Adequate Design of Pharmacokinetic-Pharmacodynamic Studies Will Help Optimize Tuberculosis Treatment for the Future
Sturkenboom, Marieke G. G.; Akkerman, Onno W.; Bolhuis, Mathieu S.; de Lange, Wiel C. M.; van der Werf, Tjip S.; Alffenaar, Jan-Willem C.

Published in:
Antimicrobial Agents and Chemotherapy

DOI:
10.1128/AAC.05173-14

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
We read with interest the paper by Requena-Méndez and colleagues, who aimed to evaluate plasma concentrations of isoniazid administered daily and twice weekly (1). The sampling strategy to assess the area under the concentration-time curve (AUC) consisted of obtaining two plasma samples at 2 and 6 h (C2 and C6, respectively) after intake of the drugs. In addition, the maximum concentration of the drug in serum (Cmax) was defined as the higher of either the C2 or the C6 concentration. They concluded that low isoniazid exposure (the AUC from 0 to 6 h) or a low Cmax was not associated with poorer clinical outcomes.

The authors summarized several limitations of their study. It is most likely that the design of their pharmacokinetic study (i.e., C2 and C6 monitoring) explains why they failed to find such an association. They chose C2 and C6 monitoring because of logistical reasons. Although this approach has been used frequently in the past, this sampling strategy is suited neither for capturing the maximum concentration of the drug in serum (Cmax) nor for accurately predicting the AUC of isoniazid. Earlier, Prahl and colleagues showed that currently used target values for C2 are neither predictive of treatment efficacy and need to be redefined (2). Due to the large pharmacokinetic variability of isoniazid, the true Cmax will be captured only by intensive pharmacokinetic sampling (3). In addition, estimation of the isoniazid AUC using two samples (C2 and C6) does not qualify to be placed among the best-performing optimal sampling strategies for isoniazid (4). Obtaining a full pharmacokinetic curve and using a validated limited sampling strategy are the only two strategies of accurately predicting the AUC of isoniazid. Earlier, Prahl and colleagues showed that currently used target values for C2 are neither predictive of treatment efficacy and need to be redefined (2). Due to the large pharmacokinetic variability of isoniazid, the true Cmax will be captured only by intensive pharmacokinetic sampling (3). In addition, estimation of the isoniazid AUC using two samples (C2 and C6) does not qualify to be placed among the best-performing optimal sampling strategies for isoniazid (4). Obtaining a full pharmacokinetic curve and using a validated limited sampling strategy are the only two strategies of accurately predicting the AUC of isoniazid. Earlier, Prahl and colleagues showed that currently used target values for C2 are neither predictive of treatment efficacy and need to be redefined (2). Due to the large pharmacokinetic variability of isoniazid, the true Cmax will be captured only by intensive pharmacokinetic sampling (3). In addition, estimation of the isoniazid AUC using two samples (C2 and C6) does not qualify to be placed among the best-performing optimal sampling strategies for isoniazid (4). Obtaining a full pharmacokinetic curve and using a validated limited sampling strategy are the only two strategies of accurately predicting the AUC of isoniazid. Earlier, Prahl and colleagues showed that currently used target values for C2 are neither predictive of treatment efficacy and need to be redefined (2). Due to the large pharmacokinetic variability of isoniazid, the true Cmax will be captured only by intensive pharmacokinetic sampling (3). In addition, estimation of the isoniazid AUC using two samples (C2 and C6) does not qualify to be placed among the best-performing optimal sampling strategies for isoniazid (4). Obtaining a full pharmacokinetic curve and using a validated limited sampling strategy are the only two strategies of accurately predicting the AUC of isoniazid. Earlier, Prahl and colleagues showed that currently used target values for C2 are neither predictive of treatment efficacy and need to be redefined (2). Due to the large pharmacokinetic variability of isoniazid, the true Cmax will be captured only by intensive pharmacokinetic sampling (3). In addition, estimation of the isoniazid AUC using two samples (C2 and C6) does not qualify to be placed among the best-performing optimal sampling strategies for isoniazid (4). Obtaining a full pharmacokinetic curve and using a validated limited sampling strategy are the only two strategies of accurately predicting the AUC of isoniazid. Earlier, Prahl and colleagues showed that currently used target values for C2 are neither predictive of treatment efficacy and need to be redefined (2). Due to the large pharmacokinetic variability of isoniazid, the true Cmax will be captured only by intensive pharmacokinetic sampling (3). In addition, estimation of the isoniazid AUC using two samples (C2 and C6) does not qualify to be placed among the best-performing optimal sampling strategies for isoniazid (4). Obtaining a full pharmacokinetic curve and using a validated limited sampling strategy are the only two strategies of accurately predicting the AUC of isoniazid. Earlier, Prahl and colleagues showed that currently used target values for C2 are neither predictive of treatment efficacy and need to be redefined (2). Due to the large pharmacokinetic variability of isoniazid, the true Cmax will be captured only by intensive pharmacokinetic sampling (3). In addition, estimation of the isoniazid AUC using two samples (C2 and C6) does not qualified to be placed among the best-performing optimal sampling strategies for isoniazid (4). Obtaining a full pharmacokinetic curve and using a validated limited sampling strategy are the only two strategies of accurately predicting the AUC of isoniazid. Earlier, Prahl and colleagues showed that currently used target values for C2 are neither predictive of treatment efficacy and need to be redefined (2).

Requena-Méndez et al. suggested that weight-based twice-weekly dosing is still a suitable alternative. We argue that their study was not designed and lacked the power to relate this strategy to treatment outcome. Conclusions on treatment outcome may be further complicated by the fact that data regarding drug susceptibility were not available (1, 6). The earlier meta-analysis on this subject showed that microbiological failure was more frequent with the intermittent dosing schedules (7). Indeed, intermittent dosing should no longer be recommended (8). Only a well-designed sampling schedule and information on drug intake and drug susceptibility in combination with long-term follow-up will provide relevant data that may help to optimize tuberculosis (TB) treatment.

REFERENCES