Induction of a Torpor-like state by 5’-AMP: a Role for Endogenous H$_2$S Production?

George J. Dugbarney, Hjalmar R. Bouma, Arjen M. Strijkstra, Ate S. Boerema, Robert H. Henning

1Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

2Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

3Departments of Chronobiology and Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 RB Groningen, The Netherlands

4Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

Submitted
ABSTRACT

Introduction: Therapeutic hypothermia is used to reduce ischemia/reperfusion injury (IRI) during organ transplantation and major surgery, but does not fully prevent organ injury. Interestingly, hibernating animals undergo repetitive periods of low body temperature called ‘torpor’ without signs of organ injury. Recently, we identified an essential role of H₂S in entrance into torpor and preservation of kidney integrity during hibernation. A torpor-like state can be induced pharmacologically by injecting 5’-AMP. The mechanism by which 5’-AMP leads to the induction of a torpor-like state, and the role of H₂S herein, remains to be unraveled.

Methods: To study the role of H₂S on the induction of torpor, AOAA was administered before injection with 5’-AMP to block endogenous H₂S production in Syrian hamster. To assess the role of H₂S on maintenance of torpor induced by 5’-AMP, additional animals were injected with AOAA during torpor.

Results: During the torpor-like state induced by 5’-AMP, the expression of H₂S synthesizing enzymes and plasma levels of H₂S were increased. Blockade of these enzymes inhibited the rise in the plasma level of H₂S, but neither precluded torpor nor induced arousal. Remarkably, blockade of endogenous H₂S production was associated with increased renal injury.

Conclusion: Induction of a torpor-like state by 5’-AMP does not depend on H₂S, although production of H₂S seems to attenuate renal injury. Unraveling the mechanisms by which 5’-AMP reduces the metabolism without organ injury may allow optimization of current strategies to limit (hypothermic) IRI and improve outcome following organ transplantation, major cardiac and brain surgery.
INTRODUCTION

Therapeutic hypothermia is a commonly used technique to prevent ischemia/reperfusion injury (IRI) during major cardiac and neuronal surgery and following cardiopulmonary resuscitation. Although hypothermia reduces ischemia by lowering the metabolism, therapeutic hypothermia does not completely preclude organ injury. The generation of reactive oxygen species is the major culprit in IRI (Carden and Granger, 2000). Interestingly, hibernating animals cycle through a state of lowered metabolism with a profoundly reduced body temperature called ‘torpor’ and periods of euthermia called ‘arousal’, without gross signs of organ injury (Zancanaro et al., 1999; Talaei et al., 2011; Jani et al., 2011; Carey et al., 2013). The duration of a torpor bout depends on the species and varies from several days to a month. The body temperature during torpor may be reduced towards freezing point, and is typically close to the ambient temperature (Barnes, 1989; Talaei et al., 2011; Talaei et al., 2012; Bouma et al., 2013a; Bouma et al., 2013b; de Vrij et al., 2014). Recently, we demonstrated that the induction of torpor and the prevention of kidney injury depend on the endogenous formation of hydrogen sulfide (H_2S) in the Syrian hamster (see Chapter 3). Moreover, lung tissue H_2S are increased during torpor in the Syrian hamster (Talaei et al., 2012) and plasma levels of unbound free sulfur are augmented in hibernating brown bears (Revsbech et al., 2014). Endogenous H_2S can be produced by cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate-sulfurtransferase (MST). During torpor in the Syrian hamster, CBS expression is increased in pulmonary tissue (Talaei et al., 2012), while the expression of all three enzymes increases in kidney (see Chapter 3).

A torpor-like state can be induced pharmacologically in non-hibernating animals through inhalation of H_2S or injection of 5’-adenosine monophosphate (5’-AMP), thereby mimicking natural torpor (Zhang et al., 2006; Swoap et al., 2007; Blackstone et al., 2005; Bouma et al., 2010). Fasting of mice housed under constant darkness, stimulates torpor behavior which is associated with increased levels of 5’-AMP in plasma (Zhang et al., 2006). Interestingly, H_2S governs protection against lethal hypoxia in mice (Blackstone et al., 2007). Infusion of 5’-AMP activates the molecular energy sensor adenosine monophosphate kinase (AMPK), which mediated the protective effects of ischemic preconditioning on IRI (Bouma et al., 2010). Further, infusion of 5’-AMP in rats limits activation of mitogen-activated protein kinases (MAP-kinases) and NFκB and pulmonary inflammation in models of endotoxemia (Miao et al., 2012; Wang et al., 2014). The mechanisms underlying 5’-AMP mediated induction of a torpor-like state remain to be unraveled. Given the similarity of 5’-AMP and H_2S on the induction of this torpor-like state and the preservation of organ integrity, we hypothesized that 5’-AMP may mediate its effects through stimulation of H_2S production. To study whether the induction of a torpor-like state and preservation of kidney integrity by 5’-AMP depends
on H$_2$S, we measured the effect of 5'-AMP on activity, body temperature, kidney function and morphology in Syrian hamsters that were co-infused with either saline or the non-specific inhibitor of H$_2$S production, amino-oxyacetic acid (AOAA). To exclude the influence of interspecies differences, we studied involvement of H$_2$S in 5'-AMP induced torpor and the prevention of kidney injury in a natural hibernator, i.e. Syrian hamster, the same species in which we revealed the essential role of H$_2$S in the induction of natural torpor and preservation of renal integrity (see Chapter 3).

MATERIALS AND METHODS

Animals
Prior to experiments, Syrian hamsters (*Mesocricetus auratus*) were fed ad libitum using standard animal lab chow and animals were housed under normal light/dark conditions (L: D-cycle 12: 12 hours) at an ambient temperature of 20-25°C. Animals were randomly assigned to one of four groups, being control (n = 7), 5'-AMP with saline (n = 6), 5'-AMP with AOAA prior to torpor (n = 6; AOAA early) and 5'-AMP followed by AOAA during torpor (n = 6; AOAA late). The Animal Experimental Committee of the University of Groningen, The Netherlands, approved the animal experiments.

Experiment
Three weeks before the experiment, i-Button temperature loggers (Maxim Direct, France, DS1920 model) sealed in paraffin, were implanted intraperitoneally under isoflurane and analgesia with flunixin/meglumine (2 mg/kg). A blood sample (300 microliter) was obtained for baseline creatinine and H$_2$S levels. One day before start of the experiment, animals were housed individually in a climate-controlled room at 5°C. After 24 hours, animals were injected intraperitoneally with saline or AOAA (100 mg/kg) followed by 3 µmol/g 5'-AMP (in 0.9% saline, pH 7.5; Sigma Aldrich, The Netherlands) to induce a torpor-like state. Animals were euthanized by injecting an overdose of pentobarbital intraperitoneally 10 hours after injection of 5'-AMP. Next, a blood sample was drawn by cardiac puncture. Kidney samples were snap-frozen in liquid nitrogen and fixated in formaldehyde.

(Immune)histochemistry
Kidney samples were fixated in 4% paraformaldehyde for 3 hours at room temperature followed by 4°C for 24 hours. Next, samples were dehydrated using a decreasing series of ethanol for 12 hours and embedded in paraffin. Four µm thick sections were deparaffinized in xylene (twice 5 minutes), followed by rehydration in a decreasing series of ethanol and distilled water. To evaluate changes in glomerular and tubular morphology, the kidney sections were stained with hematoxylin/eosin. Renal sections were examined blindly by two independent
observers (Gross et al., 2006). Glomerular damage was scored semiquantitatively in 100 glomeruli from 0 to 4 (El Nahas et al., 1991) and tubulointerstitial damage was quantified on the basis of tubular dilatation, atrophy of epithelial cells and widening of tubular lumen (Gross et al., 2006). To evaluate the renal damage, sections were stained for kidney injury molecule (KIM-1, diluted 1: 50 v/v), a marker for renal tubular damage (Santa Cruz, The Netherlands), ED-1, a marker for macrophages (CD68, diluted 1: 500 v/v, Serotec Ltd, United Kingdom). Secondary and tertiary antibodies used are Horse Radish Peroxidase (HRP)-linked polyclonal rabbit anti-mouse IgG (diluted 1: 100 v/v), HRP-linked polyclonal rabbit anti-goat IgG (diluted 1: 100 v/v), and HRP-linked polyclonal goat anti-rabbit IgG (diluted 1: 100 v/v). Kidney sections were subjected to antigen retrieval in 0.1M Tris/HCl buffer (pH 9.0) by overnight incubation at 80°C. Next, sections were washed in PBS and blocked in 500 µl of 30% H2O2 for 30 minutes followed by incubation with the appropriate primary antibody for 60 minutes at room temperature. Following an additional washing step with PBS, samples were incubated for 30 minutes at room temperature with the appropriate secondary antibody and then with tertiary antibody at room temperature for 30 minutes. Finally, following a last washing step, samples were incubated with either DAB or AEC for 10-20 minutes and covered in either Depex mounting medium or DAKO Faramount aqueous mounting medium, and cover slips were applied.

Western Blotting

Frozen kidney tissue samples (~500 mg) were homogenized in 400 µl RIPA buffer, consisting of 40 µl protease inhibitor cocktail (prepared according to the manufacturer’s instructions, Roche, The Netherlands), 2.5 mM sodium orthovanadate (Sigma Aldrich, The Netherlands) and 10 mM β-mercaptoethanol (Sigma Aldrich, The Netherlands). After 30 minutes incubation on ice, the homogenized samples were centrifuged at 14,000 g at 4°C for 20 minutes. Supernatants were collected and protein concentrations were determined using a Bradford protein assay, according to the manufacturer’s prescriptions (Bio-Rad, Germany). Samples were boiled for 5 minutes. SDS-polyacrylamide gel electrophoresis was run using 40 µg of protein per slot at 100V for 60 minutes. Proteins were then wet blotted onto nitrocellulose membranes (Bio-Rad, Germany) using a transfer buffer solution containing 0.25mM Tris (pH 8.5), 192 mM glycine and 10% v/v methanol at 4°C for 60 minutes at 0.3 mA. Next, the nitrocellulose membranes were blocked for 30 minutes in TBS + Tween-20 (50mM Tris-HCl, pH 6.8, 150mM NaCl, 0.05% v/v Tween-20) supplemented with 5% w/v skim milk. After decantation of the blocking buffer, membranes were incubated overnight at 4°C with the primary antibody diluted 1: 1000 v/v in 3% BSA/TBST (anti-CBS and anti-3-MST, Santa Cruz, The Netherlands; anti-CSE, Abnova, USA). Subsequently, membranes were washed three times in TBS buffer and incubated with HRP-linked polyclonal rabbit anti-goat IgG secondary antibody (1: 1000 v/v dilution) in TBS + Tween-20 supplemented with 3% BSA (w/v) for
60 minutes. Blots were developed using the SuperSignal West Dura Extended Duration Substrate (Thermo Scientific, USA) according to the manufacturer’s protocol. Protein bands were visualized using the Gene Genome system (Westburg B.V., The Netherlands) and band intensities were quantified using Gene Tools software (Westburg B.V., The Netherlands). β-actin was used as a house-keeping protein to normalize protein concentrations.

Plasma H₂S Measurement

Sulfide antioxidant buffer was prepared from 25 g of sodium salicylate, 6.5 g of ascorbic acid and 8.5 g of sodium hydroxide in 100 mL of distilled water and pH adjusted to ≥ 13. Next, 100 µL of the sulfide antioxidant buffer was added to 100 µL plasma samples. A sulfide sensitive electrode (Lazer Research Laboratories Inc., USA) was immersed into the mixture and the electrode potential was monitored and the stabilized mV reading was recorded. The sulfide ion concentration of the plasma was calculated using the electrode standardization curve prepared from 10 mL of the sulfide antioxidant buffer and 24 mg of Na₂S.9H₂O, according to the manufacturer’s guide.

Statistical Analysis

All values are expressed as mean ± standard error of the mean (SEM). Differences between groups were tested for significance using a One-Way ANOVA. P-values < 0.05 were considered statistically significant. Significant differences were calculated with SPSS version 22 and graphs were produced using Sigmaplot version 12.5 for Windows.

RESULTS

Endogenous H₂S is not essential for the induction of a torpor-like state by 5'-AMP

Injection of 5'-AMP in summer euthermic hamsters induced a torpor-like state as characterized by inactivity and marked drop in core body temperature from 37°C to 7°C, which lasted at least 10 hours (figure 1A). At the time of euthanization, all animals were in the torpor-like state. To determine the involvement of H₂S in 5'-AMP-induced torpor, we measured the plasma levels of H₂S and blocked endogenous production either before or during torpor by AOAA. 5'-AMP-induced torpor significantly increased endogenous H₂S level in the plasma by 47.7% as compared to summer euthermic control animals (figure 1B; p < 0.05). Although the increased plasma level of H₂S suggests a role for H₂S in the induction of torpor, blocking endogenous H₂S production by AOAA prior to 5'-AMP injection did not prevent the 5'-AMP-induced hypothermia (figure 1A), although it substantially decreased plasma H₂S level at 10 hours following injection of 5'-AMP to 11.4% of control animals (figure 1B; p < 0.01). Further, injection of AOAA during the torpor-like state, 4 hours after injection of 5'-AMP, reduced the plasma level of H₂S to 22.7% at 10 hours following injection of 5'-AMP (figure 1B; p < 0.01).
Despite the effect of AOAA on the plasma level of H$_2$S, blockade of H$_2$S production did not induce arousal. To determine whether the increased plasma level of H$_2$S is due to changes in the amount of H$_2$S producing enzymes, we measured the amount of CBS, CSE and 3-MST in the kidney by Western Blot. As expected based on the effect of 5’-AMP on plasma H$_2$S levels, administration of 5’-AMP resulted in a substantial upregulation of CBS, and smaller upregulation of CSE and 3-MST, as compared to control animals (figure 1C-E; $p < 0.05$). Further, injection of AOAA, either prior to or during torpor, resulted in a significant lower amount of CBS, CSE and 3-MST as compared to control animals (figure 1C-E; $p < 0.05$). Thus, injection of 5’-AMP induces a torpor-like state in hamsters, which is not precluded by blocking H$_2$S production, although 5’-AMP increases the plasma level of H$_2$S, potentially due to an increased amount of CBS, CSE and 3-MST.

Figure 1. 5’-AMP induces torpor in natural hibernators and increases plasma H$_2$S and renal expression of H$_2$S synthesizing enzymes. (A) Administration of 5’-AMP (at t=0) resulted in a drop in core body temperature from 37 °C to ~7 °C in all three experimental groups after 10 h of 5’-AMP injection, which was not affected by early or late administration of AOAA. (B) Administration of 5’-AMP (at t=0) significantly increased plasma H$_2$S level compared to control animals, while AOAA injection prior to or 4 h after 5’-AMP administration reduced plasma H$_2$S level. (C-E) Administration of 5’-AMP (at t=0) upregulated the renal expression of CBS, CSE and 3-MST, while expression was decreased by AOAA injection prior to or 4 h after 5’-AMP administration. C=control animals *+/++, $p < 0.05/0.01$ compared to control. Data are presented as mean ± SEM.
Blocking H$_2$S production markedly increases plasma creatinine in 5'-AMP induced torpor

In order to assess kidney function, we measured the plasma level of creatinine in all hamsters. During the torpor-like state induced by 5'-AMP, the level of creatinine in plasma is slightly increased as compared to control animals (figure 2B; $p < 0.05$). Blocking endogenous H$_2$S production with AOAA, either prior to the induction or during the torpor-like state, profoundly increased the plasma creatinine level, reaching levels around threefold higher as compared to control animals (figure 2B; $p < 0.01$). Thus, induction of a torpor-like state by 5'-AMP leads to slightly elevated plasma creatinine level, which is augmented upon inhibition of endogenous H$_2$S production. Potentially, H$_2$S mediates preservation of the kidney function during the torpor-like state induced by 5'-AMP.

Blocking H$_2$S production is associated with glomerular and tubulointerstitial injury

Induction of torpor by 5'-AMP did not affect the morphology of glomeruli (figure 2A,C $p > 0.05$), but was associated with minor signs of tubulointerstitial injury associated with influx of a low number of macrophages into the renal interstitium as compared to the control group (figure 2A,C,E; $p < 0.05$). Further, injection of 5'-AMP resulted in a slight increase in the amount of KIM-1 protein in the renal tubules as compared to control group (figure 2A,D; $p < 0.05$). To further substantiate the role of endogenous H$_2$S production on renal morphology, renal sections from animals treated with AOAA were analyzed. Blocking endogenous H$_2$S production with AOAA, either prior to or during 5'-AMP-induced torpor, lead to pronounced glomerular, tubular and interstitial damage that was associated with a substantial influx of macrophages in the renal interstitium as compared to control animals (figure 2A,C,E; $p < 0.01$). The higher level of renal injury during torpor is reflected by an increased amount of KIM-1 following blockade of H$_2$S production (figure 2A,D; $p < 0.01$). There was no significant difference in KIM-1 expression between early and late AOAA groups (figure 2D; $p > 0.05$). Hence, 5'-AMP is associated with minor signs of tubulointerstitial injury. Although H$_2$S is not essential for the induction of torpor, blockade of endogenous H$_2$S production leads to pronounced glomerular and tubulointerstitial injury, thus suggesting a protective role of H$_2$S against renal injury.
Figure 2. Blocking H₂S production during 5'-AMP-induced torpor provokes kidney injury. (A) Representative photographs of kidney tissue; magnification x400. (B) Administration of 5'-AMP significantly increased plasma creatinine level compared to control animals, which was further elevated by AOAA injection prior to or 4 h after 5'-AMP administration. (C-E) Quantification of renal injury and markers, demonstrating modest renal injury in 5'-AMP induced torpor, which is grossly amplified by AOAA administration. HE = hematoxylin eosin staining; KIM-1 = Kidney Injury Molecule 1; ED-1 = antibody against CD68 specific for macrophages. *"** represents p < 0.05/0.01 compared to control.
DISCUSSION

H₂S is not essential for the induction of a torpor-like state by 5'-AMP, but seems to play a key role in preserving kidney function and integrity.

In the current study, we reveal that the induction of a torpor-like state by 5'-AMP in natural hibernators is not dependent on production of endogenous H₂S. Blocking H₂S production by AOAA, did not preclude torpor and did not induce an arousal. Remarkably, the torpor-like state induced by 5'-AMP is associated with increased plasma levels of H₂S. The increased amount of CBS, but not CSE and 3-MST, may account for the higher levels of H₂S. Pharmacological induction of torpor by 5'-AMP leads to a slight increase in the plasma creatinine level and minor signs of tubulointerstitial injury, associated with a small influx of macrophages. Blockade of endogenous H₂S production reveals an essential role in the preservation of kidney function and renal integrity, since infusion of AOAA either before or during torpor lead to a profound increase in plasma creatinine level that was associated with glomerular and tubulointerstitial damage with influx of macrophages into the kidney. Thus, in line with the role of endogenous H₂S in preserving renal integrity during natural torpor (see Chapter 3) and consistent with the renal protection during exogenously applied H₂S in mouse (Bos et al., 2009; Bos et al., 2013; Lobb et al., 2014), H₂S seem to play a key role in mediating kidney preservation during pharmacologically induced torpor by 5'-AMP. However, H₂S is not involved in the induction or maintenance of torpor induced by 5'-AMP.

The mechanisms underlying 5'-AMP induction of torpor remain to be unraveled.

As described, our data demonstrate that H₂S does not play an essential role in the induction of torpor by 5'-AMP. As an alternative explanation, activation of adenosine receptors, adenosine monophosphate protein kinase (AMPK) and adenylate kinase may lead to the induction of a torpor-like state. Swoap et al. (2007) suggested that activation of adenosine receptors following dephosphorylation of 5'-AMP to adenosine may lead to lowering of the body temperature secondary to a reduction in cardiac output. This hypothesis is supported by the observation that not only (5'-)AMP, but also ATP, ADP and adenosine can induce a torpor-like state in mice and that lowering of the body temperature is blunted by co-treatment with an adenosine receptor antagonist (Swoap et al., 2007). The second hypothesis describes a role for AMPK, a key enzyme that plays a role in cellular energy homeostasis, which can be activated by depletion of cellular ATP (and consequently elevate AMP), and switches off energy consuming energetically demanding metabolic pathways (Peralta et al., 2001; Adams et al., 2004; Lindsley and Rutter, 2004; Swoap et al., 2007). Activation of signaling pathways downstream of AMPK promote a shift from anabolic towards catabolic processes and thereby reduce energy expenditure of the cells. However, it is unclear whether this leads to torpor-like behavior of the animal. Furthermore, activation of AMPK by intracerebroventricular
infusion of AICAR (a specific AMPK-activator) in yellow-bellied marmots (Marmota flaviventris) during interbout arousal does not induce torpor, but lead to increased food intake and even prevents the return to torpor (Florant et al., 2010). As a third hypothesis, relatively high levels of AMP lead to activation of adenylate kinase, which converts (5’-AMP together with ATP to ADP. Injection of 5’-AMP may thereby lead to a relative ATP-depletion, which is implicated to reduce metabolism as observed during entrance into torpor (Lee et al., 2008). Hence, the mechanism by which 5’-AMP induces a torpor-like state, and potentially natural torpor as well, remain to be unraveled. We reveal that pharmacological induction of a torpor-like state by 5’-AMP does not depend on H_{2}S.

Conclusion

Taken together, we demonstrate that 5’-AMP induces a torpor-like state in natural hibernators, leading to a lowering of the body temperature that is independent of the activation of H_{2}S system. Although H_{2}S does not seem to play an essential role in the induction of a torpor-like state by 5’-AMP, endogenous production of H_{2}S seems to play an essential role in precluding glomerular and tubulointerstitial renal injury and maintaining renal function. The exact mechanism(s) through which 5’-AMP induces a torpor-like state is not yet understood. Unraveling these molecular mechanisms may lead to the development of novel pharmacological therapies to safely reduce the metabolism to limit (hypothermic) IRI and thereby improve the outcome following organ transplantation and major cardiac/brain surgery.

FINANCIAL & COMPETING INTERESTS DISCLOSURE

The authors declare that no competing financial interests exist.

ACKNOWLEDGEMENTS

This study was supported by a grant from Groningen University Institute for Drug Exploration (GUIDE). We are grateful to Prof. Harry van Goor (University Medical Center Groningen, Netherlands) for generously providing the CSE antibody.
REFERENCES

