \alpha_u^2 \). This restriction keeps the variances of the variables fixed at 1:
\[
\text{var}(u_t) = \alpha_u^2 \text{var}(u_{t-1}) + \text{var}(\varepsilon_u^t) + 2 \alpha_u \text{cov}(u_{t-1}, \varepsilon_u^t) = \alpha_u^2 + (1 - \alpha_u^2) = 1
\]
for \(t = 2, 3 \).

For \(\text{cov}(v, x), \text{cov}(v, z) \) and \(\text{cov}(x, z) \) as well as for \(\alpha_u \), we take the values 0.1, 0.3, 0.5, 0.7 and 0.9. Note that some of the combinations of the parameter values, particularly those with the value of 0.9, produce non-positive definite \(\Sigma \)s. Since data generation of multinormally distributed variables requires a positive definite \(\Sigma \), we exclude these combinations from the simulations. With the five values of each of the six simulation parameters (\(\text{cov}(v, x), \text{cov}(v, z), \text{cov}(x, z), \alpha_v, \alpha_x, \) and \(\alpha_z \)), we have \(5^6 = 15,625 \) combinations of the parameters values. Subtraction of the non-positive definite \(\Sigma \) cases gives 13,000 combinations.

Next, given the explanatory variables and error term, we generate the dependent variable according to the true model
\[y_t = \beta_v v_t + \beta_x x_t + \beta_z z_t + \alpha_t^y, \]
with \(\alpha_t^y \sim \mathcal{N}(0, \sigma_{\alpha_t}^2) \) for \(t = 1, 2, 3 \), and with values of \(\beta_v \) and \(\beta_x \) equal to 0.3, \(\beta_z \) equal to 1.0, and \(\sigma_{\alpha_t}^2 \) equal to 0.1.
To separate sampling variation from the evaluation indicators (bias and mean squared error (MSE)), we fix the former by means of the error of margin which in its turn determines the number of simulation repetitions, R. Lohr (2010) defines the margin of error, e, for an estimator $\hat{\theta}$ at confidence level γ as

$$P\left[|\hat{\theta} - \theta| \leq e \right] = \gamma. \quad (12)$$

For a normally distributed mean of a regression coefficient estimator, the margin of error can be obtained from its confidence interval

$$P\left[\bar{\beta} - z_{(1-\gamma)/2} \sigma_{\hat{\beta}} / \sqrt{R} \leq \beta \leq \bar{\beta} + z_{(1-\gamma)/2} \sigma_{\hat{\beta}} / \sqrt{R} \right] = \gamma,$$

that is

$$|\bar{\beta} - \beta| \leq z_{(1-\gamma)/2} \sigma_{\hat{\beta}} / \sqrt{R} = e$$

which gives

$$R = \left(z_{(1-\gamma)/2} \sigma_{\hat{\beta}} / e \right)^2. \quad (12)$$

with $z_{(1-\gamma)/2}$ the $(1-(1-\gamma)/2)^{th}$ quintile of the standard normal distribution. We set $e = 0.003$, which is equivalent to 1% of the true β_v and β_s (0.3). Hence, $|\bar{\beta} - \beta| \leq 0.003$. If we fix the confidence level γ at 99%, we obtain $z_{0.005} = 2.5758$. From preliminary simulations of the correctly specified model with all simulation parameters fixed at 0.9 which produces the largest standard error, we obtained the maximum standard error ($\sigma_{\hat{\beta}}$) of 0.0099. For these values (12) gives $R = (2.7558 \times 0.0099 / 0.003)^2 = 71.88 \approx 100$.

For each data set generated, we estimate the following seven models:
1. The correctly specified model (CR)

\[y_{it} = \beta_0^0 + \beta_1^0 v_{it} + \beta_2^0 x_{it} + \beta_3^0 z_{it} + \alpha_{it}^0, \]

for \(t = 1,2,3 \). CR is estimated to evaluate the data generation process. Specifically, we compare the mean of the bias of \(\beta_i^0 \) to the margin of error of 0.003. A bias, which is equal to or a smaller than 0.003, indicates an adequate data generation process. Note that we only present the bias and individual MSE for one regression coefficient, i.e. \(\beta_x \), because the results for the other regression coefficient are the same due to equal values of the regression coefficients and identical simulation parameters.

2. The under-specified regression model (UR):

\[y_{it} = \beta_0^1 + \beta_1^1 v_{it} + \beta_2^1 x_{it} + \alpha_{it}^1 \]

for \(t = 1,2,3 \). UR is estimated without correction for the omitted variable \(z_{it} \). Hence, it provides insight into omitted variable bias. Note that if UR produced the smallest bias, the correction approaches presented in section 2 would be inadequate to correct for omitted variables.

3. The latent individual effect model (LFE):

\[y_{it} = \beta_0^2 + \beta_1^2 v_{it} + \beta_2^2 x_{it} + \eta + \alpha_{it}^2, \]

for \(t = 1,2,3 \).

4. The demeaned regression model (DR):

\[(y_{it} - \bar{y}_t) = \beta_0^3 + \beta_1^3 (v_{it} - \bar{v}_t) + \beta_2^3 (x_{it} - \bar{x}_t) + \alpha_{it}^3, \]

for \(t = 1,2,3 \).

5. The first order difference model (FOD):

\[(y_{it} - y_{i,t-1}) = \beta_0^4 + \beta_1^4 (v_{it} - v_{i,t-1}) + \beta_2^4 (x_{it} - x_{i,t-1}) + \alpha_{it}^4, \]

for \(t = 2,3 \).

6. The autoregression model (AR):

64
\[y_{it} = \beta_0^i + \beta_v^i v_{it} + \beta_x^i x_{it} + \alpha^i y_{it-1} + \epsilon_i^5, \]

for \(t = 2,3; \)

7. The constrained autoregression model (CAR):

\[y_{it} = \beta_0^6 + \beta_v^6 v_{it} + \beta_x^6 x_{it} + \alpha^6 y_{it-1} - \alpha^6 \beta_v^6 v_{it-1} - \alpha^6 \beta_x^6 x_{it-1} + \epsilon_i^6, \]

(1)

for \(t = 2,3. \)

The above models are estimated by means of the OpenMx maximum likelihood procedure (Boker et al., 2011) in R. The seven models are formulated as covariance structure models (SEM). The simulation syntax is available at Appendix 3.1.

The performance of the seven models is evaluated by means of the bias, standard error, and mean squared error. That is, for model \(j \) and \(x \) we calculate

\[
b(\hat{\beta}_x^j) = \frac{\sum_{r=1}^{R} \hat{\beta}_{xr}^j}{R} - \beta_x^j,
\]

\[
se(\hat{\beta}_x^j) = \sqrt{\frac{\sum_{r=1}^{R} (\hat{\beta}_{xr}^j - \bar{\beta}_x^j)^2}{R}} \text{ with } \bar{\beta}_x^j = \frac{\sum_{r=1}^{R} \hat{\beta}_{xr}^j}{R}, \text{ and}
\]

\[
\text{mse}(\hat{\beta}_x^j) = \left[b(\hat{\beta}_x^j)\right]^2 + \left[se(\hat{\beta}_x^j)\right]^2.
\]

In addition, to get insight into their impacts on the bias, we regress \(b(\hat{\beta}_x^j) \) on the covariances among the included controls, the covariances among the included controls and the omitted variable, and the autoregression parameters of the included and excluded explanatory variables 2:

\[
\ln[b(\hat{\beta}_x^j)] = \theta_0^j + \theta_v^j \ln(\alpha_v) + \theta_x^j \ln(\alpha_x) + \theta_z^j \ln(\alpha_z) + \theta_v^j \ln(\text{cov}(v,x)) + \theta_x^j \ln(\text{cov}(v,z)) + \theta_z^j \ln(\text{cov}(x,z)) + \epsilon^j.
\]

(13)

\(^2\) In a panel data model, the autoregression parameters determine the covariances among the variables in different waves which in their turn affect the omitted variable bias. Hence, the autoregression coefficient of the omitted variable affects the performance of the seven models presented above.
for $j = 1, 2, \ldots, 6$. We estimate a ln–ln model because of the non-linear relationship between the bias and its determinants.

4. Results

The complete set of outcomes of the evaluation indicators (bias, standard error, MSE) for β_j ordered by the simulation parameters ($\text{cov}(v, x)$, $\text{cov}(v, z)$, $\text{cov}(x, z)$, α_v, α_x, and α_z) for the seven models is available from the author upon request. In Table 3.1 we present summary statistics (minimum, maximum, mean, and standard deviation) for each model over all values of the simulation parameters.

Before going into detail, we observe that the estimation procedure converged for every data set. Furthermore, from Table 3.1 it follows that the maximum absolute bias of the correctly specified model (CR) is 0.002 which is well below the a priori fixed benchmark margin of error of 0.003 (see section 3). These features indicate the adequacy of the data generation process and of the number of replications.

We first evaluate the seven models according to the mean $b(\hat{\beta}_j)$ and the mean $\text{mse}(\hat{\beta}_j)$. Table 1 shows that CR performs best and UR worst, as expected. It furthermore shows that the CAR results are closest to the CR outcomes. On average, CAR reduces 98.4% of the bias in UR. Furthermore, the CAR MSE is 86.2 times smaller than the UR MSE. Next closest to the CR outcomes are the AR results. It reduces 66.7% of the UR bias and its MSE is 8.5 times smaller than the UR outcomes.

The time-invariant approaches perform substantially less than the time-variant approaches, as expected. DOF reduces 52.3% of the UR bias while its MSE is 4.8 times smaller. The LFE bias reduction is about 52.2% and its MSEs is 3.2 times smaller than
the corresponding UR results. DR reduces only 6.7% of the UR bias and its MSEs is only 1.7 times smaller than the UR MSE.

Table 3.1 Summary of the evaluation criteria

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Criteria</th>
<th>CR</th>
<th>UR</th>
<th>LFE</th>
<th>DR</th>
<th>FOD</th>
<th>AR</th>
<th>CAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>$\hat{b}(\beta)$</td>
<td>-0.002</td>
<td>-0.531</td>
<td>-0.108</td>
<td>-0.354</td>
<td>-0.039</td>
<td>-0.312</td>
<td>-0.054</td>
</tr>
<tr>
<td></td>
<td>$\hat{se}(\beta)$</td>
<td>0.005</td>
<td>0.005</td>
<td>0.007</td>
<td>0.003</td>
<td>0.008</td>
<td>0.006</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>$\hat{mse}(\beta)$</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Maximum</td>
<td>$\hat{b}(\beta)$</td>
<td>0.001</td>
<td>0.850</td>
<td>0.404</td>
<td>0.106</td>
<td>0.343</td>
<td>0.090</td>
<td>0.092</td>
</tr>
<tr>
<td></td>
<td>$\hat{se}(\beta)$</td>
<td>0.010</td>
<td>0.015</td>
<td>0.037</td>
<td>0.085</td>
<td>0.028</td>
<td>0.016</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>$\hat{mse}(\beta)$</td>
<td>0.000</td>
<td>0.722</td>
<td>0.163</td>
<td>0.125</td>
<td>0.118</td>
<td>0.097</td>
<td>0.009</td>
</tr>
<tr>
<td>Mean</td>
<td>$\hat{b}(\beta)$</td>
<td>0.000</td>
<td>0.167</td>
<td>0.080</td>
<td>-0.156</td>
<td>0.072</td>
<td>-0.056</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>$\hat{se}(\beta)$</td>
<td>0.006</td>
<td>0.006</td>
<td>0.012</td>
<td>0.005</td>
<td>0.013</td>
<td>0.008</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>$\hat{mse}(\beta)$</td>
<td>0.000</td>
<td>0.052</td>
<td>0.016</td>
<td>0.031</td>
<td>0.011</td>
<td>0.006</td>
<td>0.001</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>$\hat{b}(\beta)$</td>
<td>0.000</td>
<td>0.154</td>
<td>0.097</td>
<td>0.082</td>
<td>0.073</td>
<td>0.054</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>$\hat{se}(\beta)$</td>
<td>0.001</td>
<td>0.001</td>
<td>0.005</td>
<td>0.001</td>
<td>0.005</td>
<td>0.001</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>$\hat{mse}(\beta)$</td>
<td>0.000</td>
<td>0.075</td>
<td>0.026</td>
<td>0.024</td>
<td>0.017</td>
<td>0.010</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Next, we examine the means of the standard error. The DR outcome is smallest; it is approximately 0.8 times the CR mean standard error. Next are CR and UR with equal mean standard errors. Fourth and fifth are AR and CAR with outcomes 1.4 and 1.6 times the CR mean standard error, respectively. Final are LFE and FOD with mean standard errors 2.0 and 2.1 times the CR mean standard error, respectively.

The variations in mean standard error are due to the difference in number of observation and in number of parameters estimated. Particularly, UR and DR are based on 3 waves of observations while the differencing of FOD and the inclusion of lagged variables in AR and CAR imply 2 waves only. In the case of LFE more parameters are
estimated (i.e. the covariances between the latent individual effect and the independent variables) than in the case of UR and DR which tends to increase its mean standard error.

Table 3.2 Percentage smallest bias, standard error and MSE.

<table>
<thead>
<tr>
<th>Model</th>
<th>Criterion</th>
<th>b(β̂)</th>
<th>se(β̂)</th>
<th>mse(β̂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UR</td>
<td>4.4</td>
<td>100.0</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>LFE</td>
<td>10.8</td>
<td>0.00</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>DR</td>
<td>0.00</td>
<td>0.00</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>FOD</td>
<td>13.0</td>
<td>0.00</td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td>AR</td>
<td>19.6</td>
<td>0.00</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td>CAR</td>
<td>52.2</td>
<td>0.00</td>
<td>52.7</td>
<td></td>
</tr>
</tbody>
</table>

Next, in Table 3.2, we compare the six models on the basis of the percentage of smallest bias, standard error and MSE scored over all simulation parameters. That is, Table 3.2 shows how well a given model estimates β̂ in comparison to the other models. Table 3.2, column 2, presents the percentage of smallest bias scored. It shows
that both time-varying approaches outperform the time-invariant approaches with CAR performing best. Table 3.2, columns 3, shows that UR outperforms the other approaches in terms of standard error. The MSE results (Table 3.2 column 4) are similar to the bias results: CAR and AR are superior to the time-invariant approaches with CAR performing best.

We finally discuss for each model the determinants of the bias of the estimator of the regression coefficient β_x. The estimated regression model (13) is presented in Table 3.3. Before going into detail, we note that that all the estimates are significant at 1% level. Table 3.3, column 3, shows that for the under-specified model UR, $\hat{\theta}_6^1$ is the largest coefficient. It means that the correlation between the omitted and the included variable ($\text{cov}(x,z)$) has the largest positive impact on omitted variable bias with an elasticity of 1.36%. The autocorrelation coefficients of x and of z ($\hat{\theta}_1^1=0.25$ and $\hat{\theta}_3^1=0.22$, respectively) also have positive impacts, though substantially smaller than $\text{cov}(x,z)$.

From column 4, it follows that also for LFE the covariance between x and z ($\hat{\theta}_6^2=1.10$) has the largest impact, although it is substantially smaller than in the case of UR. For LFE, the autocorrelation coefficient of the omitted variable and $\text{cov}(v,z)$ have mitigating impacts: $\hat{\theta}_5^2=-0.58$ and $\hat{\theta}_3^2=-0.30$, respectively. All other parameters have minor impacts. Column 5 shows that in the case of DR $\text{cov}(x,z)$ and the autoregression of x ($\hat{\theta}_6^3=-0.46$ and $\hat{\theta}_3^3=0.45$) have the largest impacts in absolute value with the former having a negative sign. In addition, the autoregression of the omitted variable and $\text{cov}(v,z)$ have quite large positive impacts ($\hat{\theta}_3^1=-0.28$ and $\hat{\theta}_5^3=0.25$). In the case of FOD, shown in column 6, $\text{cov}(v,x)$ has the largest impact: $\hat{\theta}_6^4=1.31$. The autocorrelation coefficient α_z and $\text{cov}(v,z)$ have mitigating impacts: $\hat{\theta}_3^4=-0.72$ and $\hat{\theta}_5^4=-0.29$. In the
case of AR, column 7, the autoregression of the included variable has the largest impact ($\hat{\theta}^2_{z} = 0.47$), followed by α_z ($\hat{\theta}^3_{z} = 0.39$) and cov$(v, z)$ ($\hat{\theta}^5_{z} = 0.24$). Column 8 shows that in the case of CAR none of the simulation parameters has a substantial impact on the bias.

From the discussion of Table 3.3 it follows that the covariance between the regressor and the omitted variable has the largest positive impact on omitted variable bias in the case of UR, LFE, FOD, and CAR, although for the latter the impact is substantially smaller than for the other methods. For DR and AR the impacts are negative. Interestingly, the covariances between the omitted variable and the two included variables have opposite signs. However, there are alternations. Cov(z, v) is negative in the case of UR, LFE, FOD and CAR and positive for DR and AR. Moreover, the magnitudes in absolute value of the impacts of these covariances differ. In addition, the autoregression of the regressor and of the omitted variable have quite large impacts in absolute value.

In conclusion, for the time-invariant correction procedures and for AR, the bias left in the estimator of a regression coefficient after controlling for the omitted variable, is a complicated function of notably the covariances among the included variables and the omitted variable, the autoregression coefficient of the omitted variable, and the autoregression coefficient of the regressor. Only in the case of CAR, the impacts of the determinants on $b(\hat{\beta}_z)$ are very small.

5. Conclusion

Omitted variables form a serious problem in social science research because they lead to biased and inconsistent estimators. Two kinds of omitted variables can be distinguished: time-invariant and time-variant. In line with this distinction the approaches to control for omitted variables can be grouped into two categories. The first category
consisting of the latent fixed effect model, the demeaned regression model and the first order difference regression model, apply to time-invariant omitted variables. The second category consisting of the autoregressive and the constrained autoregressive model has been developed to control for time-varying omitted variables. In spite of their application design to time-invariant omitted variables, the former group has been frequently used to correct for time-varying omitted variables.

The main objective of this paper was the comparison of the above mentioned methods to control for time-variant omitted variables in panel data models by means of Monte Carlo simulations. The main finding is that the time-variant approaches outperform the time-invariant methods in terms of bias and mean squared error. Another finding is that autoregression is inferior to constrained autoregression for virtually all simulation parameters values.

Analysis of the impacts of the simulation parameters on $\hat{\beta}_x$ showed that for the time-invariant correction procedures and the AR model the bias left in the estimator of a regression coefficient after controlling for the omitted variable, is a complicated function of notably the covariances among the included variables and the omitted variable, and of the autoregression coefficients of the omitted variable and of the regressor. Only in the case of CAR, the impacts of the determinants on $\hat{\beta}_x$ are very small.

The constrained autoregression model was recently introduced (Suparman et al., 2014a). Consequently, applications of it are still very limited (Suparman et al., 2014b only). Hence, more empirical studies are needed to establish its usefulness. In addition, further theoretical developments are required to adapt it to application in various specialized areas of regression, e.g. spatial and state space regression.
References

Appendix 3.1 Simulation Syntax (Bias Evaluation)

```
# Simulation
# Constrained Autoregression
# Spatial Lag-Autoregression
setwd("D:/0sim5/")
require(mvtnorm)
require(OpenMx)
# A. Simulation setting and Population Parameters
for (av in 0:3)
{
  for (ax in 0:4)  # 0-4
  {
    for (az in 0:4)  # 0-4
    {
      for (r in 0:0)  # 0-4
      {
        for (s in 0:0)
        {
          for (t in 0:0)
          {
            #for (b in 1:1)
            #{
              set.seed(-3)  # Initial random number seed
              K <- 100  # Number of simulation replication
              N <- 1000  # sample size
              # parameters
              vx1 <- 1  #var(x1)
              vz1 <- 1  #var(z1)
              vv1 <- 1  #var(v1)
              cvx <- (1+2*r)/10  #cor(x1,z1)
              cvz <- (1+2*s)/10  #cor(v1,x1)
              cxz <- (1+2*t)/10  #cor(v1,z1)
              cvx <- (1+2*av)/10  #autoregression v
              cvz <- (1+2*ax)/10  #autoregression v
              cvz <- (1+2*az)/10  #autoregression z
              vev <- 1-alv^2  #autoregression v error variance
              vex <- 1-alx^2  #autoregression x error variance
              vez <- 1-alz^2  #autoregression z error variance
              bev <- 0.3  #be(v->y)
              bex <- 0.3  #be(x->y)
              bez <- 1.0  #be(z->y)
              By <- matrix(c(bev,bex,bez),nrow=1,ncol=3)
              vey <- .1  #var(ey)
              # B. Data Generation
              ## Generating V1, X1 and Z1
              Sxz <- matrix(c(vv1, cvx, cvz, 
                             cvx, vx1, cxz, 
                             cvz, cxz, vz1), 
                             nrow=3, ncol=3, byrow=TRUE)
              Mxz <- matrix(c(0,0,0),nrow=3,ncol=3)
              XZ1 <- rmvnorm(N,Mxz,Sxz)
              ## Generating V2, X2 and Z2
              Sexz <- matrix(c(vev,0,vex,0,vez),
                             nrow=3,ncol=3, byrow=TRUE)
              Mexz <- matrix(c(0,0,0),nrow=3,ncol=1)
```

74
T2 <- matrix(0,nrow=N,ncol=3)
Al <- matrix(c(alv,0,0,
0,alx,0,
0,0,alz),nrow=3,ncol=3, byrow=TRUE)
Exz2 <- rmvnorm(N,Mexz,Sexz)
XZ2 <- T2+(XZ1%*%Al)+Exz2
Generating X3 and Z3
T3 <- matrix(0,nrow=N,ncol=3)
Exz3 <- rmvnorm(N,Mexz,Sexz)
XZ3 <- T3+(XZ2%*%Al)+Exz3
for (k in 1:K) # Looping for simulation replication
{
 print(" ")
 print(c(k,alv,alx,alz,cxz,cvx,cvz,bez))
 ## Generating Y and Yw
 Vey <- matrix(c(vey),nrow=1,ncol=1)
 Mey <- matrix(c(0),nrow=1,ncol=1)
 Ey1 <- rmvnorm(N,Mey,Vey)
 Y1 <- (XZ1%*%t(By)+Ey1)
 Ey2 <- rmvnorm(N,Mey,Vey)
 Y2 <- (XZ2%*%t(By)+Ey2)
 Ey3 <- rmvnorm(N,Mey,Vey)
 Y3 <- (XZ3%*%t(By)+Ey3)
 ## Data processing
 Dt <- cbind(Y1,Y2,Y3,XZ1,XZ2,XZ3)
 Dt <- as.real(Dt)
 Dt <- matrix(Dt, nrow=N, ncol=12)
 varNames <-
 c("y1","y2","y3","v1","x1","z1","v2","x2","z2","v3","x3","z3")
 varNames1 <- c("y1","y2","y3","v1","x1","v2","x2","v3","x3")
 latNames <- c("y1","y2","y3","v1","x1","v2","x2","v3","ksi")
 varNames2 <- c("dy2","dy3","dv2","dx2","dv3","dx3")
 write.table(Dt,"Dt0.dat", sep="\t", row.names=FALSE,col.names=varNames)
 input <- "Dt0.dat"
 data <- read.table(file=input, header=TRUE)
 is.na(data)=data==999
 data1 <- data[,c(1,2,3,4,5,6,7,8,9,10,11,12)]
 data0 <- matrix(data1, nrow=N, ncol=6)
 diff <- matrix(c(-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
 nrow=6,ncol=12,byrow=TRUE)
 Dt2 <- Dt%*%t(diff)
 write.table(Dt2,"Dt2.dat", sep="\t", row.names=FALSE,col.names=varNames2)
 input2<- "Dt2.dat"
 data2 <- read.table(file=input2, header=TRUE)
 is.na(data)=data==999
 datay <- data[,c(1,2,3)]
 datax <- data[,c(4,5,7,8,10,11)]
 My <- rowMeans(datay)
 Mx <- rowMeans(datax)
 Myx <- cbind(My,My,My,Mx,Mx,Mx)
 Dt3 <- data1-Myx
write.table(Dt3,"Dt3.dat", sep="\\t", row.names=FALSE, col.names=varNames1)

input3 <- "Dt3.dat"
data3 <- read.table(file=input3, header=TRUE)
is.na(data)=data==999

V <- cov(data)
M <- colMeans(data)
Vd <- cov(data2)
Md <- colMeans(data2)

C. Estimation Process
C0. Full Model
C0a. Specifying
Model0 <- mxModel("Model0",
 mxData(observed=data, type="raw"),
 mxMatrix(type="Full", nrow=12, ncol=12,
 values=c(0,0,0, bev,bex,bez, 0,0,0, 0,0,0,
 0,0,0, 0,0,0, bev,bex,bez, 0,0,0,
 0,0,0, 0,0,0, 0,0,0, 0,0,0,
 0,0,0, 0,0,0, 0,0,0, 0,0,0,
 0,0,0, 0,0,0, 0,0,0, 0,0,0,
 0,0,0, 0,0,0, 0,0,0, 0,0,0,
 0,0,0, 0,0,0, 0,0,0, 0,0,0,
 0,0,0, 0,0,0, 0,0,0, 0,0,0,
 0,0,0, 0,0,0, 0,0,0, 0,0,0,
 0,0,0, 0,0,0, 0,0,0, 0,0,0,
 0,0,0, 0,0,0, 0,0,0, 0,0,0,
 0,0,0, 0,0,0, 0,0,0, 0,0,0),
 free=c(F,F,F, T,T,T, F,F,F, F,F,F,
 labels=c(NA,NA,NA, "bv", "bx", "bz", NA, NA, NA, NA, NA, NA, NA, NA,
 NA,NA,NA, NA, NA, "bv", "bx", "bz", NA, NA, NA, NA, NA, NA, NA,
 NA,NA,NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
 NA,NA,NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
 NA,NA,NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
 NA,NA,NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
 NA,NA,NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
 NA,NA,NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
 NA,NA,NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
 NA,NA,NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
 NA,NA,NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
 NA,NA,NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
 NA,NA,NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA),
 byrow=TRUE, name="A"),
 mxMatrix(type="Symm", nrow=12, ncol=12,
 values=c(vey,0 , 0 , 0,0,0, 0,0,0, 0,0,0,
 0, vey,0 , 0,0,0, 0,0,0, 0,0,0,
 0 , 0, vey,0 , 0,0,0, 0,0,0, 0,0,0,
 0,0,0, V[4,4],V[5,4],V[6,4], V[7,4],V[8,4],V[9,4],
 V[10,4],V[11,4],V[12,4],

76
free=c(
 F,F,F, T,T,T, T,T,T,
 F,F,F, T,T,T, T,T,T,
i20 <- summary_Fit[[1]]$Estimate[[51]]
i30 <- summary_Fit[[1]]$Estimate[[52]]
pk0 <- 0
a10 <- 0
output0 <- c(bv0,bx0,bz0,p10,p20,p30,i10,i20,i30,pk0,a10)
print(output0)
write.table(t(output0), file="outfile0.dat", sep=" ",
eol="\n", na="NA", dec=".", row.names=FALSE,
col.names=FALSE, append=TRUE)

C1. Standard Regression Model
C1a. Specifying
Modell <- mxModel("Modell",
 mxData(observed=data1, type="raw"),
 mxMatrix(type="Full",nrow=9,ncol=9,
 values=c(0,0,0, bev,bex, 0 ,0 , 0 ,0 ,
 0,0,0, 0 ,0 , bev,bex, 0 ,0 ,
 0,0,0, 0 ,0 , 0 ,0 , bev,bex,
 0,0,0, 0,0, 0,0, 0,0,
 0,0,0, 0,0, 0,0, 0,0,
 0,0,0, 0,0, 0,0, 0,0,
 0,0,0, 0,0, 0,0, 0,0,
 0,0,0, 0,0, 0,0, 0,0,
 0,0,0, 0,0, 0,0, 0,0,
 0,0,0, 0,0, 0,0, 0,0),
 free=c(F,F,F, T,T, F,F, F,F,
 F,F,F, F,F, T,T, F,F,
 labels=c(NA,NA,NA, "bv","bx", NA ,NA , NA ,NA ,
 NA,NA,NA, NA ,NA , "bv","bx", NA ,NA ,
 NA,NA,NA, NA ,NA , NA ,NA , "bv","bx",
 NA,NA,NA, NA ,NA , NA ,NA , NA,NA,NA,
 NA,NA,NA, NA ,NA , NA,NA, NA,NA,NA,
 NA,NA,NA, NA ,NA , NA,NA, NA,NA,NA,
 NA,NA,NA, NA ,NA , NA,NA, NA,NA,NA,
 NA,NA,NA, NA,NA, NA,NA, NA,NA,NA,
 NA,NA,NA, NA,NA, NA,NA, NA,NA,NA,
 NA,NA,NA, NA,NA, NA,NA, NA,NA,NA,
 NA,NA,NA, NA,NA, NA,NA, NA,NA,NA),
 byrow=TRUE, name="A"),
 mxMatrix(type="Symm",nrow=9,ncol=9,
 values=c(vey,0 ,0 ,0,0, 0,0, 0,0,
 0,vey,0 ,0,0, 0,0, 0,0,
 0,0,vey,0,0, 0,0, 0,0,
 0,0,0, v[4,4],V[5,4], V[7,4],V[8,4], V[10,4],V[11,4],
 0,0,0, V[5,4],V[5,5], V[7,5],V[8,5], V[10,5],V[11,5],
 0,0,0, V[7,4],V[7,5], V[7,7],V[8,7], V[10,7],V[11,7],
 0,0,0, V[8,4],V[8,5], V[8,7],V[8,8], V[10,8],V[11,8],
 0,0,0, V[10,4],V[10,5], V[10,7],V[10,8],
 V[10,10],V[11,10],
 0,0,0, V[11,4],V[11,5], V[11,7],V[11,8],
 V[11,10],V[11,11]),
 free=c(T,F,F, F,F, F,F, F,F,
 F,F,T, T,T, T,T, T,T,
 F,F,F, T,T, T,T, T,T,
 F,F,F, T,T, T,T, T,T,
 F,F,F, T,T, T,T, T,T,
C1b. Processing

Model1Fit <- mxRun(Model1)

summary_Fit <- summary(Model1Fit)

C1c. Writing

bv1 <- summary_Fit[[1]]$Estimate[[1]]
bx1 <- summary_Fit[[1]]$Estimate[[2]]
bz1 <- bez
p11 <- summary_Fit[[1]]$Estimate[[3]]
p21 <- summary_Fit[[1]]$Estimate[[3]]
p31 <- summary_Fit[[1]]$Estimate[[3]]
i11 <- summary_Fit[[1]]$Estimate[[25]]
i21 <- summary_Fit[[1]]$Estimate[[26]]
i31 <- summary_Fit[[1]]$Estimate[[27]]

output1 <- c(bv1, bx1, bz1, p11, p21, p31, i11, i21, i31, pk1, al1)
print(output1)

write.table(t(output1), file="outfile1.dat", sep=" ", eol="\n", na="NA", dec=".", row.names=FALSE, col.names=FALSE, append=TRUE)

C2. Time Invariant Individual Effect Model

C2a. Specifying

Model2 <- mxModel("Model2",

mxData(observed=dat1, type="raw"),

mxMatrix(type="Full", nrow=10, ncol=10,

values=c(0,0,0, bev,bex, 0 ,0 , 0 ,0 , 1,
 0,0,0, 0 ,0 , bev,bex, 0 ,0 , 1,
 0,0,0, 0,0, 0,0, bev,bex, 1,
 0,0,0, 0,0, 0,0, 0,0, 0,
 0,0,0, 0,0, 0,0, 0,0, 0,
 0,0,0, 0,0, 0,0, 0,0, 0,
 0,0,0, 0,0, 0,0, 0,0, 0,
 0,0,0, 0,0, 0,0, 0,0, 0,
 0,0,0, 0,0, 0,0, 0,0, 0,
 0,0,0, 0,0, 0,0, 0,0, 0,

free=c(F,F,F, T,T, F,F, F,F, F,

mxRAMObjective("A","S","F","M",dimnames=varNames1))

C1b. Processing

ModellFit <- mxRun(Modell1)

summary_Fit <- summary(ModellFit)

C1c. Writing

bv1 <- summary_Fit[[1]]$Estimate[[1]]
bx1 <- summary_Fit[[1]]$Estimate[[2]]
bz1 <- bez
p11 <- summary_Fit[[1]]$Estimate[[3]]
p21 <- summary_Fit[[1]]$Estimate[[3]]
p31 <- summary_Fit[[1]]$Estimate[[3]]
i11 <- summary_Fit[[1]]$Estimate[[25]]
i21 <- summary_Fit[[1]]$Estimate[[26]]
i31 <- summary_Fit[[1]]$Estimate[[27]]

pk1 <- 0
al1 <- 0

output1 <- c(bv1, bx1, bz1, p11, p21, p31, i11, i21, i31, pk1, al1)
print(output1)

write.table(t(output1), file="outfile1.dat", sep=" ", eol="\n", na="NA", dec=".", row.names=FALSE, col.names=FALSE, append=TRUE)
labels=c(
NA, NA, NA, "bv", "bx", NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, "bv", "bx", NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA),
byrow=TRUE, name="A"),
mxMatrix(type="Symm", nrow=10, ncol=10,
values=c(vey, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, vey, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, vey, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, v[4,4], v[5,4], v[7,4], v[8,4], v[10,4], v[11,4], 0.1,
0, 0, 0, v[5,4], v[5,5], v[7,5], v[8,5], v[10,5], v[11,5], 0.1,
0, 0, 0, v[7,4], v[7,5], v[7,7], v[8,7], v[10,7], v[11,7], 0.1,
0, 0, 0, v[8,4], v[8,5], v[8,7], v[8,8], v[10,8], v[11,8], 0.1,
0, 0, 0, v[10,4], v[10,5], v[10,7], v[10,8], v[10,10], v[11,10], 0.1,
0, 0, 0, v[11,4], v[11,5], v[11,7], v[11,8], v[11,10], v[11,11], 0.1,
0, 0, 0, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1),
free=c(T, F, F, F, F, F, F, F,
F, T, F, F, F, F, F, F,
F, F, F, T, T, T, T, T,
F, T, T, T, T, T, T, T,
F, T, T, T, T, T, T, T,
F, T, T, T, T, T, T, T,
F, F, T, T, T, T, T, T,
F, F, T, T, T, T, T, T,
F, F, F, T, T, T, T, T),
labels=c("p1", NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, "p1", NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "pk"),
byrow=TRUE, name="S"),
mxMatrix(type="Full", nrow=9, ncol=10,
values=c(1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0)}
C2b. Processing

Model2Fit <- mxRun(Model2)
summary_Fit <- summary(Model2Fit)

C2c. Writing

bv2 <- summary_Fit[[1]]$Estimate[[1]]
bx2 <- summary_Fit[[1]]$Estimate[[2]]
bz2 <- bez
p12 <- summary_Fit[[1]]$Estimate[[3]]
p22 <- summary_Fit[[1]]$Estimate[[3]]
p32 <- summary_Fit[[1]]$Estimate[[3]]
i12 <- summary_Fit[[1]]$Estimate[[32]]
i22 <- summary_Fit[[1]]$Estimate[[33]]
i32 <- summary_Fit[[1]]$Estimate[[34]]
pk2 <- summary_Fit[[1]]$Estimate[[31]]
al2 <- 0

output2 <- c(bv2, bx2, bz2, p12, p22, p32, i12, i22, i32, pk2, al2)
print(output2)
write.table(t(output2), file="outfile2.dat", sep=" ", eol="\n", na="NA", dec=".", row.names=FALSE, col.names=FALSE, append=TRUE)

C3. Constrained Autoregression Model

C3a. Specifying

Model3 <- mxModel("Model3",
 mxData(observed=data1, type="raw"),
 mxMatrix(type="Full",nrow=1,ncol=1,free=TRUE,values=bev,
 labels= "bv", name="Mbv"),
 mxMatrix(type="Full",nrow=1,ncol=1,free=TRUE,values=bex,
 labels= "bx", name="Mbx"),
 mxMatrix(type="Full",nrow=1,ncol=1,free=TRUE,values=1,
 labels= "a", name="Ma"),
 mxAlgebra(expression=(-1)*Ma*Mbv,name="d"),
 mxAlgebra(expression=(-1)*Ma*Mbx,name="e"),
 mxMatrix(type="Full",nrow=9,ncol=9,
 values=c(0,0,0, 0,0,0,0,0,0,
 0,0,0, 0,0,0,0,0,0,
 0,0,0, 0,0,0,0,0,0,
 0,0,0, 0,0,0,0,0,0,
 0,0,0, 0,0,0,0,0,0,
 0,0,0, 0,0,0,0,0,0,
 0,0,0, 0,0,0,0,0,0,
 0,0,0, 0,0,0,0,0,0,
 0,0,0, 0,0,0,0,0,0,
 0,0,0, 0,0,0,0,0,0,
 0,0,0, 0,0,0,0,0,0,
 0,0,0, 0,0,0,0,0,0,
 0,0,0, 0,0,0,0,0,0,
 0,0,0, 0,0,0,0,0,0,
 0,0,0, 0,0,0,0,0,0,
 0,0,0, 0,0,0,0,0,0,
 0,0,0, 0,0,0,0,0,0,
 0,0,0, 0,0,0,0,0,0,
 0,0,0, 0,0,0,0,0,0,
 0,0,0, 0,0,0,0,0,0,
 0,0,0, 0,0,0,0,0,0,
 0,0,0, 0,0,0,0,0,0,
 free=c(F,F,F, F,F, F,F, F,F,
 labels=c(NA ,NA ,NA, NA ,NA ,NA ,NA ,NA ,NA ,NA ,NA ,
 "a",NA ,NA, "d[1,1]","e[1,1]", "bv", "bx", NA ,NA ,

81
NA,"a",NA, NA ,NA ,"d[1,1]","e[1,1]", "bv","bx",
NA,NA,NA, NA,NA, NA,NA, NA,NA, NA,
i23 <- summary_Fit[[1]]$estimate[[35]]
i33 <- summary_Fit[[1]]$estimate[[36]]
pk3 <- 0
al3 <- summary_Fit[[1]]$estimate[[3]]
output3 <- c(bv3, bx3, bz3, p13, p23, p33, i13, i23, i33, pk3, al3)
print(output3)
write.table(t(output3), file="outfile3.dat", sep=" ", na="NA",
dec=".", row.names=FALSE, col.names=FALSE, append=TRUE)

C4. Time Lagged Dependent Model
C4a. Specifying
Model4 <- mxModel("Model4",
 mxData(observed=data1, type="raw"),
 mxMatrix(type="Full", nrow=9, ncol=9,
 values=c(0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,
 1,0,0,0,0,0,0,0,0,
 0,1,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0),
 free=c(F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 T,F,F,F,F,T,T,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 labels=c(NA,NA,NA,NA,NA,NA,NA,NA,NA,
 "a",NA,NA,NA,NA,NA,NA,NA,
 "bv","bx",NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 "bv","bx",NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA),
 byrow=TRUE, name="A"),
 mxMatrix(type="Symm", nrow=9, ncol=9,
 values=c(V[1,1],0,0,0,0,0,0,0,0,
 V[4,1],0,0,0,0,0,0,0,0,
 V[5,1],0,0,0,0,0,0,0,0,
 V[7,1],0,0,0,0,0,0,0,0,
 V[8,1],0,0,0,0,0,0,0,0,
 V[10,1],0,0,0,0,0,0,0,0,
 V[11,1],0,0,0,0,0,0,0,0,
 0,vey,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0)),
 free=c(T,F,F,F,F,F,F,F,
 F,T,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 labels=c(NA,NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA),
 byrow=TRUE, name="B"),
 mxMatrix(type="Symm", nrow=9, ncol=9,
 values=c(V[1,1],0,0,0,0,0,0,0,0,
 V[4,1],0,0,0,0,0,0,0,0,
 V[5,1],0,0,0,0,0,0,0,0,
 V[7,1],0,0,0,0,0,0,0,0,
 V[8,1],0,0,0,0,0,0,0,0,
 V[10,1],0,0,0,0,0,0,0,0,
 V[11,1],0,0,0,0,0,0,0,0,
 0,vey,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0)),
 free=c(T,F,F,F,F,F,F,F,
 F,T,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 labels=c(NA,NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA),
 byrow=TRUE, name="C"),
 mxMatrix(type="Symm", nrow=9, ncol=9,
 values=c(V[1,1],0,0,0,0,0,0,0,0,
 V[4,1],0,0,0,0,0,0,0,0,
 V[5,1],0,0,0,0,0,0,0,0,
 V[7,1],0,0,0,0,0,0,0,0,
 V[8,1],0,0,0,0,0,0,0,0,
 V[10,1],0,0,0,0,0,0,0,0,
 V[11,1],0,0,0,0,0,0,0,0,
 0,vey,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0)),
 free=c(T,F,F,F,F,F,F,F,
 F,T,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 labels=c(NA,NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA),
 byrow=TRUE, name="D"),
 mxMatrix(type="Symm", nrow=9, ncol=9,
 values=c(V[1,1],0,0,0,0,0,0,0,0,
 V[4,1],0,0,0,0,0,0,0,0,
 V[5,1],0,0,0,0,0,0,0,0,
 V[7,1],0,0,0,0,0,0,0,0,
 V[8,1],0,0,0,0,0,0,0,0,
 V[10,1],0,0,0,0,0,0,0,0,
 V[11,1],0,0,0,0,0,0,0,0,
 0,vey,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0)),
 free=c(T,F,F,F,F,F,F,F,
 F,T,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 F,F,F,F,F,F,F,F,
 labels=c(NA,NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA,
 NA,NA,NA,NA,NA,NA,NA,NA),
 byrow=TRUE, name="E"))
C4b. Processing

Model4Fit <- mxRun(Model4)

summary_Fit <- summary(Model4Fit)

C4c. Writing

bv4 <- summary_Fit[[1]]$Estimate[[2]]
bx4 <- summary_Fit[[1]]$Estimate[[3]]
bz4 <- bez
p14 <- 0.0
p24 <- summary_Fit[[1]]$Estimate[[5]]
p34 <- summary_Fit[[1]]$Estimate[[6]]
i14 <- 0.0
i24 <- summary_Fit[[1]]$Estimate[[35]]
i34 <- summary_Fit[[1]]$Estimate[[36]]

pk4 <- 0
al4 <- summary_Fit[[1]]$Estimate[[1]]

output4 <- c(bv4, bx4, bz4, p14, p24, p34, i14, i24, i34, pk4, al4)

print(output4)

write.table(t(output4), file="outfile4.dat", sep=" ", eol="\n", na="NA", dec=".", row.names=FALSE, col.names=FALSE, append=TRUE)

C5. Differencing Model

C5a. Specifying

Model5 <- mxModel("Model5",

mxData(observed=data2, type="raw"),

mxMatrix(type="Full", nrow=6, ncol=6,

values=c(0,0, bev,bex, 0 ,0 ,
 0,0, 0,0 , bev,bex,
0,0, 0, 0, 0, 0,0,
0,0, 0,0, 0,0, 0,0,
0,0, 0,0, 0,0, 0,0, 0,0),

free=c(F,F, T,T, F,F,
F,F, F,F, F,F,
F,F, F,F, F,F,
F,F, F,F, F,F,

labels=c(NA,NA, "bv","bx", NA ,NA ,
NA,NA, NA ,"bv","bx",

...
C4b. Processing

Model5Fit <- mxRun(Model5)
summary_Fit <- summary(Model5Fit)

C4c. Writing

output5 <- c(bv5, bx5, bz5, p15, p25, p35, i15, i25, i35, pk5, al5)
print(output5)
write.table(t(output5), file="outfile5.dat", sep=" ", eol="\n", na="NA", dec=".", row.names=FALSE, col.names=FALSE, append=TRUE)

C6. Deviance Regression Model

C6a. Specifying

Model6 <- mxModel("Model6",
mxData(observed=data3, type="raw"),
mxMatrix(type="Full", nrow=9, ncol=9,
values=c(0,0,0, bev,bex, 0 ,0 , 0 ,0 ,
0,0,0, 0 ,0 , bev,bex, 0 ,0 ,
0,0,0, 0,0, 0,0, bev,bex, 0,0, 0,0, 0,0, bev,bex,
0,0,0, 0,0, 0,0, 0,0, bev,bex, 0,0, 0,0, 0,0, bev,bex),
labels=c("i2","i3","md2","md3","md5","md6"),
name="M"),
mxRAMObjective("A","S","F","M",dimnames=varNames2))

C4b. Processing

Model5Fit <- mxRun(Model5)
summary_Fit <- summary(Model5Fit)

C4c. Writing

output5 <- c(bv5, bx5, bz5, p15, p25, p35, i15, i25, i35, pk5, al5)
print(output5)
write.table(t(output5), file="outfile5.dat", sep=" ", eol="\n", na="NA", dec=".", row.names=FALSE, col.names=FALSE, append=TRUE)

C6. Deviance Regression Model

C6a. Specifying

Model6 <- mxModel("Model6",
mxData(observed=data3, type="raw"),
mxMatrix(type="Full", nrow=9, ncol=9,
values=c(0,0,0, bev,bex, 0 ,0 , 0 ,0 ,
0,0,0, 0 ,0 , bev,bex, 0 ,0 ,
0,0,0, 0,0, 0,0, bev,bex, 0,0, 0,0, 0,0, bev,bex,
0,0,0, 0,0, 0,0, 0,0, bev,bex, 0,0, 0,0, 0,0, bev,bex),
labels=c("i2","i3","md2","md3","md5","md6"),
name="M"),
mxRAMObjective("A","S","F","M",dimnames=varNames2))

C4b. Processing

Model5Fit <- mxRun(Model5)
summary_Fit <- summary(Model5Fit)

C4c. Writing

output5 <- c(bv5, bx5, bz5, p15, p25, p35, i15, i25, i35, pk5, al5)
print(output5)
write.table(t(output5), file="outfile5.dat", sep=" ", eol="\n", na="NA", dec=".", row.names=FALSE, col.names=FALSE, append=TRUE)

C6. Deviance Regression Model

C6a. Specifying

Model6 <- mxModel("Model6",
mxData(observed=data3, type="raw"),
mxMatrix(type="Full", nrow=9, ncol=9,
values=c(0,0,0, bev,bex, 0 ,0 , 0 ,0 ,
0,0,0, 0 ,0 , bev,bex, 0 ,0 ,
0,0,0, 0,0, 0,0, bev,bex, 0,0, 0,0, 0,0, bev,bex,
0,0,0, 0,0, 0,0, 0,0, bev,bex, 0,0, 0,0, 0,0, bev,bex),
labels=c("i2","i3","md2","md3","md5","md6"),
name="M"),
mxRAMObjective("A","S","F","M",dimnames=varNames2))

C4b. Processing

Model5Fit <- mxRun(Model5)
summary_Fit <- summary(Model5Fit)

C4c. Writing

output5 <- c(bv5, bx5, bz5, p15, p25, p35, i15, i25, i35, pk5, al5)
print(output5)
write.table(t(output5), file="outfile5.dat", sep=" ", eol="\n", na="NA", dec=".", row.names=FALSE, col.names=FALSE, append=TRUE)
86
mxRAMObjective("A","S","F","M",dimnames=varNames1)
)
C6b. Processing
Model6Fit <- mxRun(Model6)
summary_Fit <- summary(Model6Fit)
C6c. Writing
bv6 <- summary_Fit[[1]]$Estimate[[1]]
bx6 <- summary_Fit[[1]]$Estimate[[2]]
bz6 <- bez
p16 <- summary_Fit[[1]]$Estimate[[3]]
p26 <- summary_Fit[[1]]$Estimate[[3]]
p36 <- summary_Fit[[1]]$Estimate[[3]]
i16 <- summary_Fit[[1]]$Estimate[[25]]
i26 <- summary_Fit[[1]]$Estimate[[26]]
i36 <- summary_Fit[[1]]$Estimate[[27]]
pk6 <- 0
al6 <- 0
output6 <- c(bv6, bx6, bz6, p16, p26, p36, i16, i26, i36, pk6, al6)
print(output6)
write.table(t(output6), file="outfile6.dat", sep=" ", eol="\n", na="NA", dec=".", row.names=FALSE, col.names=FALSE, append=TRUE)
file.remove("Dt0.dat")
file.remove("Dt2.dat")
file.remove("Dt3.dat")
D. Results Analysing
D0. Full Model
out0 <- read.table(file=" outfile0.dat",header=FALSE,sep=" ",dec=".")
is.na(out0)=out0==999
ME0 <-colMeans(out0)
ME0 <-matrix(ME0,nrow=1,ncol=11)
PV <-matrix(c(bev,bex,bez,vey,vey,vey,0,0,0,0,0),nrow=1,ncol=11)
BE0 <-ME0-PV
SE0 <-sqrt(diag(cov(out0)))
SE0 <-matrix(SE0,nrow=1,ncol=11)
ID0 <-matrix(c(0,N,alv,alx,alz,cvx,cvz,cxz,bez),nrow=1,ncol=9)
Re0 <-cbind(ME0,BE0,SE0,ID0)
write.table(Re0, file="outfile100.dat", sep=" ",
eol="\n", na="NA", dec=".", row.names=FALSE,
col.names=FALSE,
append=TRUE)
file.remove("outfile0.dat")
D1. Standard Spatial Autoregression Model
out1 <- read.table(file=" outfile1.dat",header=FALSE,sep=" ",dec=".")
is.na(out1)=out1==999
ME1 <-colMeans(out1)
ME1 <-matrix(ME1,nrow=1,ncol=11)
PV <-matrix(c(bev,bex,bez,vey,vey,vey,0,0,0,0,0),nrow=1,ncol=11)
BE1 <-ME1-PV
SE1 <-sqrt(diag(cov(out1)))
SE1 <-matrix(SE1,nrow=1,ncol=11)
ID1 <-matrix(c(1,N,alv,alx,alz,cvx,cvz,cxz,bez),nrow=1,ncol=9)
Re1 <-cbind(ME1,BE1,SE1,ID1)
write.table(Re1, file="outfile100.dat", sep=" ",
eol="\n", na="NA", dec=".", row.names=FALSE,
col.names=FALSE,
append=TRUE)
file.remove("outfile1.dat")
D2. Time Invariant Individual Effect Model
```r
out2 <- read.table(file="outfile2.dat", header=FALSE, sep=" ", dec=".")
  is.na(out2)=out2==999
ME2 <- colMeans(out2)
ME2 <- matrix(ME2, nrow=1, ncol=11)
PV <- matrix(c(bev, bex, bez, vey, vey, vey, 0, 0, 0, 0, 0), nrow=1, ncol=11)
BE2 <- ME2-PV
SE2 <- sqrt(diag(cov(out2)))
SE2 <- matrix(SE2, nrow=1, ncol=11)
ID2 <- matrix(c(2, N, alv, alx, alz, cvx, cvz, cxz, bez), nrow=1, ncol=9)
Re2 <- cbind(ME2, BE2, SE2, ID2)
write.table(Re2, file="outfile100.dat", sep=" ",
  eol="\n", na="NA", dec=".", row.names=FALSE,
  col.names=FALSE,
  append=TRUE)

file.remove("outfile2.dat")
## D3. Constrained Autoregression Model

out3 <- read.table(file="outfile3.dat", header=FALSE, sep=" ", dec=".")
  is.na(out3)=out3==999
ME3 <- colMeans(out3)
ME3 <- matrix(ME3, nrow=1, ncol=11)
PV <- matrix(c(bev, bex, bez, vey, vey, vey, 0, 0, 0, 0, 0), nrow=1, ncol=11)
BE3 <- ME3-PV
SE3 <- sqrt(diag(cov(out3)))
SE3 <- matrix(SE3, nrow=1, ncol=11)
ID3 <- matrix(c(3, N, alv, alx, alz, cvx, cvz, cxz, bez), nrow=1, ncol=9)
Re3 <- cbind(ME3, BE3, SE3, ID3)
write.table(Re3, file="outfile100.dat", sep=" ",
  eol="\n", na="NA", dec=".", row.names=FALSE,
  col.names=FALSE,
  append=TRUE)

file.remove("outfile3.dat")
## D4. Time Lagged Dependent Model

out4 <- read.table(file="outfile4.dat", header=FALSE, sep=" ", dec=".")
  is.na(out4)=out4==999
ME4 <- colMeans(out4)
ME4 <- matrix(ME4, nrow=1, ncol=11)
PV <- matrix(c(bev, bex, bez, vey, vey, vey, 0, 0, 0, 0, 0), nrow=1, ncol=11)
BE4 <- ME4-PV
SE4 <- sqrt(diag(cov(out4)))
SE4 <- matrix(SE4, nrow=1, ncol=11)
ID4 <- matrix(c(4, N, alv, alx, alz, cvx, cvz, cxz, bez), nrow=1, ncol=9)
Re4 <- cbind(ME4, BE4, SE4, ID4)
write.table(Re4, file="outfile100.dat", sep=" ",
  eol="\n", na="NA", dec=".", row.names=FALSE,
  col.names=FALSE,
  append=TRUE)

file.remove("outfile4.dat")
## D5. Differencing Model

out5 <- read.table(file="outfile5.dat", header=FALSE, sep=" ", dec=".")
  is.na(out5)=out5==999
ME5 <- colMeans(out5)
ME5 <- matrix(ME5, nrow=1, ncol=11)
PV <- matrix(c(bev, bex, bez, vey, vey, vey, 0, 0, 0, 0, 0), nrow=1, ncol=11)
BE5 <- ME5-PV
SE5 <- sqrt(diag(cov(out5)))
SE5 <- matrix(SE5, nrow=1, ncol=11)
ID5 <- matrix(c(5, N, alv, alx, alz, cvx, cvz, cxz, bez), nrow=1, ncol=9)
Re5 <- cbind(ME5, BE5, SE5, ID5)
write.table(Re5, file="outfile100.dat", sep=" ",
  eol="\n", na="NA", dec=".", row.names=FALSE,
  col.names=FALSE,
```
out6 <- read.table(file="outfile6.dat",header=FALSE,sep=" ",dec=".")
is.na(out6) = out6 == 999
ME6 <- colMeans(out6)
ME6 <- matrix(ME6, nrow=1, ncol=11)
PV <- matrix(c(bev, bex, bez, vey, vey, vey, 0, 0, 0, 0, 0), nrow=1, ncol=11)
BE6 <- ME6 - PV
SE6 <- sqrt(diag(cov(out6)))
SE6 <- matrix(SE6, nrow=1, ncol=11)
ID6 <- matrix(c(6, N, alv, alx, alz, cvx, cvz, cxz, bez), nrow=1, ncol=9)
Re6 <- cbind(ME6, BE6, SE6, ID6)
write.table(Re6, file="outfile100.dat", sep=" ",
eol="\n", na="NA", dec=".", row.names=FALSE,
col.names=FALSE,
append=TRUE)
file.remove("outfile6.dat")