Dynamical modelling of stellar streams in a cosmological setting
Buist, Johannes Theodoor

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Chapter 3

The evolution of streams in a time-dependent potential

Abstract

We study the evolution of streams in a time-dependent spherical gravitational potential. Our goal is to establish what are the imprints of this time evolution on the properties of streams as well as their observability. To this end, we have performed a suite of test-particle experiments for a host system that doubles its mass during the integration time and for a variety of initial conditions. In these experiments we found that the most striking imprint is a misalignment of \(\sim 10^\circ \) in the angular location of the apocentres of the streams compared to the static case (and to the orbit of the centre of mass), which only becomes apparent for sufficiently long streams. We have also developed an analytic model using action-angle variables which allows us to explain this behaviour and to identify the most important signature of time evolution, namely a difference in the slope defined by the distribution of particles along a stream in frequency and in angle space. Although a difference in slope can arise when the present-day potential is not correctly modelled, this shortcoming can be by-passed because in this case, streams are no longer straight lines in angle space, but depict a wiggly appearance and an implausible energy gradient. The difference in slope due to time-evolution is small, typically \(\sim 10^{-2} \) and its amplitude depends on the growth rate of the potential, but nonetheless we find that it could be observable if accurate full-space information for nearby long streams is available. On the other hand, disregarding this effect may bias the determination of the present-day characteristics of the potential.

1 Accepted for publication in A&A.
CHAPTER 3: THE EVOLUTION OF STREAMS IN A TIME-DEPENDENT POTENTIAL

3.1 Introduction

Throughout the history of the Milky Way, and in the context of the Λ cold dark matter cosmogony, many dwarf galaxies must have been disrupted leaving behind stellar streams (Helmi & White 1999). Especially the Galactic halo probably contains many such relics of this assembly history (Helmi 2008).

Tidal streams were predicted for the first time in the seminal work of Toomre & Toomre (1972) where the interactions of two galaxies were simulated. Lynden-Bell & Lynden-Bell (1995) and Johnston et al. (1996) put forward the idea of tidal streams lurking in the Galactic halo, merely a few years after the discovery of the Sagittarius dSph by Ibata et al. (1994). Streams and debris from the Sagittarius stream were found several years later by Ivezić et al. (2000); Yanny et al. (2000); Ibata et al. (2001b) and a full sky view of the Sagittarius stream was provided by Majewski et al. (2003). Other examples are the globular clusters streams (Grillmair et al. 1995), such as Palomar 5 (Odenkirchen et al. 2001) and NGC5466 (Grillmair & Johnson 2006). A wealth of new streams have been found in the Sloan Digital Sky Survey (see e.g. Grillmair & Dionatos 2006), in the ‘Field of Streams’ (Belokurov et al. 2006). Streams have also been found with other galaxies (Martínez-Delgado et al. 2010; Martin et al. 2014), most notably around M31 (Ibata et al. 2001a).

On the modelling side, much effort has been put into understanding the dynamics of streams and using these to infer the Galactic potential. Stream stars follow trajectories that are very similar to those of their progenitors (Jin & Lynden-Bell 2007; Binney 2008) albeit slightly offset. The evolution of streams is relatively simple in action-angle coordinates (Helmi & White 1999; Tremaine 1999). Furthermore, streams appear as distinct clumps in integrals of motion space (Helmi et al. 1999; Helmi & de Zeeuw 2000), and they show the highest coherence in the true (underlying) potential, and this can be used to constrain its characteristic parameters (Peñarrubia et al. 2012; Sanderson et al. 2014). The alignment of the angles and orbital frequencies can aid in determining the potential as proposed by Sanders & Binney (2013a).

The current cosmological model predicts significant evolution in the mass content of galaxies and of their dark matter haloes through cosmic time (Springel et al. 2005). Such evolution may be directly measurable using stellar streams, given their sensitivity to the gravitational potential in which they are embedded (Johnston et al. 1999; Eyre & Binney 2009; Price-Whelan et al. 2014; Bonaca et al. 2014). A first study was presented by Peñarrubia et al. (2006), who concluded there are no discernible effects of evolution on the distribution of streams in the space of angular momenta and energy because they reflect only the potential at the present day. However, Gómez & Helmi (2010) found that the structure of streams in frequency space does depict long-lasting signatures of time evolution. Also Bonaca et al. (2014) found several biases when they attempted to derive the characteristic parameters of a time dependent potential using streams. They partially attributed these biases to the time-evolution of the potential in their simulations.

In the coming decade, the Gaia satellite (Perryman et al. 2001), successfully launched in 2013, will provide an unprecedented vast and detailed view on our Galaxy. With the right understanding of streams, Gaia will allow us to address the assembly history of our Milky Way. This is the main motivation of this Chapter. Our goal is to establish what kind of observable imprints are leftover on the streams’ properties and how to use these to recover the evolutionary path of the Galactic potential. To this end we use the
cosmologically motivated growth model of a spherical halo by Buist & Helmi (2014) and follow the evolution of streams both numerically and using the action-angle formalism.

This Chapter is organised as follows. In Sec. 3.2 we explain the simulations of streams in a time-dependent potential. We analyse the simulations in Sec. 3.3 and develop an analytic model based on action-angles in the adiabatic regime. This allows us to identify the signature of time-evolution on a stream in Sec. 3.4. In Sec. 3.5 we explore the prospects of observing this effect. We conclude in Sec. 3.6.

3.2 Methodology

To understand the behaviour of streams in time-dependent potentials, we take two complementary approaches. We first study numerically the evolution of test particles resembling initially a satellite galaxy. We then attempt to model this evolution using a formalism based on action-angle variables. In Sec. 3.2.1 we describe the set-up of our numerical experiments, and in Sec. 3.2.2 we introduce briefly the action-angle variables and their properties.

3.2.1 Simulations set-up

Evolution of the gravitational potential

![Graph showing increase of enclosed mass for several orbits for our time-dependent potential with growth factor $a_g = 0.8$. The dashed lines show the enclosed mass within the final value of their apocentre. Since the apocentric distances shrink with time, we show with the solid lines the mass enclosed within the time-dependent apocentre values. The timespan of integration for the streams is $t \sim 7 - 8$ Gyr, and the enclosed mass approximately doubles over this timescale.](image)

Figure 3.1: Increase of the enclosed mass for several orbits for our time-dependent potential with growth factor $a_g = 0.8$. The dashed lines show the enclosed mass within the final value of their apocentre. Since the apocentric distances shrink with time, we show with the solid lines the mass enclosed within the time-dependent apocentre values. The timespan of integration for the streams is $t \sim 7 - 8$ Gyr, and the enclosed mass approximately doubles over this timescale.

We model the evolution of a time-dependent Navarro-Frenk-White potential (Navarro et al. 1997, NFW) using the prescription models from Buist & Helmi (2014). This model
gives rise to an inside-out smooth growth that reproduces well the average mass accretion history of the Milky-Way sized haloes from the Aquarius simulations (Springel et al. 2008; Wang et al. 2011). An important characteristic of this model is that mass growth is positive at each radius (i.e. there is no inward flow of mass between neighbouring mass shells). The scale radius r_s and the scale mass M_s (mass enclosed within r_s) of such a halo vary according to

$$M_s(z) = M_{s,0} \exp(-2a_g z),$$

$$r_s(t) = r_{s,0} \left(\frac{M_s(t)}{M_{s,0}} \right)^{1/\gamma},$$

(3.1)

where z is the redshift, and $M_{s,0}$ and $r_{s,0}$ the scale mass and scale radius at the final time ($z = 0$, in a cosmology with $\Omega_m = 0.29$ and $h_{100} = 0.71$). We use $\gamma = 2$ to grow inside out for an NFW potential (Buist & Helmi 2014). The parameter a_g determines the formation epoch, and larger values correspond to more recent formation. In this work we explore a range of values of a_g up to $a_g = 0.8$, which would represent a quite recent formation epoch.

We will model the evolution of streams in this time-dependent potential but we will also study their behaviour in the static case. To make a fair comparison we fix the scale mass and scale radius at the final time to $M_s = 5 \times 10^{11} M_\odot$ and $r_s = 12$ kpc for all our experiments, independent of their time-evolution.

Table 3.1: Orbital Properties at the final time

<table>
<thead>
<tr>
<th>Orbit</th>
<th>r_{apo} (kpc)</th>
<th>r_{peri} (kpc)</th>
<th>L/L_{max}</th>
<th>Ω_r (rad/Gyr)</th>
<th>Ω_ϕ (rad/Gyr)</th>
<th>Ω_ϕ/Ω_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>90</td>
<td>5</td>
<td>0.22</td>
<td>11.38</td>
<td>6.96</td>
<td>0.61</td>
</tr>
<tr>
<td>O2</td>
<td>70</td>
<td>5</td>
<td>0.26</td>
<td>15.06</td>
<td>9.25</td>
<td>0.61</td>
</tr>
<tr>
<td>O3</td>
<td>60</td>
<td>5</td>
<td>0.29</td>
<td>17.79</td>
<td>10.96</td>
<td>0.62</td>
</tr>
<tr>
<td>O4</td>
<td>50</td>
<td>5</td>
<td>0.33</td>
<td>21.54</td>
<td>13.32</td>
<td>0.62</td>
</tr>
<tr>
<td>O5</td>
<td>90</td>
<td>10</td>
<td>0.39</td>
<td>11.00</td>
<td>7.25</td>
<td>0.66</td>
</tr>
<tr>
<td>O6</td>
<td>40</td>
<td>10</td>
<td>0.64</td>
<td>24.97</td>
<td>16.60</td>
<td>0.66</td>
</tr>
<tr>
<td>O7</td>
<td>70</td>
<td>15</td>
<td>0.61</td>
<td>13.69</td>
<td>9.45</td>
<td>0.69</td>
</tr>
<tr>
<td>O8</td>
<td>30</td>
<td>20</td>
<td>0.96</td>
<td>25.89</td>
<td>18.15</td>
<td>0.70</td>
</tr>
<tr>
<td>O9</td>
<td>90</td>
<td>25</td>
<td>0.71</td>
<td>9.68</td>
<td>7.01</td>
<td>0.72</td>
</tr>
<tr>
<td>O10</td>
<td>40</td>
<td>30</td>
<td>0.98</td>
<td>17.83</td>
<td>12.93</td>
<td>0.72</td>
</tr>
<tr>
<td>O11</td>
<td>60</td>
<td>30</td>
<td>0.90</td>
<td>13.21</td>
<td>9.68</td>
<td>0.73</td>
</tr>
<tr>
<td>O12</td>
<td>90</td>
<td>30</td>
<td>0.78</td>
<td>9.25</td>
<td>6.81</td>
<td>0.74</td>
</tr>
<tr>
<td>O13</td>
<td>50</td>
<td>40</td>
<td>0.99</td>
<td>13.32</td>
<td>9.89</td>
<td>0.74</td>
</tr>
<tr>
<td>O14</td>
<td>80</td>
<td>40</td>
<td>0.90</td>
<td>9.36</td>
<td>7.03</td>
<td>0.75</td>
</tr>
<tr>
<td>O15</td>
<td>80</td>
<td>50</td>
<td>0.95</td>
<td>8.53</td>
<td>6.49</td>
<td>0.76</td>
</tr>
</tbody>
</table>
Table 3.2: Progenitor properties

<table>
<thead>
<tr>
<th></th>
<th>σ_{pos} (pc)</th>
<th>σ_{vel} (kpc/Gyr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Carina’</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>‘Sculptor’</td>
<td>300</td>
<td>10</td>
</tr>
<tr>
<td>‘Sagittarius’</td>
<td>700</td>
<td>25</td>
</tr>
</tbody>
</table>

Orbits

We place the satellites on 15 different orbits as listed in Table 3.1. We chose this number to have a variety in distances, orbital timescales (and hence the degree of adiabaticity) and eccentricity of the streams. The apo- and pericentres at the final time were chosen such that the particles spend most of their time in the outer halo and beyond the scale radius of the potential. For a fair comparison of each experiment the final 6-D position of the satellite’s centre of mass is the same for the static and time-dependent cases. We then integrate the orbits backwards in time for about 7-8 Gyr and the more circular orbits for 6-7 Gyr. This range is chosen to make sure that in the time-dependent case all orbits are bound at early times.

We choose to start our orbital integrations when the satellite’s centre of mass is at its first pericentre to represent the first interaction with the Galaxy. This implies that the various orbits have slightly different total integration times, but these only differ up to a maximum of 0.5 Gyr. Within this integration time, the enclosed mass within a fixed radius increases on average with more than a factor 2 in our halo as seen in Fig. 3.1. The actual orbits experience a somewhat smaller increase in enclosed mass because they respond to the halo growth by slowly shrinking.

Progenitors

We distribute the particles in the satellites assuming they follow an isotropic Gaussian in position and in velocity space, characterised by dispersions σ_{pos} and σ_{vel} respectively. We use 10,000 particles centred on the centre of mass of the satellite, which is placed on the orbits described previously. We do not include self-gravity in our simulations. We consider three different progenitors, which we will call ‘Carina’, ‘Sculptor’ and ‘Sagittarius’, as they have properties reminiscent of those observed in these dwarf spheroidal satellites of the Milky Way (see e.g. Martin et al. 2008; Wolf et al. 2010, see Table 3.2).

3.2.2 Action-angle coordinates

Generalities

A particularly useful description of the evolution of streams may be obtained using action-angle coordinates (Goldstein 1950; Helmi & White 1999; Tremaine 1999). In action-angle coordinates, the actions are the momenta, and the angles are the coordinates. The actions are integrals of motion that are adiabatic, i.e. invariant under slow changes of the host potential.
In this section, we only work with a time-independent potential. For a single star, the actions can be found from

\[J_i = \frac{1}{2\pi} \oint_{T_i} p_i dq_i \]

with \(p_i \) the conjugate momentum of coordinate \(q_i \), and \(\oint_{T_i} \) to indicate we integrate over a full period of coordinate \(q_i \). In a spherically symmetric system the actions are the radial, latitudinal and azimuthal actions (\(J_r \), \(J_\theta \) and \(J_\phi \) respectively), and the angles are \(\theta_r \), \(\theta_\theta \) and \(\theta_\phi \), and represent the phase of the orbit in the \(r \), \(\theta \) and \(\phi \) coordinates respectively.

For only a few potentials algebraic expressions of the actions can be derived, such as for the isochrone potential (of which the Kepler potential and harmonic oscillator are limiting cases). Therefore typically numerical methods are required to find the actions (Binney & Tremaine 2008). Furthermore, actions are only directly available when the Hamilton-Jacobi equations are separable, as in the case of spherical and Staeckel potentials (Goldstein 1950; de Zeeuw 1985). In more general axisymmetric and triaxial potentials, approximations to the actions and angles must be used (see e.g. Kaasalainen & Binney 1994; Binney & McMillan 2011; Binney 2012; Sanders & Binney 2014, 2015; Bovy 2014).

Figure 3.2: Relation between the coordinates and the angles in the plane of the orbit. The top panel shows that the radial angle \(\theta_r \) increases by \(2\pi \) in one radial oscillation. In the bottom panel we have plotted \(\phi \) (red) and \(\theta_\phi \) (blue) as function of \(\theta_r \). After one radial period both angles reach the same value \(2\pi \Omega_\phi / \Omega_r \).
Hamilton’s equations for the J_i and θ_i are

\[
\dot{J}_i = \frac{\partial H(J)}{\partial \theta_i} = 0, \\
\dot{\theta}_i = \frac{\partial H(J)}{\partial J_i} \equiv \Omega_i(J),
\]

and $H = H(J)$ only because the actions are invariant. The Ω_i are constants that correspond to the orbital frequencies and also only depend on the J_i. The resulting equations of motion for the θ_i are

\[
\theta_i = \Omega_i t + \theta_i(0),
\]

with $\theta_i(0)$ the initial phase of i-th coordinate.

To determine the angles, we can use a canonical transformation of the second kind $W(q, J)$ (Goldstein 1950; Binney & Tremaine 2008), such that

\[
p_i = \frac{\partial W(q, J)}{\partial q_i}; \quad \theta_i = \frac{\partial W(q, J)}{\partial J_i}.
\]

The generating function for the transformation in a spherical potential is given by (adapted from Binney & Tremaine 2008)

\[
W(q, J) = W_\phi(\phi, J) + W_\theta(\theta, J) + W_r(r, J)
\]

\[
= \int_{\phi_{\min}}^{\phi} d\phi p_\phi(J_\phi) + \int_{\theta_{\min}}^{\theta} d\theta p_\theta(J_\phi, J_\theta) + \int_{r_{\text{peri}}}^{r} dr p_r(J_r, J_\phi, J_\theta),
\]

where the integration is along the trajectory of a particle in phase space. We notice that the three parts of the generating function are indefinite versions of the action integrals without a factor of 2π, and each increases therefore by $2\pi J_i$ in their corresponding periods $2\pi/\Omega_i$. This equation has an algebraic expression in the case of an isochrone potential, and has to be solved numerically otherwise. For the full integrals to compute θ_i in a spherical potential we refer the reader to Appendix 3.A.

Figure 3.3: Distribution in action (left), frequency (second panel) and angle space (right) for particles in a stream, and centred on the centre of mass of the progenitor system. The colours represent the energy gradient, where red is for the trailing and green for the leading arms respectively.

In Fig. 3.2 we show an example how the radial and azimuthal angles (θ_r and θ_ϕ) are related to the radial and azimuthal coordinates (r and ϕ) in the orbital plane. Since
\[W_\phi = \phi J_\phi \] and using Eqs. (3.5) and (3.6)

\[\theta_\phi = \frac{\partial W}{\partial J_\phi} = \phi + \frac{\partial W_r}{\partial J_\phi}. \tag{3.7} \]

The term \(\frac{\partial W_r}{\partial J_\phi} \) has a non-secular oscillation with frequency \(\Omega_r \), and vanishes at apo- and pericentre (\(\theta_r = \{0, \pm \pi\} \)). The secular behaviour of \(\phi \) and \(\theta_\phi \) with time is therefore the same as can also be seen in Fig. 3.2.

Streams in action-angle coordinates: time-independent case

A stream is created when particles drift away from the progenitor, which means we should look at the relative phase with respect to the progenitor centre of mass. For example, the relative azimuthal phase of the \(k \)-th particle is

\[\theta_\phi^k(t) - \theta_\phi^{cm}(t) = \Delta \theta_\phi^k(t) = \Delta \theta_\phi^k(0) + \Delta \Omega_\phi^k t \]

\[\approx \Delta \Omega_\phi^k t, \tag{3.8} \]

where \(\Delta \theta_\phi^k(0) \) is the separation in angles at the initial time, and where the second line corresponds to the case in which the progenitor is small and the stream has evolved for a sufficiently long time.

The \(\Delta \Omega_\phi^k = \Omega_\phi^k - \Omega_\phi^{cm} \) depends on the distribution in action space \(J_i^k \), such that a large action spread results in a large range of frequencies. This implies that larger progenitors generate longer streams than smaller ones if integrated for the same amount of time.

In Fig. 3.3 we show the structure of a stream in action-angle coordinates for the time-independent case. The colours represent the energy gradient, such that green represents the leading tail and red represents the trailing tail. The left panel shows the action distribution which depends both on the initial conditions \(\sigma_{pos} \) and \(\sigma_{vel} \) as well as on the initial orbit\(^3\). This distribution remains invariant in time also in an adiabatically evolving potential. The second-left panel of shows the structure in frequency space, while the third corresponds to angle space. Since angles are \(2\pi \) periodic variables in the right most panel we show the angles modulo \(2\pi \). The different streaks evidence the number of radial and azimuthal wraps the stream has. Note that the slope of the lines in frequency and in angle space are the same in this time-independent potential (Sanders & Binney 2013a) when the initial spread in angles can be neglected\(^4\):

\[\frac{\Delta \theta_\phi}{\Delta \theta_r} = \frac{\Delta \Omega_\phi}{\Delta \Omega_r} = \text{cst}. \tag{3.9} \]

This directly shows why all particles are distributed along straight lines with the same slope in angle and in frequency space.

\(^2\) \(\frac{\partial W_\theta}{\partial J_\phi} = 0 \) on the orbital plane.

\(^3\) Although here we plot \(L = J_\theta + |J_\phi| \), but in the orbital plane \(J_\theta = 0 \).

\(^4\) This equation holds for every particle that is released at the same time from the progenitor.
3.3 Analysis of the test-particle simulations

The results of the simulations for the three progenitors on the various orbits for the time-dependent potential with growth factor \(a_g = 0.8 \) are shown in Fig. 3.4. The colour coding indicates the leading (green) and trailing (red) arms of the stream. For comparison we have over-plotted the orbit of the progenitor integrated forward and backwards in time in the present-day potential. The time of integration for that orbit is between 1 to 3 Gyr, and is chosen to roughly match the length of the corresponding stream. Note that this is much shorter than the time of integration of the particles that form the stream, which is approximately 8 Gyr.

Figure 3.4 clearly shows that larger progenitors give rise to longer and wider streams. The smaller (Carina) progenitor generates thin, short streams, which makes the separate loops of the stream easily recognizable by eye, while the streams from the larger progenitors, depending on the specific orbit considered, are wider and longer, much more phase mixed and sometimes difficult to discern. As we shall see below a clear imprint of the time-evolution of the potential is apparent in the angular location and in the variation of the maximum distance of each ‘petal’ of a stream (the latter being related to both the shrinking of the progenitor’s orbit because of mass growth as well as to the energy gradient along a stream). This effect is more easily discernible for heavier progenitors since they produce more loops, i.e. longer streams, as can be seen in Fig. 3.6. On the other hand, thinner streams have the advantage that they depict their mean orbit much more clearly which is why we will mainly focus on the ‘Carina’ progenitor in what follows.

The differences in the evolution for time-dependent and static potentials are shown in Figs. 3.5 and 3.7 for the Carina-like progenitor, depicted as before on the orbital plane of the progenitor. Note that in all cases the stream in the time-dependent potential is longer than in the static case, as can be seen by comparing the left and middle panels.

The length of a stream depends both on the orbital period and on the initial extent in phase- and configuration space of the progenitor. In the time-dependent potential the enclosed mass at initial times is lower, and the progenitor starts further out. This results in smaller orbital frequencies, or longer periods. Since the rate of divergence of particles in a stream in a spherical potential is proportional to \((t/P)^2 \propto (\Omega t)^2\) (Helmi & White 1999), this would imply that streams should actually be shorter for a fixed integration time \(t\). However, in a time-dependent potential the spread in actions (or integrals of motion such as the energy) is larger for given initial \(\sigma_{\text{pos}}\) and \(\sigma_{\text{vel}}\) (see Fig. 3.8).

For an initially ‘compact’ ensemble of particles, we may use a linear transformation between action-angle coordinates and Cartesian coordinates to derive the initial spread in action-angle space:

\[
\begin{bmatrix}
\Delta \theta \\
\Delta J
\end{bmatrix} = \begin{bmatrix}
\frac{\partial \theta}{\partial q} & \frac{\partial \theta}{\partial p} \\
\frac{\partial J}{\partial q} & \frac{\partial J}{\partial p}
\end{bmatrix} \cdot \begin{bmatrix}
\Delta q \\
\Delta p
\end{bmatrix} \equiv \mathbf{T} \cdot \begin{bmatrix}
\Delta q \\
\Delta p
\end{bmatrix},
\]

where the elements of the transformation matrix \(\mathbf{T}\) will depend on second derivatives of the generating function evaluated at the centre of mass of the progenitor (Helmi & White 1999) as described in detail in Appendix 3.B. We see that many of the terms depend on \(1/\Omega_r\), which is larger in a shallower potential and further out in the potential,
Streams from three progenitor sizes for each of the 15 orbits evolved in the time-dependent potential. The left, middle and right panels correspond to the 'Carina', 'Sculptor' and 'Sagittarius' progenitors (see Table 3.2 for their properties). Particles in green are more bound to the host galaxy (leading arm) while those in red are less bound (trailing arm). The dashed curves in green are the progenitor orbits evolved in today’s potential, with the green integrated forward in time for the leading arm and red backwards for the trailing arm. The current position of the progenitor is indicated with a red cross.

Figure 3.4 (a)
Figure 3.4 (b) Continuation of the figure from the previous page.
Figure 3.5 (a) Streams from the Carina progenitor in the evolving and in the non-evolving potential. The streams in the left and center have the same initial distribution in configuration and velocity space. Those in the right panels have the same initial action-angle distribution as the time-evolving potential (middle panel) but are evolved in a static potential. The colour coding is the same as in the previous figure. The stream-orbit misalignment can be seen by looking at the azimuthal angle of the petals starting from one radial period away from the progenitor, whose position is indicated with a red cross.
3.3: Analysis of the test-particle simulations

Figure 3.5 (b) Continuation of the figure from the previous page.
Figure 3.6: Radial vs angular distribution of particles in the orbital plane for experiment O7 for the different progenitors in the time-dependent case. The dashed curves show the orbit of the centre of mass of the system integrated long enough to reproduce roughly the streams’ lengths. The variations in the apocentric distances are a reflection both of time evolution and of the energy gradient present along a stream. The difference in angular location of the apocentre, on the other hand, is a clear imprint of time evolution, as can be seen by comparing to e.g. Fig. 3.7.

Figure 3.7: Radial vs angular distribution of particles in the orbital plane for experiment O7 for the Carina-like progenitor in the static case (left), time-dependent case (middle) and static case with same initial action-angle distribution as in the middle panel. The dashed curves show the orbit of the centre of mass of the system integrated in the present-day potential for the left and right panels, and in the evolving potential for the middle panel. For the static cases, the variations in the apocentric distances are a reflection of the energy gradient present along the stream, while a second effect is present in the middle panel because of time evolution. Also in this case, the difference in angular location of the apocentre is much more pronounced and systematically increases for older wraps.
3.3: Analysis of the Test-particle Simulations

Figure 3.8: Action-space distributions for a sample of 4 streams from Fig. 3.5, measured with respect to centre of mass of the progenitor at the final time. The colours of the particles represent the energy gradient, such that green is the leading arm and red the trailing arm. In the static cases, the initial and final distributions coincide exactly, but in the time-dependent case there can be small deviations if the orbit is not in the adiabatic regime as can be seen by comparing the middle and right panels for orbit O11 and O15. The left panels show a smaller spread because the time-dependent cases start further outwards and in an initially much lighter potential.

confirming that the initial spread in actions is greater. This is why the particles in the progenitor integrated in the evolving potential can spread more and give rise to longer and wider streams.

In our initial set-up we have taken the progenitors to have the same \(\sigma_{\text{pos}} \) and \(\sigma_{\text{vel}} \). However, their initial distribution in action-angle space is different for the static and time-dependent potentials as discussed above. This implies that also their final distribution in action (or energy) space will be different. This is shown for the progenitor placed on two of our orbits in Fig. 3.8. Here we have plotted for the Carina-like progenitor the distribution at the final time of \(\Delta J_r \) and \(\Delta L \) in the top panels for the static (left) and time-dependent (middle) potentials.

An alternative is to consider that the particles should have the same initial \(\Delta J_r \) and \(\Delta L \), whether they are evolved in a static or time-dependent gravitational potential. To establish the effect of such a change in the initial configuration we set up progenitors with these properties and evolved them in the static potential. The right panels of Fig. 3.8 show the distribution of particles evolved in the static potential, but set up with the same initial conditions in action-angle space as in the time-dependent case. If all orbits were in the adiabatic regime, the middle and right panels should give identical results. However, some of the orbits are not, which can be seen in the streams from orbit O11 and O15, where the action distributions are not exactly the same.

The streams resulting from these different initial conditions evolved in the time-independent potential are shown in the right panels of Fig. 3.5 for each of the orbits. As anticipated, the streams in the time-dependent potential (middle panels) are now shorter than the streams in the time-independent potential starting from the new initial conditions. This characteristic is now solely due to evolution of the potential.

An interesting feature visible in Figs. 3.5 and 3.7 that was mentioned earlier, is that the stream-orbit misalignment differs in the static and evolving cases. For example,
as can be seen for experiment O7 the mean orbit traces relatively well the stream in the time-independent case. On the other hand it is clear that the angular position of the rosette petal of the stream and the progenitor orbit at one radial period behind (or ahead) are offset from each other. This is apparent in all experiments, to a lesser or larger degree. This offset is systematic, can be as large as 10 degrees, and is a first direct indication of the effect of time evolution in the gravitational potential.

3.4 Analytic models

3.4.1 Action-angle coordinates in an adiabatically evolving potential

In this Section our aim is to extend the use of action-angles to an adiabatically changing spherical potential. The action-angles are still a valid canonical coordinate system in a time-dependent system, but the equations of motion in action-angle coordinates are more complicated as we will see below.

In the models we have considered so far, the gravitational potential is made time-dependent by making its characteristic parameters, such as mass and scale, a function of time. Its overall shape or functional form remain the same. Therefore angular momentum is still conserved because of the assumed spherical symmetry, but the radial action \(J_r \) may vary with time.

For a time-dependent potential, the generating function that allows the transformation between Cartesian and action-angle spaces is an explicit function of time

\[
W(q, J, t) = W(q, J, \alpha(t)).
\] (3.11)

where the parameters of the potential are in the vector \(\alpha \). The appropriate Hamiltonian in action-angle coordinates then becomes

\[
H'(\theta, J) = H(J, \alpha) + \frac{\partial W}{\partial t}(q, J, \alpha) = H(J, \alpha) + \alpha \frac{\partial W}{\partial \alpha}(q, J, \alpha),
\] (3.12)

which is the original Hamiltonian perturbed by the partial time derivative of the generating function (Goldstein 1950, section 11-7). This extra term naturally vanishes in the time-independent case. The new equations of motion are

\[
\dot{J}_i = -\frac{\partial H'}{\partial \theta_i} = -\alpha \frac{\partial}{\partial \theta_i} \frac{\partial W}{\partial \alpha}(q, J, \alpha),
\]

\[
\dot{\theta}_i = \frac{\partial H'}{\partial J_i} = \Omega_i(J, \alpha) + \alpha \frac{\partial}{\partial J_i} \frac{\partial W}{\partial \alpha}(q, J, \alpha).
\] (3.13)

Compared to the original equations of motion given in Eq. (3.3) there are a few correction terms that depend on the rate of change of the characteristic parameters of the potential \(\dot{\alpha} \).

Since in general we are interested in the mean increase in the actions and angles, we take an average over one period, where we assume that \(\alpha \) changes little over one period.
(Goldstein 1950; Vandervoort 1961)

\[
\langle J_i \rangle = \frac{1}{T_i} \int_{T_i} \left(-\alpha \frac{\partial}{\partial \theta_i} \frac{\partial W(q, J, \alpha)}{\partial \alpha}\right) dt
\]

\approx -\frac{\alpha}{T_i} \int_{T_i} \frac{\partial}{\partial \theta_i} \frac{\partial W_i(q, J, \alpha)}{\partial \alpha} dt + O(\alpha^2, \dot{\alpha}).

\tag{3.14}

The three parts of the generating function (\(W_r, W_\theta\) and \(W_\phi\)) increase by \(2\pi J_i\) in the corresponding period \(T_i\). This means that each of the \(W_i\) is a periodic function and we can do a Fourier expansion

\[
\frac{\partial W_i}{\partial \alpha} = \sum_k A_k(J, \alpha)e^{2\pi ik\theta_i}.
\tag{3.15}

However, the whole first term in Eq. (3.14) vanishes since

\[
\langle J_i \rangle \approx -\frac{\dot{\alpha}_m}{T_i} \int_{T_i \sum_{k \neq 0}} 2\pi k A_k(J, \alpha_m)e^{2\pi ik\theta_i} dt + O(\alpha_m^2, \dot{\alpha}_m)
\]

\approx O(\alpha^2, \dot{\alpha}),

\tag{3.16}

where we use the Einstein summation convention for the parameters \(\alpha_m\). The actions are therefore invariant up to second order. Vandervoort (1961) showed that the actual condition for adiabatic evolution for each of the \(\alpha_m\) and each of the orbital periods \(T_i\) is

\[
\frac{\dot{\alpha}_m}{\alpha_m} T_i \ll 1,
\tag{3.17}

which states that the time scale of change should be much larger than the orbital period.

On short timescales, \(J_r\) shows a periodic oscillation that dies out when the changes in the parameters become smaller, as shown in Fig. 3.9 for one of our orbits. The final time value of \(J_r\) returns to the initial value, indicating we are in the adiabatic regime. In the case of non-adiabaticity full integration of Eq. (3.13) is needed to model the behaviour of the system in action-angle space.

In an analogous way as for the actions, we compute the effect for the mean change in the angles

\[
\langle \dot{\theta}_i \rangle \approx \langle \Omega_i(J, \alpha) \rangle + \frac{\dot{\alpha}_m}{T_i} \int_{T_i} \frac{\partial}{\partial \alpha} \frac{\partial W(q, J, \alpha)}{\partial \alpha} dt + O(\alpha^2, \dot{\alpha}),
\tag{3.18}

\]

where we can exchange the order of the derivatives

\[
\frac{\partial}{\partial J_i} \frac{\partial W(q, J, \alpha)}{\partial \alpha} = \frac{\partial}{\partial \alpha} \frac{\partial W(q, J, \alpha)}{\partial J_i} = \frac{\partial \theta_i}{\partial \alpha} = 0.
\tag{3.19}

The result is that only the term dependent on the (evolving) frequency remains

\[
\langle \dot{\theta}_i \rangle \approx \langle \Omega_i(J, \alpha) \rangle + O(\alpha^2, \dot{\alpha}).
\tag{3.20}

The angles as a function of time may be computed from

\[
\theta_i(t) \approx \theta_i(0) + \int_0^t \Omega_i(J, \alpha(t)) dt,
\tag{3.21}

\text{We note that if the particles would not be released from pericentre we would notice the initial variations in the action.}
where like in the time-independent case, $\theta_i(0)$ is the phase at the initial time. The frequencies $\Omega_i(t)$ are understood to be the instantaneous frequencies at every time-step. Equivalently, we can numerically integrate the orbit in Cartesian coordinates and find $\theta_i(t)$ from the instantaneous coordinate transformation at all times t using the generating function. The advantage of the action-angle description is that it stresses that the phase angles (modulo 2π) depend on how the frequencies have changed with time.

3.4.2 Streams in action-angle space

Sensitivity to the gravitational potential

We have mentioned that for a static potential, if the initial spread in angles is negligible, then the slopes in the angle and frequency spaces should be equal (Sanders & Binney 2013b,a), as can be seen from Eq. (3.8), if computed in the true potential. An example of the distortion in angle space for a stream now evolved in a time-dependent potential where the angles (and the energy) were computed using incorrect parameters is shown in Fig. 3.10 for experiment O7. The central panel corresponds to the parameters in the true (final) potential, while in the vertical direction we have varied r_s and horizontally M_s. In the eight panels around the central panel, the parameters have been changed.
Figure 3.10: The angle space of stream O7 (see Table 3.1) evolved in a time-dependent potential, but where the angles have been computed with different (incorrect) parameters. The central panel shows the correct parameters, while r_s is changed vertically and M_s horizontally by 10% and 30%. The colour coding indicates the energies, with green representing the leading arm (more bound) and red the trailing arm (less bound).

by only 10%, and even in this case some deviations from the expected straight lines are visible. When the parameters have changed by as much as 30%, as in the outer panels, we see that the deviations become much more pronounced and are very significant. We note that similar results are found when the stream is evolved in a static-potential.

The more incorrect the potential, the more we see wiggles in angle space, and similar distortions are also present in the frequency- and action spaces. Furthermore, the energy gradient along the stream is no longer preserved as the parameters of the potential are varied, which implies that the most bound (least bound) particles in the specific trial potential are no longer ‘found’ at the end of the leading tail (trailing tail). Therefore, although the streams have a normal appearance in physical space, when the wrong gravitational potential is assumed, the coordinate transformation to action-angle space and the computation of the energy are incorrect and this leads to the distorted appearance and broken energy gradient seen in Figure 3.10. Clearly these imprints will be obvious only for sufficiently long streams, i.e. more extended than 2π in angle space.
CHAPTER 3: THE EVOLUTION OF STREAMS IN A TIME-DEPENDENT POTENTIAL

Figure 3.11: The angle space of stream O11 (top) and stream O1 (bottom) evolved in a time-dependent potential, but where the angles have been computed with different (incorrect) parameters. Note that although the distortions in angle space are less pronounced for the more radial orbit O1, the energy gradient (indicated by the colour gradient and coding used before) is not preserved.

Note that the distortions in angle space are less pronounced for the panels located along the diagonal that runs bottom-left to top-right in Figure 3.10, for which the enclosed mass within the orbit is the same for the given M_s and r_s.

The degree to which these distortions and broken energy gradients are manifested depends also on the type of orbit the stream progenitor has followed. This is shown in Fig. 3.11 for a scale radius that is 70% of the true value and for different scale masses M_s. The top panels correspond to experiment O11, which is on a relatively circular orbit of apo-to-pericentre ratio of 2, while the experiment in the bottom O1 has a relatively radial orbit, with apo-to-pericentre ratio of 18.

Sensitivity to time-dependence

In the time-dependent potential the exact correspondence between the slopes of the spreads in the frequencies and in the angles is broken, i.e. Eq. (3.9) is no longer valid. This is because the evolution of $\Delta \theta_\phi$ and $\Delta \theta_r$ both depend on integrals over time, i.e.

$$\frac{\Delta \theta_\phi}{\Delta \theta_r} \approx \frac{\int \Delta \Omega_\phi dt}{\int \Delta \Omega_r dt}$$

(3.22)

(assuming the initial angle spreads are negligible).

In Fig. 3.12 we compare the lines fitted to the frequency and angle spaces for the stream from Orbit O7 in the time-dependent and static cases for the correct final potential. The top panel shows that for the time-dependent case, the initial slope in frequency space (grey line) is steeper than at the end of the simulation (blue line). This is because the orbit shrinks as the mass increases\(^6\). In the time-independent case we see, as

\(^6\) Recall that the ratio of angular to radial frequencies for any gravitational potential is limited by the homogeneous sphere case, for which $\Omega_\phi/\Omega_r = 1/2$ and the Kepler case, for which $\Omega_\phi/\Omega_r = 1$. As mass increases
expected, that both lines coincide. Another difference between the static and evolving case is that the stream-orbit misalignment changes (compare the green and red dashed lines), which is caused only by the changes in the angle space due to time-evolution. The behaviour in angle space (indicated by the red dashed line) may be understood from the fact that the angles’ slope is like a time-average of the frequencies’ slope, and is therefore expected to lie between the initial and the final frequency slope as observed. Therefore, a clear signature of time-evolution is a difference in the slope derived for the angles and that derived for the frequencies, even if these are computed using the present-day gravitational potential.

We now explore an analytic model to describe more generally the behaviour of the frequency and angle slopes. We may derive the slope in frequency space $S(\Delta \Omega)$ by making a Taylor expansion in the actions near the centre of mass of the progenitor (Helmi & White 1999)

$$\Delta \Omega_i^k = \frac{\partial \Omega_i}{\partial J_j} \Delta J_j^k + \mathcal{O}(\Delta J_j^{k^2}). \quad (3.23)$$

and the orbit shrinks, effectively we may say that the stream moves further away from experiencing a Kepler potential (and hence a steeper slope) and closer to the homogeneous sphere (a shallower slope, as also seen in Gómez & Helmi 2010) although the NFW potential is neither of these limiting cases.
Figure 3.13: Hessians H_{ij}, time-averaged Hessians Q_{ij} (both in units of 10^{-3} kpc$^{-2}$), and their ratios h_i and q_i for orbit O7. Left panel: the dash-dotted lines show H_{ij} in the static potential, the solid lines the H_{ij} in the time-dependent potential and the dashed lines Q_{ij} in the time-dependent potential. Note that $|H_{ir}| > |H_{r\phi}| > |H_{\phi\phi}|$, and similarly for Q_{ij}. The middle panel shows that $h_\phi > q_\phi$ at all times, and that both increase with time. On the other hand, $h_r < q_r$ at all t and both decrease with time. Right panel: the ranking of the h_i for the different orbits. Both h_ϕ and h_r are ranked by the ratio Ω_ϕ/Ω_r, indicating the dependence on the kind of orbit. The q_i are ranked in the same way.

The expansion is done for the k-th particle, all terms are evaluated at time t. The derivative is evaluated for the progenitor orbit and we used the Einstein summation convention on the subscript indices. We recall that

$$\frac{\partial \Omega_i}{\partial J_j} = \frac{\partial^2 H}{\partial J_i \partial J_j} \equiv H_{ij}. \quad (3.24)$$

Working out the frequency spreads we find

$$\Delta \Omega^k_r(t) \approx H_{rr}(t) \Delta J^k_r + H_{r\phi}(t) \Delta J^k_\phi + H_{r\phi}(t) \Delta J^k_\phi,$$

$$\Delta \Omega^k_\phi(t) \approx H_{\phi r}(t) \Delta J^k_r + H_{\phi\phi}(t) \Delta J^k_\phi + H_{\phi\phi}(t) \Delta J^k_\phi.$$

The cross terms are second derivatives of the Hamiltonian and therefore symmetric, $H_{ij} = H_{ji}$. Furthermore, in a spherical potential, the Hamiltonian is only a function of E and L, so that for all j, $H_{\theta j} = H_{\phi j}$. The evolution of the slope of $S(\Delta \Omega)$ can then be found from

$$S(\Delta \Omega) = \frac{\Delta \Omega^k_\phi(t)}{\Delta \Omega^k_r(t)} \approx \frac{\Delta J^k_r + \Delta J^k_\phi}{H_{\phi\phi}(t)} \frac{H_{\phi\phi}(t)}{H_{\phi\phi}(t)} = \frac{R^k_j + h_\phi(t)}{1 + R^k_j h_\phi(t)},$$

where $R^k_j \equiv \frac{\Delta J^k_r}{\Delta J^k_\phi + \Delta J^k_\phi}$,

$$h_\phi(t) \equiv \frac{H_{\phi\phi}(t)}{H_{\phi\phi}(t)},$$

$$h_r(t) \equiv \frac{H_{r\phi}(t)}{H_{r\phi}(t)}.$$

7 This is only true if $J_\phi \geq 0$, otherwise every derivative w.r.t. J_ϕ incorporates a term $\text{sign}(J_\phi)$ because $L = J_\theta + |J_\theta|$. Throughout this work we will assume $J_\theta \geq 0$.

Here R^k_j is the ratio of the actions and h_i the ratio of the Hessians. The Hessians H_{ij} and the Hessian ratios h_i are shown in Fig. 3.13 and are ranked as $|H_{rr}| > |H_{\phi r}| > |H_{\phi \phi}|$. But most importantly, the resulting ratio h_i increases with time while h_{ϕ} decreases with time. Assuming that the action ratio R^k_j remains constant (adiabatic limit) we find from the above equation that the slope in frequency space $S(\Delta \Omega)$ decreases with time.

For the angles of the k-th particle we can use the following approximation

$$\Delta \theta^k_i(t) = \Delta \theta^k_i(0) + \int_0^t \Delta \Omega^k_i(t) dt$$

$$= \Delta \theta^k_i(0) + \int_0^t H_{ij}(t) \Delta J^k_j(t) dt + O(\Delta J^2_i)$$

$$\approx \int_0^t H_{ij}(t) \Delta J^k_j(t) dt$$

$$\approx \Delta J^k_j \int_0^t H_{ij}(t) dt,$$

where we have neglected the initial angle spread, and in the last approximation assumed adiabaticity of the actions. Therefore ΔJ^k_j may be evaluated at any time-step, though typically we use the values at the final time in our computations.

We now focus on the slope of the angle-space. If we define $\frac{1}{\tau} \int_0^\tau H_{ij} dt \equiv Q_{ij}$ (the time-averaged Hessian), then

$$\Delta \Theta^k_i(t) \approx (Q_{rr}(t) \Delta J^k_r + Q_{r\phi}(t) \Delta J^k_\phi + Q_{r\theta}(t) \Delta J^k_\theta) \tau,$$

$$\Delta \Theta_\phi(t) \approx (Q_{\phi r}(t) \Delta J^k_r + Q_{\phi\phi}(t) \Delta J^k_\phi + Q_{\phi\theta}(t) \Delta J^k_\theta) \tau.$$

The slope in the angles can then be found from

$$S(\Delta \theta) = \frac{\Delta \Theta_\phi(t)}{\Delta \Theta_r(t)} \approx \frac{R^k_j + q_\phi(t)}{1 + q_r(t) R^k_j},$$

where

$$q_\phi(t) = \frac{Q_{\phi r}(t)}{Q_{\phi\phi}(t)},$$

$$q_r(t) = \frac{Q_{rr}(t)}{Q_{\phi r}(t)}.$$ (3.27)

Here q_i are the ratios of the Q_{ij}. The ranking of the Q_{ij} and the q_i behaves very similarly to that of the H_{ij} and h_i as shown in Fig. 3.13. In the same manner as for the frequency slope, we infer that $S(\Delta \theta)$ is also a decreasing function of time.

We are now ready to compute the difference between $S(\Delta \theta)$ and $S(\Delta \Omega)$ by using that the difference between the q_i and the h_i is small:

$$q_r(t) \equiv h_r(t) - \epsilon_r(t),$$

$$q_\phi(t) \equiv h_\phi(t) + \epsilon_\phi(t),$$ (3.28)

where the appropriate sign was chosen such that the ϵ_i are always positive. Let us define for computational ease

$$T(\Delta \Omega) = \frac{1}{S(\Delta \Omega)},$$

$$T(\Delta \theta) = \frac{1}{S(\Delta \theta)}.$$ (3.30)
We may expand the inverse of the angle slope \(T(\Delta \theta) \)

\[
T(\Delta \theta) = \frac{1 + R^k_j q_r}{R^k_j + q_\phi} = \frac{1 + R^k_j h_r - R^k_j \varepsilon_r}{R^k_j + h_\phi + \varepsilon_\phi}
\]

\[
= \frac{1 + R^k_j h_r - R^k_j \varepsilon_r}{R^k_j + h_\phi} \left(\frac{R^k_j + h_\phi}{R^k_j + h_\phi + \varepsilon_\phi} \right)
\]

\[
\approx \frac{1 + R^k_j h_r - R^k_j \varepsilon_r}{R^k_j + h_\phi} \left(1 - \frac{\varepsilon_\phi}{R^k_j + h_\phi} \right)
\]

\[
\approx \frac{1 + R^k_j h_r - R^k_j \varepsilon_r}{R^k_j + h_\phi} - \varepsilon_\phi \frac{1 + R^k_j h_r}{(R^k_j + h_\phi)^2}. \tag{3.31}
\]

Using Eq. (3.25) to compute \(T(\Delta \theta) \), we can derive the difference of the inverse slopes

\[
T(\Delta \theta) - T(\Delta \Omega) = \frac{S(\Delta \Omega) - S(\Delta \theta)}{S(\Delta \theta)S(\Delta \Omega)}
\]

\[
= - \frac{R^k_j \varepsilon_r}{R^k_j + h_\phi} - \varepsilon_\phi \frac{1 + R^k_j h_r}{R^k_j + h_\phi}
\]

\[
= - \frac{T(\Delta \Omega) \varepsilon_\phi + R^k_j \varepsilon_r}{R^k_j + h_\phi} < 0. \tag{3.32}
\]

All the terms in the fraction are positive, and \(T(\Delta \Omega) \) is therefore always greater than \(T(\Delta \theta) \). This means that \(S(\Delta \theta) \) is always larger than \(S(\Delta \Omega) \), and this difference will increase with time. The longer the system is evolved in a time-dependent potential, the larger the difference in slopes becomes with respect to the same final static potential. This also means that streams that fell in at early times will show a stronger signature of the separation between the angles and frequencies' relations than streams that fell in more recently.

In Fig. 3.14 we show the predictions of the slope differences for the angle and frequency spaces for the orbits in Table 3.1. As we increase the amount of time-evolution by changing the growth parameter \(a_g \) the difference in slope also becomes larger. Another interesting prediction is that the more circular orbits have a larger slope difference, although this is at a small level. We can get an impression of the magnitude of the angle-frequency misalignment by using the aperture angle \(\Psi_{\Delta \theta, \Delta \Omega} \) between the fitted lines in the angle and frequency space (as also used by Sanders & Binney (2013b,a))

\[
\Psi_{\Delta \theta, \Delta \Omega} = \Psi_{\Delta \theta} - \Psi_{\Delta \Omega} \approx \tan(\Psi_{\Delta \theta} - \Psi_{\Delta \Omega}) = \frac{S(\Delta \theta) - S(\Delta \Omega)}{1 + S(\Delta \theta)S(\Delta \Omega)}, \tag{3.33}
\]

where \(S(i) = \tan(\Psi_i) \), and we have used that the difference in slopes is small\(^8\). With this definition of the angle-frequency misalignment, typical values of \(\Psi_{\Delta \theta, \Delta \Omega} \) are around 1.5° for \(a_g = 0.8 \).

It has been discussed earlier that a stream does not exactly follow an orbit, and the small difference between these two trajectories is known as the stream-orbit misalign-

\(^8\) In these equations we have ignored the slope in the \(r-\theta \) angle and frequency spaces, because the slopes are very close to those of the \(r-\phi \) spaces.
Figure 3.14: Slope differences between the streams in angle and in frequency space as a function of growth parameter a_g, as predicted by our analytic model using Eq. (3.23) and (3.26) for our experiments.

The characteristic magnitude of this can be found from

$$\Psi_{S, O} = \Psi_{\Delta \theta} - \Psi_{\theta} \approx \tan (\Psi_{\Delta \theta} - \Psi_{\theta_{cm}}) = \frac{S(\Delta \theta) - S(\theta_{cm})}{1 + S(\Delta \theta)S(\theta_{cm})},$$

where $S(\theta_{cm}) = \tan \Psi_{\theta_{cm}}$ is the slope of the straight line traced by the centre of the mass of the progenitor in angle space for a static potential (see also Fig. 3.12). The typical order of magnitude of $\Psi_{S, O}$ for the Carina progenitor is about 1 degree, similar to what was found in Sanders & Binney (2013b) for a static logarithmic axisymmetric potential, and also comparable to values of the stream-orbit misalignment in the isochrone potential of Eyre & Binney (2011). Note that the angle-frequency differences in slope that we find are of the same order of magnitude as the stream-orbit misalignment.

When comparing simulations with and without time-evolution, the stream-orbit misalignment can also be used as an indicator of time-evolution. In Fig. 3.5 we saw that the angular position of the stream’s and progenitor orbit’s petal one radial period away from the current progenitor’s location are different for the time-dependent case. This angular separation can be derived as follows. For the progenitor, the location of the petal is simply the precession of the orbit in one radial period, i.e. $\psi_{cm} = 2\pi S(\theta_{cm}) = 2\pi \Omega_\phi / \Omega_r$. For the stream, this difference in radial angle from the progenitor is $\Delta \Theta = 2\pi$, and therefore the angle of the petal of the stream is $\psi_{stream} = 2\pi S(\Delta \theta)$. Therefore the stream-orbit misalignment in azimuthal angle is

$$\Delta \phi_{S, O} \approx \psi_{stream} - \psi_{cm} = 2\pi (S(\Delta \theta) - S(\theta_{cm})).$$

Increasingly larger rates of growth of the potential will yield also larger angular stream-orbit separations because $S(\Delta \theta)$ changes by the amount in Fig. 3.14 ($S(\Delta \Omega)$ and $S(\theta_{cm})$...
are by construction the same at the final time). Multiplying this by 360° to find the
difference at the first petals next to the progenitor, we find that these differences can
reach up to 10 degrees in our experiments.

In summary, stream particles are distributed following straight lines in angle space
when computed using the correct potential, and otherwise show a wiggly behaviour and
a broken energy gradient. These straight lines have the same slope in frequency space in
the static case. If the potential has evolved in time, then the slope in frequency space is
typically shallower than in angle space, to an extent that depends on the growth of the gravitational potential.

Validation of the analytic model

![Graphs showing slope differences and histograms]

Figure 3.15: Examples of the slope differences between the angle and frequency distributions
(top panels) and histograms of the spread of $\Delta \theta_r(0)/\Delta \theta_r(t_f)$ (bottom panels). In the top panels,
the blue crosses indicate values from the full simulation, while the green lines are the predictions
from our analytic model. The red crosses are the slopes measured when the initial spreads from
the simulations are removed. All orbits align now with the model when $a_g = 0$. For large a_g the
more circular orbits such as orbit O15 deviate strongly from the model because of non-adiabaticity.

We expect our analytic model to reproduce well the behaviour of the test-particle
simulations except in some cases. There are two effects that can modify these slopes
which we have neglected in the derivations above. The first appears when the initial
angle spread of the progenitor is comparable to its current extent, in which case the
former needs to be taken into account. Since the initial extent is typically unknown
it is better to use very extended streams for deriving the evolution in time of the host
potential. The second effect is when the time-evolution of the potential is non-adiabatic.
In that case, the higher order terms of Eq. (3.13) have to be taken into account.
3.5: Observational prospects

To confirm this, we use three simulations with different growth factors \(a_g = \{0.0, 0.4, 0.8\} \), but with the same initial action distribution as in the \(a_g = 0.8 \) case by using the transformation described in Eq. (3.10).

Fig. 3.15 shows the difference between the slopes in angle and in frequency spaces for our analytic model. In this figure, the green line shows the prediction of our model using Eq. (3.25) and (3.27), and the actual measured slope differences from the test-particle simulations as blue crosses. This comparison shows that the agreement is excellent as exemplified for Orbit O7 on the left panel, and this is true for most of the orbits explored. However, there are a few cases, such as those shown in the panels on the right where the model fails.

For these two cases, the initial extent of the progenitor in angle-space cannot be neglected, as can be seen from the bottom panels. This can either be due to the streams being relatively short or because the initial spread in angles is large. When the initial angle spreads as given by Eq. (3.8) and (3.26) are removed, the simulations match the model significantly better as indicated by the red crosses.

The rightmost panel shows still some disagreement, especially for larger values of the growth factor \(a_g \). This behaviour stems from the non-adiabatic evolution of the orbit, so that higher terms in Eq. (3.12), and the last approximation in Eq. (3.26) fails. An indication that these orbits evolved non-adiabatically is that for orbit O15, \(J_r(0)/J_r(t_f) - 1 \approx 0.18 \). Typically the orbits that are more circular suffer from this effect more strongly. This implies that to obtain the amount of time-evolution for a stream that evolved in a smoothly growing potential as ours, radial orbits may be preferred.

3.5 Observational prospects

Now that we have determined the signature of time evolution of a gravitational potential through the difference in slopes in the angle and frequency spaces, we are interested in establishing whether this effect is measurable. This is particularly relevant in the context of the upcoming catalogues from the Gaia satellite.

We therefore convolve our simulated data in observable space with errors. Typically the largest uncertainties come from the errors in distance and proper motion. We investigate two cases for the errors in the parallax: 1% (\(\sigma_\pi/\pi = 0.01 \)) and 10% (\(\sigma_\pi/\pi = 0.1 \)), while the proper motion errors are set to be \(\sigma_\mu = 0.5\sigma_\pi \), as given by the Gaia mission error estimates. We assume radial velocity errors of 1 km/s, which is the level obtainable from follow-up surveys of the Gaia satellite such as 4MOST (de Jong et al. 2012) and WEAVE (Dalton et al. 2012). Although this error may be seen as small, we have found no significant dependence on the radial velocity error, even if this was as large as 10 km/s. After applying error convolution, we converted the data back to Cartesian coordinates.

In Fig. 3.16 we show the structure in angle (top row) and in frequency (middle row) space for the 1% distance errors for all 15 orbits evolved in the time-dependent potential. The bottom row panels show the residuals in frequency space after subtracting the fitted slope from the error-free case (green line). Here the black points correspond to the error-convolved case while yellow points are error-free.

We define the relative difference in slope in the frequency \(E_\Omega \) and angle \(E_\theta \) spaces
Figure 3.16 (a) Angle and frequency space plots and residuals of the frequency space fits of all 15 streams for 1% distance (and proper motion) errors in the time-dependent potential. The streams are centred on the position of the centre of mass of the progenitor in the error-free case. The black points are error-convolved while those in yellow are error-free and only shown in the bottom row. The residuals were computed by subtracting the best fit straight line to the error-free frequency distribution (green line) from $\Delta \Omega$. The text in the panels shows the relative difference in the slopes for the error-convolved and error-free cases computed in angle space E_θ and in frequency space E_Ω (i.e., using the red vs green straight lines respectively). The panels for which $E_i > 0.005$ are marked with a green box. Clearly, the difference in slope in angle space is generally far below this value, while the frequencies are much more strongly affected by the errors.
Figure 3.16 (b) Continuation of the figure from the previous page.
Figure 3.17: Selection of the 7 best orbits of Fig. 3.16, but now with 10% parallax (and proper motion) errors. The colours, lines and insets are as in Fig. 3.16. With these 10× larger distance errors, the angle slopes of the streams are still well measured for most orbits, while the frequency slopes are generally not.
3.5: OBSERVATIONAL PROSPECTS

Figure 3.18: Selection of the orbits of Fig. 3.16 with 10% parallax errors, but now with two cuts: \(\sigma_d \leq 2 \) kpc and \(| \Omega_r - \langle \Omega_r \rangle | \leq \text{SD} \) \(\Omega_r \). The grey vertical dashed lines indicate as in Fig. 3.17, with the addition that green points represent the particles left over after the cuts. The insets in the top panels show the number of leftover particles after the cuts \(N_{\text{cut}} \), while those in the bottom panels are simply the number of particles within a distance of 20 kpc from the Sun \(N_{\text{within}} \).
after error convolution as

\[
E_\Omega = \left| \frac{\tilde{S}(\Delta \Omega) - S(\Delta \Omega)}{S(\Delta \Omega)} \right|,
\]

\[
E_\theta = \left| \frac{\tilde{S}(\Delta \theta) - S(\Delta \theta)}{S(\Delta \theta)} \right|,
\]

(3.36)

with the \(\tilde{S}\) representing the slopes derived by fitting the distributions with errors. As can be read off from the various panels in Fig. 3.16, typically this relative difference varies from \(10^{-5}\) up to \(6 \times 10^{-4}\) for \(E_\theta\), and between \(3 \times 10^{-4}\) up to \(10^{-2}\) for \(E_\Omega\), indicating that errors affect more severely the distribution of frequencies than that of angles.

An estimate of what errors are tolerable may be derived from the following arguments. If \(\Delta S\) is the slope difference between frequency and angle space (typically a few %), then we can tolerate

\[
\sqrt{E_\Omega^2 + E_\theta^2} \leq \Delta S / S \approx 0.005.
\]

(3.37)

The panels that satisfy this requirement are highlighted with a green box. We see that mostly the very radial orbits that have small pericentres are selected this way. These streams have many stars relatively near the Sun (which is positioned at 8 kpc from the Galactic centre along the x-axis). Also, the more radial streams have a much larger spread in \(J_r\), which is slightly less affected by the errors than the more circular orbits that have a larger spread in angular momentum. We conclude that the 1% distance errors allow us to uncover time-evolution for at least half of our orbits when the growth factor is \(a_g = 0.8\). However, if we would look at a growth factor \(a_g = 0.4\), typically the misalignment between angle and frequency space would be reduced by a factor 2, and the errors will make measuring time-evolution much harder for more slowly evolving potentials.

In Fig. 3.17 we show the 7 orbits that came out as best from Fig. 3.16, but now with 10% distance errors. The colours and insets are the same as in Fig. 3.16. As the insets and green boxes show, the angles are still quite well measured, but the frequency slope is not. Only one very radial orbit (that comes close to the Sun) presents an acceptable level of uncertainty. There is significant structure in the bottom panels depicting the residuals between the distribution in frequency space before and after error convolution. For each experiment, this results from the superposition of individual wraps with varying distance gradients, and this, after a distance-dependent error convolution, results in different frequency distributions. The ‘bow-tie’-like structure is thus the result of the overlap of multiple wraps distorted differently in frequency space. The more circular orbits O15 and O9 only show one leg of these bow tie-like structures because for these experiments, basically just over one wrap is present.

Given that the 10% errors provide a challenge to fitting a slope in frequency space and not so much to fitting in angle space we investigate methods to cut the data and retain the highest quality measurements. Fig. 3.18 shows the result of combining a distance cut and a frequency cut for the same 7 orbits of Fig. 3.17. The cuts are given by

\[
\sigma_d \leq 2 \text{ kpc},
\]

\[
|\Omega_r - \langle \Omega_r \rangle| \leq \text{SD}_{\Omega_r},
\]

(3.38)

with \(\langle \Omega_r \rangle\) the mean frequency from the data and \(\text{SD}_{\Omega_r}\) the standard deviation of \(\Omega_r\), both computed after the distance cut. The distance error cut improves both the tangential
velocities and the distances, and its effect is to mainly select particles at pericentre, as seen in the top panels of this figure. Our cut at 2 kpc essentially removes particles with errors larger than 10% at 20 kpc. The motivation for imposing a frequency cut is to remove outliers. The vertical dashed lines in the frequency space of Fig. 3.18 show the mean and standard deviation of \(\Delta \Omega_r \) with errors, and we see that these encompass quite well the error-free \(\Delta \Omega_r \) distribution indicated in yellow. The combination of these cuts leaves still many particles in the stream as indicated by the insets in the figure, except for orbits O15 and O9, which basically have no or too few particles closer than 20 kpc, and hence with distance errors smaller than 2 kpc. In conclusion, a cut in frequency and distance leads to satisfactory improvements, except when there are too few particles and for a few pathological cases. Therefore such a cut could be used to measure the slope in frequency space, but is not necessary in angle space.

3.6 Discussion and conclusions

We have investigated the effect of an adiabatically growing time-dependent potential on streams. To this end we used the inside-out growing spherical NFW potential from Buist & Helmi (2014) as a background to model the evolution of a set of 15 test-particle streams.

We performed a series of numerical experiments starting from different initial conditions ran mostly in a quite strongly growing model in which the enclosed mass within the orbits explored approximately doubles. These experiments show that the precession rate of streams, i.e. the angular location of the ‘apocentres’ of streams in the orbital plane, is significantly different when the potential has evolved in time. Typically time-evolution leads to a misalignment or angular difference of \(\sim 10^\circ \) in comparison to the static case, and this is roughly independent of the progenitor’s size. To be able to detect this effect, however, streams should be sufficiently long, i.e to have wrapped more than once.

We then analysed the behaviour of streams in action-angle coordinates. Streams typically appear as extended linear structures in angle and frequency space, also in the time-dependent case. We found that time-evolution leads to these distributions to differ in slope, unlike what is expected for a static potential. To explain these findings we developed an analytic description of a stream in an adiabatically changing time-dependent potential. This allows us to predict that the difference in slopes in angle and in frequency space to be of order \(\sim 0.005 – 0.025 \), i.e. \(0.3^\circ – 1.5^\circ \), for potentials with growth-factor ranging from 0.2 to 0.8. Experiments for which the signal of time-evolution is most reliably recovered are those which initially have a small size and which evolve in an adiabatic way. This condition is most easily satisfied for the more radial orbits.

Although the predicted effect is small, we have explored whether it would be observable with the next generation facilities mapping the Galaxy, such as the Gaia satellite mission (Prusti 2012) and the follow-up surveys 4MOST (de Jong et al. 2012) and WEAVE (Dalton et al. 2012). When assuming an error in parallax of 1% (and half of that in the proper motion), we find that for about half of the streams the time-dependence signature should be measurable. When the errors in parallax (and consequently in proper motion) are increased to 10% only 1 of our 15 streams can be used to determine the time-evolution. Reasonable additional cuts in distance errors and in frequency space (because this is most strongly affected by errors), allows time-evolution to be determined for an
extra four streams. The best results are for streams that are very radial and that have small pericentres (inside the solar circle). This is predominantly due to these streams having many stars close to the Sun, and therefore smaller observational uncertainties. One should note that there is no guarantee that streams with such characteristics will be present in the Gaia dataset, both because of the requirement on their orbital properties as well as on the rather optimistic assumptions on the distance and proper motion errors.

Another important issue is that the right potential is necessary to derive the correct angle and frequency space distributions. Fortunately, an incorrect potential distorts the distribution in angle and in frequency spaces in such a manner that each space can be used independently to improve the estimation of the potential, for sufficiently long streams. For short streams (e.g. with only one wrap), the misalignment observed might be confused with time evolution instead of the wrong assumptions about the potential. Therefore the use of short streams could induce a bias in the derived values of the characteristic parameters of the potential or its time-dependence.

By construction, we have neglected the effect of self-gravity in our experiments. Self-gravity would create a gap in the action space between (the progenitor and) the leading and trailing streams (Gibbons et al. 2014), because the particles released at specific points along the orbit (rather than continuously) are offset in energy (Johnston 1998). This structure will likely also be apparent in the angle and frequency distributions of the particles that make up the stream (Eyre & Binney 2011). Moreover, when close to the progenitor, released particles still experience a gravitational pull by the progenitor (Choi et al. 2009), and epicyclic oscillations are seen in streams in N-body simulations (Küpper et al. 2010, 2012). These effects may complicate fitting a straight line to the distribution and determining accurately its slope, but after the particles become unbound, the dynamics is essentially the same as in our test-particle integrations (Sanders & Binney 2014).

Other interesting time-dependent effects may be involved in shaping streams and complicate interpretations. Interactions with dark subhaloes orbiting the Galactic halo will affect the structure of streams and for example create gaps (Yoon et al. 2011; Carlberg 2013; Ngan & Carlberg 2014). Dwarf galaxies as massive as the Large and Small Magellanic Clouds are able to perturb significantly the potential (Vera-Ciro & Helmi 2013), and might induce non-adiabatic changes in the streams orbits (Gómez et al. 2015). It seems therefore important to try and understand these less secular effects on the dynamical evolution of streams.

We have presented here the first steps towards understanding the imprints of time-evolution. Further explorations are necessary, since for example we have not looked at other density profiles, deviations from spherical symmetry, or taken into account the effects of a live halo or a (growing) disk. It may be possible to extend our method to any potential for which action-angle coordinates can be derived or approximated, and we do expect the general behaviour to be similar when the potential is growing adiabatically. Overall, we expect the imprint of the smooth mass growth of the Galactic dark halo to be present in streams, and to have a small but non-negligible magnitude.

H.J.T.B. and A.H. gratefully acknowledge financial support from ERC-Starting Grant GALACTICA-240271. We thank the anonymous referee for a constructive report that helped improve this manuscript. H.J.T.B. thanks Robyn E. Sanderson for the many interesting and useful discussions.
Bibliography

Goldstein, H. 1950, Classical mechanics (Addison-Wesley Publishing Company)
3.A Computing the angles

The angles result from the derivatives of the generating function $W(x, J)$ w.r.t. the actions

$$\theta = \frac{\partial W(x, J)}{\partial J},$$

(Binney & Tremaine 2008, Eq. 3.204). The complete generating function for a spherical system is given by (modified from Eq. 3.220, Binney & Tremaine 2008)

$$W(x, J) = W_\phi(\phi, J) + W_\theta(\theta, J) + W_r(r, J)$$

$$= \phi J_\phi + \int_{\theta_{\text{min}}}^{\theta} d\theta p_{\theta}(J_\phi, J_\theta) + \int_{r_{\text{peri}}}^r dr p_r(J_r, J_\phi, J_\theta),$$

(3.40)
where we integrate over the particles trajectory in phase space, which means for example that during a whole radial period, the particle transverses the branch from pericentre to apocentre twice, but once in reversed direction. The latitudinal momentum \(p_\vartheta \) is

\[
\begin{align*}
p^2_\vartheta &= L^2 - \frac{L^2_z}{\sin^2 \vartheta} = L^2 \left(1 - \frac{\cos^2 i}{\sin^2 \vartheta} \right),
\end{align*}
\]

(3.41)

where \(\cos i = L_z/L \). The radial momentum \(p_r \) is

\[
\begin{align*}
p^2_r &= 2 \left(H(J) - \Phi(r) \right) - \frac{L^2}{r^2},
\end{align*}
\]

(3.42)

where \(L = J_\theta + |J_\varphi| \) and \(J_\varphi \geq 0 \) is assumed\(^9\).

We find the radial angle as

\[
\begin{align*}
\theta_r &= \frac{\partial W(x, J)}{\partial J_r} = \frac{\partial H}{\partial J_r} \frac{\partial W}{\partial H} = \Omega_r W_{r,H}, \quad (\text{mod } 2\pi),
\end{align*}
\]

(3.43)

where we note that the angles are always defined modulo \(2\pi \) because there is no information on how many loops a particle made around the Galactic centre. The derivative of the generating function is given by

\[
W_{r,H} = \int_{r_{peri}}^r \frac{dr}{p_r} = \begin{cases} f_1(r) & \text{if } p_r \geq 0, \\ 2f_1(r_{apo}) - f_1(r) & \text{if } p_r < 0, \end{cases}
\]

\[
f_1(r) = \int_{r_{peri}}^r \frac{dr}{p_r},
\]

\[
f_1(r_{apo}) = \frac{\pi}{\Omega_r},
\]

(3.44)

where the conditions on \(p_r \) are necessary to take the right branch of \(f_1 \). After one full period we find \(\theta_r = 2\pi \) as expected.

For the azimuthal angle we find

\[
\theta_\varphi = \frac{\partial W(x, J)}{\partial J_\varphi} = \phi + W_\theta J_\varphi + W_{r,J_\varphi} + \Omega_\varphi W_{r,H}, \quad (\text{mod } 2\pi),
\]

(3.45)

where we find \(\phi \) using the (quadrant-aware) arctangent

\[
\phi = \arctan(y/x).
\]

(3.46)

The derivative \(W_{r,H} \) has already been worked out for \(\theta_r \), and the other derivatives are

\[
W_{r,J_\varphi} = -L \int \frac{dr}{p_r r^2} = -L \begin{cases} f_2(r) & \text{if } p_r \geq 0, \\ 2f_2(r_{apo}) - f_2(r) & \text{if } p_r < 0, \end{cases}
\]

\[
f_2(r) = \int_{r_{peri}}^r \frac{dr}{p_r r^2},
\]

\[
f_2(r_{apo}) = \frac{\Omega_\varphi}{L} f_1(r_{apo}),
\]

(3.47)

\(^9\) Otherwise, every derivative of \(L \) w.r.t. \(J_\varphi \) results in a multiplication with \(\text{sign}(J_\varphi) \).
The function \(W_{\vartheta,J_\varphi} \) is oscillatory in nature (w.r.t. \(\vartheta \)), while also the combination \(W_r,J_\varphi + \Omega_\varphi W_r,H \) is oscillatory (w.r.t. \(r \)): after one radial period it evaluates to \(-2L f_2(r_{apo}) + 2\Omega_\varphi f_1(r_{apo}) = 0\).

The latitudinal angle is given by

\[
\theta_\vartheta = \frac{\partial W(x,J)}{\partial J_\vartheta} = W_{\vartheta,J_\vartheta} + W_{r,J_\varphi} + \Omega_\varphi W_{r,H}, \quad (\text{mod } 2\pi).
\] (3.49)

Because we assume \(J_\varphi \geq 0 \) we find \(W_{r,J_\varphi} = W_{r,J_\varphi} \) and \(\Omega_\varphi = \Omega_\varphi \). The remaining derivative of the generating function is

\[
W_{\vartheta,J_\vartheta} = \int \frac{d\vartheta}{p_\vartheta} L = \int d\vartheta \frac{1 - \cos^2 \vartheta}{\sqrt{1 - \cos^2 \vartheta}} = \begin{cases} f_4(\vartheta) & \text{if } p_\vartheta \geq 0, \\ 2\pi - f_4(\vartheta) & \text{if } p_\vartheta < 0, \end{cases}
\]

\[
f_4(\vartheta) = \int_{\vartheta_{\text{min}}}^{\vartheta} d\vartheta \frac{1}{\sqrt{1 - \cos^2 \vartheta}},
\]

\[
f_4(\vartheta_{\text{max}}) = \pi,
\] (3.50)

where the term \(W_{r,J_\varphi} + \Omega_\varphi W_{r,H} \) vanishes after one radial period, while the term \(W_{\vartheta,J_\vartheta} \) contains the dependence on \(\vartheta \) and increases by \(2\pi \) after one period in \(\vartheta \).

3.B Transformation equations

The linearised transformation between action-angle coordinates and Cartesian coordinates is

\[
T = \begin{bmatrix}
\frac{\partial^2 W}{\partial J_\vartheta \partial J} + \frac{\partial^2 W}{\partial J_\vartheta \partial q} & \frac{\partial^2 W}{\partial J_\vartheta \partial p} \\
\frac{\partial J}{\partial q} & \frac{\partial J}{\partial p}
\end{bmatrix}.
\] (3.51)
3.B: Transformation equations

For simplicity, we provide here the matrix for the 2-D case (i.e. when the orbit is in the plane). In that case, $J_\theta = 0$ and $J_\phi = L = L_z$, so that we find

$$T = \begin{bmatrix}
1 & t_{\theta,r} & t_{\theta,p_\phi} & t_{\theta,p_r} \\
0 & t_{r,r} & t_{r,p_\phi} & t_{r,p_r} \\
0 & 0 & 1 & 0 \\
0 & t_{J,r} & t_{J,p_\phi} & t_{J,p_r}
\end{bmatrix},$$

(3.52)

where the above terms are given by

$$t_{\theta,r} = \frac{\kappa}{p_r} + W_{J_\phi,J_r} \frac{\eta}{\Omega_r},$$

$$t_{\theta,p_\phi} = W_{J_\phi,J_\phi} - W_{J_r,J_r} \frac{\kappa}{\Omega_r},$$

$$t_{\theta,p_r} = W_{J_r,J_\phi} - W_{J_r,J_r} \frac{\kappa}{\Omega_r},$$

$$t_{r,r} = \frac{\Omega_r}{p_r} + W_{J_\phi,J_\phi} \frac{\eta}{\Omega_r},$$

$$t_{r,p_\phi} = W_{J_r,J_r} \frac{p_r}{\Omega_r},$$

$$t_{r,p_r} = \frac{p_r}{\Omega_r}.$$

(3.53)

The functions κ and η are

$$\kappa = \Omega_\phi - \frac{L}{r^2},$$

$$\eta = \frac{\partial \Phi}{\partial r} - \frac{L^2}{r^3},$$

(3.54)

and the W_{J_i,J_j} are found by differentiating the generating function

$$W_{J_\phi,J_\phi} = \frac{\partial^2 W}{\partial J_\phi^2} = \int_{r_{peri}}^r \frac{dr}{p_r} \left(\frac{\partial \Omega_\phi}{\partial J_\phi} - \frac{1}{r^2} - \frac{\kappa^2}{p_r^2} \right),$$

(3.55)

$$W_{J_r,J_r} = \frac{\partial^2 W}{\partial J_r^2} = \int_{r_{peri}}^r \frac{dr}{p_r} \left(\frac{\partial \Omega_r}{\partial J_r} - \frac{\Omega_r^2}{p_r^2} \right),$$

(3.56)

$$W_{J_r,J_\phi} = \frac{\partial^2 W}{\partial J_r \partial J_\phi} = \int_{r_{peri}}^r \frac{dr}{p_r} \left(\frac{\partial \Omega_\phi}{\partial J_r} - \frac{\kappa}{p_r^2} \Omega_r \right).$$

(3.57)