The bright side of hierarchies
Cantimur, Yeliz

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
CHAPTER 2

EXPERTISE AND DOMINANCE PAVE THE WAY FOR INFLUENCE ATTAINMENT IN THE WORK PLACE: THE MODERATING ROLE OF INTRA-TEAM COMPETITION

In this paper, we examined the routes by which individuals gain social influence in organizational work teams. We tested our predictions in two sets of scenario studies among university students and MTurk users (i.e., Studies 1 and 2) and a field study conducted in real-life organizational work teams (i.e., Study 3). In Study 1, we provided initial causal evidence that expertise and dominance represent two independent routes to influence in work teams. In Study 2, we found partial support for the notion that the effectiveness of each route to influence may depend on a team’s contextual work climate (i.e., intra-team competition). In Study 3, we replicated our results in a field study among 54 organizational work teams. More specifically, we confirmed that perceptions of expertise and dominance can independently shape patterns of interpersonal influence within organizational work settings. Furthermore, in full support of our hypotheses, we demonstrated that experts are perceived as more influential when intra-team competition is less pronounced, whereas dominant individuals are viewed as more influential when intra-team competition is more pronounced within the work team. The implications of our results are discussed in light of the conceptual debate surrounding different possible models of influence attainment and related to organizational practices.

This chapter is based on a manuscript under review at the Journal of Applied Psychology.
Patterns of social influence are among the most important determinants of individual outcomes in work teams and other small groups (Anderson & Berdahl, 2002; Kanter, 1977; Lucas & Lovaglia, 1998). Highly influential members control team interactions and decisions (Bales, Strodtbeck, Mills, & Roseborough, 1951; Buzaglo & Wheelan, 1999; Goffman, 1967) because they have the ability to modify other members’ beliefs, attitudes, and behaviors (Cialdini & Trost, 1998; French & Raven, 1959). Moreover, such members enjoy superior access to valued resources (e.g., higher compensation; Belliveau, O’Reilly, & Wade, 1996; Thibaut & Kelley, 1959) and receive more favorable evaluations and greater support than less influential members (Berger, Rosenholtz, & Zelditch, 1980; Fan & Gruenfeld, 1998; Van der Vegt, Bunderson, & Oosterhof, 2006). Not surprisingly, then, examining how individual members gain social influence in work settings has been an important research agenda among organizational scholars (see Chen, Peterson, Phillips, Podolny, & Ridgeway, 2012).

A predominant perspective in this line of inquiry has emphasized an expertise model to influence attainment. Consistent with status characteristics (Berger, Cohen, & Zelditch, 1972) and expectation states theories (Berger, Conner, & Fisek, 1974; Berger, Fisek, Norman, & Zelditch, 1977), these scholars argue that individuals yield influence by signaling superior task-relevant knowledge and skills to their teammates (Blau, 1964; Hollander, 1985; Lord, 1985). For example, team members who demonstrate high task performance (Treadway, Brelan, Williams, Cho, Yang, & Ferris, 2013), who take on difficult and complex tasks (Kellett, Humphrey, & Sleeth, 2002), and who facilitate team task accomplishment (Anderson & Berdahl, 2002; Lord, 1977) have been associated with higher social influence.

It is important to note, however, that, from a sociobiological and evolutionary perspective, scholars have put forward a fundamentally different view on how individuals can gain social
influence in groups. Scholars from these areas have advocated a *dominance model*, arguing that individuals attain influence by displaying coercive, aggressive, and intimidating behavior toward their fellow group members (Buss, 1999; Buss & Duntley, 2006; Cummins, 2005; Mazur, 1985). The respective literature has yielded broad support for this contention, demonstrating that forceful behaviors such as thwarting, insulting and threatening are positively associated with social influence in groups of children and adolescents (Hawley, 2002; Savin-Williams, 1979; Vaillancourt & Hymel, 2006), and in adult social groups (Burgoon, Dillard, & Doran, 1983; Kyll-Heku & Buss, 1996).

With few exceptions (e.g., Fitness, 2000; Lund, Tamnes, Moestue, Buss, & Vollrath, 2007), empirical research has overlooked this dominance model in organizational settings. In fact, a conceptual debate has recently emerged on the importance of expertise- versus dominance-based explanations of social influence in work team contexts. Some scholars have pointed to the strong social norms prevalent in many work teams, arguing that such norms render dominance displays futile and, thus, emphasizing expertise signals as a primary means of strengthening one’s influence (e.g., Ridgeway & Diekema, 1989; Van Vugt, 2006; see also Becker & Martin, 1995; Robinson & Bennett, 1995). Other scholars, by contrast, see no fundamental discontinuity between influence attainment inside and outside organizational team settings and, thus, have called for a greater emphasis on dominance-based explanations of social influence in organizational research. As Chen et al. (2012, p. 304) noted, for example, “behavioral dominance and aggression are not uncommon in work organizations…, and thus, it may be important and useful to examine dynamics associated with dominance-based status in future management research.” (see also Bolino, Kacmar, Turnley, & Gilstrap, 2008; Ferris, Zinko, Brouer, Buckley, & Harvey, 2007).

The expertise and dominance models both emphasize others’ perceptions of a focal
individual as critical to influence attainment, although the focus of these perceptions differs markedly (i.e., expertise vs. dominance signals). As such, these models may complement each other in important ways; together, they may provide for a more complete and viable account of social influence processes (Henrich & Gil-White, 2001). Nevertheless, research on expertise versus dominance explanations in work teams has mostly proceeded in separation to date. By focusing on expertise processes and largely neglecting dominance mechanisms, in particular, the organizational literature is at risk of creating a one-sided and fragmentary picture. Empirical research is needed that concurrently examines these distinct perspectives and clarifies their relevance vis-à-vis each other. The present research, therefore, develops and tests a conceptual model that integrates expertise and dominance approaches to social influence in work teams.

In comparing the two perspectives to influence attainment in work teams, it is important to note that a team’s behavioral norms and standards may critically shape the development of members’ influence (see Anderson & Kennedy, 2012; Barkow, 1975; Cheng, Tracy, & Henrich, 2010; Hawley, 1999). To fully understand the two distinct routes to social influence, it thus appears vital to solidly anchor them within their team context. Scholars have noted that intra-team competition (i.e., the degree to which members’ personal gains are mutually exclusive; Deutsch, 1949) is a pervasive phenomenon in organizations and work teams (Kilduff, Elfenbein, & Staw, 2010) and can set important norms for members’ interpersonal behavior (Tjosvold, 1988). Highly competitive norms may allow (or even call) for dominance displays (Salin, 2003a, 2003b; Vartia, 1996; see also Gallagher, Harris, & Valle, 2008; Schoel, Bluemke, Mueller, & Stahlberg, 2011), whereas less competitive norms may discourage coercive behavior and strengthen the value of members’ task-related expertise to benefit the team as a whole (see Tjosvold & Deemer, 1981). As such, the degree of intra-team competition may critically determine whether expertise and/or dominance displays can effectively strengthen an individual
Taken together, the purpose of the present manuscript is (a) to theoretically integrate expertise and dominance models of social influence in organizational work teams and (b) to provide empirical evidence that can inform the conceptual debate surrounding these models. In doing so, we incorporate the team context as an important explanatory factor that determines which of the two influence routes will prevail. By examining these issues of both perspectives alongside each other, our research brings together ideas from distinct, largely isolated streams of research, promoting a more nuanced account of social influence attainment in organizational team settings. We examine our theoretical predictions in two sets of scenario-based experimental studies (i.e., to establish causality) and one field study (i.e., to corroborate our findings’ external validity).

THEORY AND HYPOTHESES

The Expertise Model of Social Influence

The expertise model of social influence is based on the notion that perceptions of expertise (i.e., a target individual’s perceived task-relevant knowledge, skills, and capabilities; Van der Vegt et al., 2006) represent a core predictor of social influence in work teams (e.g., Bales, 1953; Stogdill, 1959; Thibaut & Kelley, 1959). This notion derives from status characteristics (Berger et al., 1972; Berger et al., 1980) and expectation states theories (Berger et al., 1974; see also Correll & Ridgeway, 2003), which posit that perceptions of both diffuse expertise cues (e.g., gender, age) and specific expertise cues (e.g., education, training, task-relevant behavior) give rise to performance expectations regarding an individual. These expectations are suggested to be critical, in turn, for an individual’s social influence (see Balkwell, 1991; Driskell & Mullen, 1990). Individuals who are expected to perform well have the subjective potential to make important contributions to a team’s overall outcomes because their
advice can improve the quality of team decisions (Bottger, 1984; Stewart & Stasser, 1995), promote efficiency and coordination (Argote, 1999; see also Halevy, Chou, & Galinsky, 2011; Magee & Galinsky, 2008), and strengthen team performance (Bottger & Yetton, 1988; Libby, Trotman, & Zimmer 1987; Littlepage et al., 1995). Consequently, other members are likely to yield to the ideas and suggestions of teammates perceived as experts and potential high performers, giving these latter individuals stronger influence over others’ thoughts, attitudes, and behaviors, as compared to individuals with lower perceived expertise. Both laboratory (e.g., Driskell, Olmstead, & Salas, 1993; Ridgeway, 1987; Ridgeway & Diekema, 1989) and field research (e.g., Bunderson, 2003a) has provided ample support for this prediction.

Hypothesis 1: An individual member’s perceived expertise is positively related to this member’s social influence within the work team.

The Dominance Model of Social Influence

Whereas the expertise model underscores the importance of signaling task competence to others, prior theorizing in sociobiology and evolutionary psychology suggests that individuals can also attain influence through more contentious and aggressive means (Buss & Shackelford, 1997; Cummins, 2005; Mazur, 1985). Analogous to nonhuman animals that gain or lose status through dominance contests (Mazur, 1973; Wilson, 1975; Trivers, 1985), members of human groups are suggested to assert their dominance through (psychological) intimidation and coercion (Buss & Duntley, 2006; Henrich & Gil-White, 2001), thus forcing others to yield to their views and suggestions.

This dominance route to social influence is based on physical threats and violent acts in animal groups (Alexander, 1961; Schjelderup-Ebbe, 1935) as well as in specific human groups (e.g., small children, Strayer & Strayer, 1976; street gangs, Campbell, 1993; Whyte, 1943; prison inmates, Schrag, 1954). Clearly, such acts are typically constrained by social norms and sanctions.
in organizational work teams (Brown & Sumner, 2006). At the same time, human behavior contains a wide array of non-violent, subtle, and covert dominance displays that are frequently used both inside and outside an organizational context (see Baron, Neuman, & Geddes, 1999). Mazur and Booth (1998, p. 353) have noted, accordingly, that “much interpersonal behavior is overtly or subtly concerned with managing dominance and subordination without causing physical harm”. Examples for specific dominance behaviors in organizational work teams and other similar task groups range from implicit dominance signals (e.g., eye contact and gazing, expansive body postures, interruptions, high volume of voice; Carli, 2001; Kalma, 1991; Lee & Ofshe, 1981) toward more explicit “pressure tactics” that include demands, threats, and warnings (Yukl & Tracey, 1992, p. 526). Social influence may arise from such behavior as other members try to avoid confrontations with, or attempt to appease, a teammate perceived as dominant, aggressive, and threatening, complying with such a teammate’s requests for fear of the negative consequences that might otherwise ensue (Henrich & Gil-White, 2001).

Past research on trait dominance (i.e., a person’s characteristic tendency to behave in assertive, forceful, and self-assured ways; cf. Anderson, John, & Keltner, 2012) provides some evidence for this notion, consistently demonstrating positive linkages between dispositional dominance and within-group influence (see Anderson & Berdahl, 2002; Judge, Bono, Ilies, & Gerhardt, 2002). This research has, however, focused on dominance as a stable personality feature only and, thus, has not examined the extent to which individuals actually express such dominance in interpersonal encounters within work teams (see Burgoon, Johnson, & Koch, 1998). Nonetheless, correlational research in student sports teams (Cheng et al., 2010) and ad hoc student groups (Cheng, Tracy, Foulsham, Kingstone, & Henrich, 2013) does suggest that specific dominance displays are related to individuals’ interpersonal influence. We therefore expect to find causal evidence for these relations within organizational work teams as well. That is, we
propose that perceived dominance will strengthen an individual team member’s social influence even after taking into account his or her expertise.

Hypothesis 2: An individual member’s perceived dominance is positively related to this member’s social influence within the work team.

The Moderating Role of Intra-team Competition

With theory and research suggesting that both signals of expertise and signals of dominance may represent potent sources of influence in organizational work teams, it remains a critical question when either of these fundamentally different routes to social influence will be more or less relevant. Previous scholarly work has emphasized the role of shared norms and behavioral standards for individuals’ social influence (e.g., Anderson & Kennedy, 2012; Cheng et al., 2010; Yukl & Tracey, 1992; see also Farrell & Petersen, 1982). In work teams, in particular, the way members’ collaboration is structured may critically shape these norms (Johnson, Maruyama, Johnson, Nelson, & Skon, 1981; Tjosvold, 1984). Research suggests, for example, that the degree of intra-team competition can set critical norms for appropriate and expected behavior among team members (Tjosvold, 1988). Accordingly, we anticipate that this contextual team factor may determine the importance of each route to social influence.

There is a high degree of competition within a work team when members’ personal gains are mutually exclusive (Deutsch, 1949; Deutsch & Kraus, 1962). This type of situation can arise, for example, when organizational practices force team members to compete with each other for scarce, valuable resources, including individual performance bonuses, promotions, or favorable task assignments (Rees & Segal, 1984). Team members, then, will find themselves “in a win-lose situation in which their successes are incompatible” – the gains of one member will diminish the gains others can obtain (Tjosvold, 1988, p. 426). With less intra-team competition, by contrast, one team member’s goal achievement will not deter from other members’ ability to reach their
own goals; in fact, members’ goal attainment may be positively related, with members mutually benefitting from each other’s successes (Deutsch, 1949; Johnson & Johnson, 1989). Such situations are likely to arise if, for example, organizational reward systems include a strong team component (Bartol & Srivastava, 2002; Van der Vegt, Emans, & Van de Vliert, 1998).

As outlined before, expertise displays may promote social influence by triggering expectations of high performance, with others yielding to a perceived expert’s suggestions as they hope to attain benefits for themselves and/or the team as a whole (Van der Vegt et al., 2006). With little intra-team competition, individual members’ success does not contradict each other or may even be mutually beneficial (Deutsch, 1949). Hence, team norms for mutual cooperation and assistance are likely to develop (Tjosvold, 1981, 1984; Tjosvold, Johnson, & Johnson, 1984). Team members have little reason, then, to doubt expert members’ motives and suspect purely self-serving intentions regarding these individuals’ ideas and suggestions. Hence, other members are more likely to follow perceived experts’ suggestions in such team contexts, strengthening the relevance of expertise displays for individuals’ social influence in the team.

High intra-team competition, however, is likely to disturb this route to social influence. With high competition, individual team members can only achieve their personal goals at other members’ cost (Deutsch, 1949). Consequently, team norms may arise that prioritize members’ pursuit of self-interests over collective interests (cf. Beersma, Hollenbeck, Humphrey, Moon, Conlon, & Ilgen, 2003). We argue, therefore, that team members will be reluctant to follow another member’s advice and yield to his or her suggestions – even if they perceive the respective teammate as an expert. After all, team members may expect that expert advice is colored by self-interests in this situation, such that following this advice may benefit the expert him- or herself and, in doing so, detract from other members’ goal attainment (cf. Tjosvold, 1988). Hence, even members demonstrating strong task-related expertise may be granted little social influence in
highly competitive teams.

Hypothesis 3: Intra-team competition will moderate the positive relationship between an individual member’s perceived expertise and social influence within the team. This relationship will be stronger when intra-team competition is less pronounced than when such competition is more pronounced.

In contrast, we propose that high intra-team competition will strengthen the dominance route to social influence. In this situation, norms are likely to emerge that permit (or even encourage) the pursuit of narrow interests and self-serving agendas even at the potential cost of fellow teammates (cf. Beersma et al., 2003). Consistent with the common proverb suggesting that “all is fair in love and war”, it therefore seems likely that dominant, forceful, and assertive acts will be more accepted under these circumstances, as members strive to secure valuable resources for themselves (Tjosvold et al., 1984). The threats, warnings, and implicit signals used to convey dominance (e.g., prolonged eye contact, directness of gaze, and relaxed body posture; Kalma, 1991; Lee & Ofshe, 1981) may, then, be particularly credible and impactful. With competitive and contentious behavior matching team norms, members are less likely to withhold such behavior for fear of organizational and social sanctions (see Salin, 2003a, 2003b). Hence, dominant members can be expected to act upon their threats and warnings, rendering such pressure tactics more effective to induce anxiety in other members and force their compliance.

When team competition is relatively low, however, team members are expected to prioritize collective rather than individual gains to a larger extent (Deutsch, 1949). Given that there is no need to fight for scarce resources, and given that such fights may distract from the overall team’s goal achievement, it is likely that contentious, conflict-laden dominance behaviors will be counter-normative in such contexts (Tjosvold et al., 1984). Consequently, when faced with such behavior, we expect that members will have a tendency to resist, rather than yielding
readily to a dominant teammate’s influence attempts (see Falbe & Yukl, 1992). Moreover, we anticipate that the threats and warnings that often accompany dominance displays will be less credible in non-competitive contexts because members will likely face social and organizational sanctions if they actually pursue the respective lines of action. Dominance displays seem less suitable, then, for inducing anxiety in others and exerting influence in this manner.

Hypothesis 4: Intra-team competition will moderate the positive relationship between an individual member’s perceived dominance and social influence within the team. This relationship will be stronger when intra-team competition is more pronounced than when such competition is less pronounced.

Overview of Studies

We report three studies that tested our predictions. Studies 1a and 1b utilized a work team scenario method to pre-test the causal effects of expertise and dominance cues on individuals’ social influence. Studies 2a and 2b drew on the same method to demonstrate the moderating role of intra-team competition for these distinct influence routes. Study 3 utilized a field methodology to constructively replicate the findings and illustrate their generalizability toward real-life organizational teams.

Study 1a, 1b – Causal Inference

Method

Procedure and Design. In both studies, participants were instructed to imagine that they were part of an ongoing interdependent work team that meets on a daily basis. The members worked closely together and the input from all members was needed to complete team tasks. Participants then received a feedback report of the results from a recent team survey, depicting how one of the team members was rated on expertise and/or dominance by his or her fellow members.
Study 1a used a one-factorial design where the type of route to influence represented the sole independent variable. There were three experimental conditions (above average in expertise vs. above average in dominance vs. control). This design enabled us to examine the independent, direct effects of expertise and dominance on influence (i.e., in the absence of information about the alternative route to influence; Shadish, Cook & Campbell, 2002), and allowed us to test the strengths of these effects against a neutral control condition (i.e., where expertise and dominance were both below average).

Study 1b used a design where expertise and dominance were presented as two orthogonal factors (Expertise: above average vs. average x Dominance: above average vs. average), which resulted in four experimental conditions. With this design, we wanted to test the effectiveness of each route in the presence of information about the other route, so that we could also rule out the possibility of mutual dependency among the two routes. In the control condition, expertise and dominance were both average. To further circumvent potential bias, we counterbalanced the ordering of expertise and dominance manipulations in each condition.

Participants. One-hundred-and-one students from a Dutch University (Study 1a) and n = 101 American MTurk users (Study 1b, see Buhrmester, Kwang, & Gosling, 2011) participated voluntarily in return for course credit or payment ($1.00). In both studies, participants were randomly assigned to one of the experimental conditions and received a debriefing after study completion. In Study 1a, two participants responded inaccurately to our manipulation check (see below) and five participants stated that they did not have sufficient command of the English language to fully comprehend the scenario study. The final sample therefore comprised n = 94 participants (61 male, \(M_{age} = 20.59\) years, \(SD = 2.28\)). In Study 1b, seven participants were

1 To be consistent with previous literature (e.g., Cheng et al., 2013; Cheng et al., 2010), we labeled expertise as prestige in Study 1a. However, because of the positive connotation of this label, we referred to expertise directly in the next studies.
excluded for similar reasons, also leaving n = 94 participants in the analysis (36 male, \(M_{age} = 37.12 \) years, \(SD = 11.37 \)). In this study, participants had 15 years of work experience on average and 79% reported that they were currently employed. Seventy-two percent were Caucasian and 86% had a college degree or higher.

Manipulations. In both studies, expertise was defined as the extent to which an individual demonstrates superior task-relevant knowledge, skills, success, and capabilities (Van der Vegt et al., 2006) and dominance was defined as the extent to which an individual uses force through intimidation and coercion (Cheng et al., 2010).

In Study 1a, two-thirds of the participants received feedback about the team member’s score on one route to influence (i.e. either expertise was above average or dominance was above average). The remaining participants in the control condition learned that the team member scored below average on both dominance and expertise\(^2\). In Study 1b, all participants received feedback about the team member’s expertise and dominance scores simultaneously. Depending on condition, the team member could either; (1) score clearly above average on both routes, (2) score clearly above average on expertise, but average on dominance, (3) score clearly above average on dominance, but average on expertise, or, (4) score average on both routes.

Measures. Perceived influence was measured with two items per study. One item was the same across studies; “To what extent do you think team member X influences decisions in this team?” (Anderson, Srivastava, Beer, Spataro, & Chatman, 2006). In study 1a, we additionally measured “To what extent do you think this team member is influential in the way your team functions as a whole?” (self-developed). In Study 1b, we additionally measured “To what extent would this team member be influential in the work team?” (self-developed). All items had to be

\(^2\) In Study 1a, we used a graphical demonstration to illustrate the team member’s score(s). In Study 1b, we did not use such a graphical demonstration.
answered on a 7-point scale ranging from 1 (*not at all*) to 7 (*to a large extent*). In both studies, the respective two items could be averaged into a single scale for perceived influence ($\alpha_{1a} = .75$, $\alpha_{1b} = .93$).3

We further checked our manipulations with two items per study: “How did this team member score on expertise (and/or dominance) compared to the average team member?” (Study 1a; 1 = *higher*, 2 = *lower*) and “How did this team member score on expertise (dominance) in the team survey?” (Study 1b; 1 = *above average*, 2 = *average*, 3 = *below average*). As stated above, all participants included in the studies responded correctly to the manipulation check(s) (i.e., their answers corresponded to the condition they were placed in.).

Results

As predicted, in Study 1a, a one-way ANOVA on perceived influence yielded a significant effect of condition, $F(2, 91) = 48.94, p < .001, \eta^2 = .52$. Further testing for simple main effects across the three conditions (Tukey HSD) confirmed Hypotheses 1 and 2. Participants believed

3 Following Cheng et al. (2013), we also measured perceived liking in the first set of scenario studies (see also Cheng et al., 2010). In this way, we wanted to confirm that participants distinguish influence from related concepts of interpersonal attractiveness or popularity of a group member. Past research demonstrates that being influential does not necessarily imply that one is liked by others (Lucas & Lovaglia, 1998), nor are those who are liked always influential (Cheng et al., 2013). In Study 1a, personal liking was measured using three items: “To what extent do you feel sympathy for team member X?” (adapted from Cuddy, Fiske, & Glick, 2007); “To what extent do you have a positive impression of team member X?” (adapted from Tyler & Blader, 2002) and “To what extent do you like team member X?” (self-developed). These items were also rated on a 7-point response scale anchored by 1 (*not at all*) to 7 (*to a large extent*) ($\alpha_{1a} = .72$). In Study 1a, a one-way ANOVA on perceived liking with condition as independent factor yielded a significant effect, $F(2, 91) = 34.61, p < .001, \eta^2 = .43$. Further testing for simple main effects (Tukey HSD) confirmed that participants liked the team member significantly more when he or she scored above average on expertise ($M = 4.82, SD = .80$) than when he or she scored above average on dominance ($M = 3.41, SD = 1.06, p < .001$), or low on both ($M = 3.11, SD = .73, p < .001$). In Study 1b, perceived liking was measured using the same items as in Study 1a and an additional item “How friendly would your relationship with this team member be?” (adapted from Tyler & Blader, 2002) and “To what extent do you like team member X?” (self-developed). The ANOVA results for perceived liking also revealed a non-significant two-way interaction between expertise and dominance, $F(1, 93) = 7.01, p = .01, \eta^2 = .07$; for expertise, $F(1, 93) = 35.98, p < .001, \eta^2 = .29$. More specifically, the team member with an above average score on expertise ($M = 4.48, SD = 1.13$) was liked significantly more than the team member with an above average score on dominance ($M = 3.91, SD = 1.29$). Yet this pattern was reversed for dominance; the team member who was rated above average on dominance ($M = 3.48, SD = 1.10$) was liked less than the team member who was rated average on dominance ($M = 4.77, SD = 1.03$). These results are in line with Cheng et al. (2013), who also found that expertise was positively related to liking, whereas dominance was negatively related to liking in groups, even though both expertise and dominance were positively related to influence.
that the team member was highly influential when he or she scored above average on expertise ($M = 5.13$, $SD = .94$) or when the member scored above average on dominance ($M = 4.98$, $SD = .85$). These two conditions did not differ significantly from each other ($p = .58$). The team member was only seen as significantly less influential in the control condition, where he or she scored below average on both expertise and dominance ($M = 2.85$, $SD = 1.22$). This condition differed significantly from the two other conditions ($p < .001$ compared with the “above average expertise” condition; $p < .001$ compared with the “above average dominance” condition).

In Study 1b, a two-way ANOVA on perceived influence with expertise and dominance as the independent factors yielded two separate main effects [for expertise, $F(1, 93) = 28.05$, $p < .001$, $\eta^2 = .24$; for dominance, $F(1, 93) = 6.22$, $p = .01$, $\eta^2 = .07$]. The two-way interaction between expertise and dominance was non-significant [$F(1, 93) = 2.25$, $p = .14$, $\eta^2 = .02$], demonstrating the independency of both routes to influence. The main effect for expertise confirmed Hypothesis 1. Participants believed that the team member was significantly more influential when he or she scored above average on expertise ($M = 5.37$, $SD = 1.01$) than when he or she scored average on expertise ($M = 4.11$, $SD = 1.29$). The main effect for dominance confirmed Hypothesis 2 as well. The team member was seen as more influential when he or she scored above average on dominance ($M = 5.06$, $SD = 1.16$) compared to when he or she scored average on dominance ($M = 4.48$, $SD = 1.38$).

Discussion

The findings of Studies 1a and 1b offer first evidence for our prediction that expertise and dominance displays can independently lead to influence in work team settings. In a second set of scenario studies, we will test the contextual dependency of these effects by examining the moderating role of a competitive team climate. In these studies, the degree of team competition will be varied independently from expertise and dominance displays. Although expertise and
dominance displays may sometimes instigate competition among the members of a team (e.g., Buss, 1999), competition usually results from external organizational factors such as the way rewards or feedback is provided (Hinsz, Tindale, & Vollrath, 1997; Rees & Segal, 1984). We therefore manipulated team competition orthogonally from a team member’s expertise or dominance level. This enables us to examine to what extent individuals’ responses to expertise and dominance displays are affected by more or less competitive team norms.

Study 2a, 2b – Contextual Dependence

Method

Procedure and design. Since we developed separate hypotheses for the influence of team competition on each route to influence (see Hypotheses 3 and 4), we ran two independent scenario studies. In both studies, participants received the same basic team instructions as in Studies 1a and 1b, yet in addition, they read information on the level of competition within the team (competitive vs. non-competitive). In Study 2a, team competition was manipulated independently from the team member’s expertise level (present vs. absent), whereas in Study 2b, team competition was manipulated independently from the team member’s dominance level (present vs absent). Accordingly, each study consisted of four experimental conditions.

Participants. We again recruited American MTurk users online (n = 96 in Study 2a and n = 101 in Study 2b, see Buhrmester et al., 2011) to participate in return for payment ($0.40). Participation was voluntary and randomized across the experimental conditions. Participants received a debriefing after study completion. In Study 2a, 15 participants who responded incorrectly to our manipulation checks were left out from further analyses, resulting in a usable sample of n = 81 participants (50 male, $M_{age} = 33.36$ years, $SD = 9.01$). On average, respondents had 12.31 years of work experience ($SD = 9.33$) and 68% reported that they were currently employed. Sixty-nine percent were Caucasian and 84% had a college degree or higher. In Study
2b, 14 participants who responded inaccurately to the manipulation checks were removed from the sample. This final sample comprised n= 87 participants (59 male, $M_{age} = 32.47$ years, $SD = 10.34$). On average, respondents had 11.83 years of work experience ($SD = 10.26$) and 81% reported that they were currently employed. Seventy-five percent were Caucasian and 93% had a college degree or higher.

Manipulations. After having read the basic instructions, participants received one of the following two excerpts:

“There is competition [no competition] within this work team. It happens frequently that team members want to achieve the same goal (e.g., a promotion, a bonus payment, more task responsibility, etc.), but only one member can eventually reach that goal [It happens frequently that team members achieve their goals without having to compete with each other (e.g., a promotion, a bonus payment, more task responsibility, etc.).]. As a result, there is rivalry [no rivalry] among the team members. In other words, there is a competitive, “win-or-lose” climate [non-competitive, “live and let live” climate] within the team as members fight [do not fight] over scarce resources”.

Participants then received the feedback report of the results from the recent team survey, which depicted how one of the team members was rated on expertise (Study 2a) or dominance (Study2b) by his or her fellow members. Expertise was again defined as being experienced [inexperienced], skilful [unskilled], and knowledgeable [unknowledgeable] in team tasks. Following Cheng et al. (2013), we used terms without valence to define dominance this time; being very dominant [not very dominant] and acting [not acting] in a bossy manner.

Measures. To ensure that participants distinguish the ability to yield *enduring* influence from the ability to yield mere compliance, we adapted the items that we used in the first studies into; “The team member will have influence on team goals and decisions in the long-run” (from Anderson et al., 2006) and “The team member will be influential in the team in the long-run” (self-developed). The items were again assessed on a 7-point scale ranging from 1 (*not at all*) to 7 (*to a large extent*), and were averaged into single scales for perceived influence in both studies.
Finally, we checked our manipulations with the following statements to which participants had to answer with either a yes or no; (1) “There was competition within this team”; (2) “There was no competition within this team”; (3) “The team member was experienced, skilful, and knowledgeable” (only in Study 2a), and (4) “The team member was dominant and bossy” (only in Study 2b). As stated above, all participants included in the studies responded correctly to each statement (i.e., their answers corresponded to the condition they were placed in.).

Results

In Study 2a, a two-way ANOVA with perceived influence as the dependent variable, and expertise and team competition as independent factors revealed a significant main effect of expertise only, $F(1, 80) = 102.18, p < .001, \eta^2 = .57$. Contrary to Hypothesis 3, there was no interaction effect between expertise and team competition, $p = .77, \eta^2 = .00$. Regardless of the level of team competition, participants believed that the team member was significantly more influential when he or she was an expert ($M = 5.56, SD = 1.01$) than when he or she was not an expert ($M = 3.15, SD = 1.15$).

In Study 2b, a two-way ANOVA with perceived influence as the dependent variable, and dominance and team competition as independent factors did reveal the predicted significant interaction between dominance and competition, $F(1, 86) = 7.05, p \leq .01, \eta^2 = .08$. No main effect for dominance was observed, $p = .60, \eta^2 = .00$. Further analyses of simple main effects (Tukey HSD) confirmed Hypothesis 4; when team competition was high, participants believed that the team member was significantly more influential when he or she was dominant ($M = 4.57, SD = 1.32$) than when he or she was not dominant ($M = 3.63, SD = 1.74, p < .05$). Yet when team competition was low, participants actually rated the team member as less influential when he or
she was dominant ($M = 3.69, SD = 1.38$) than when he or she was not dominant ($M = 4.32, SD = 1.09$), although this difference did not yield statistical significance ($p = .11$). Table 2.1 presents an overview of all means across conditions in both studies.

Table 2.1

Studies 2a and 2b: Means across experimental conditions

<table>
<thead>
<tr>
<th></th>
<th>Team competition</th>
<th>No team competition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expert</td>
<td>No expert</td>
</tr>
<tr>
<td>Study 2a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dependent Measures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived influence</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.41_a</td>
<td>2.91_b</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>5.70_a</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>1.23</td>
</tr>
<tr>
<td>Study 2b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived influence</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.57_a</td>
<td>3.63_b</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td>3.69_b</td>
<td>1.74</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>1.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.09</td>
</tr>
</tbody>
</table>

Note. Means with different subscripts (a, b, or c) differ significantly from each other ($p < .05$).

Discussion

Overall, we found partial evidence for our propositions. The results of Study 2a do not support Hypothesis 3 because higher expertise simply led to more influence regardless of the level of intra-team competition. Yet, in line with Hypothesis 4, dominance did prove to be a particularly effective route to influence when the team climate was characterized by competition.

These results represent an important first step in gaining insights into the viability of each route to influence under different levels of intra-team competition. The study designs allowed us to test the causal and isolated effects of both expertise and dominance on people’s perceptions of influence, as well as the causal and isolated effects of team competition on these influence attainment processes. Nonetheless, the studies also had some limitations. For example, the
independent variables (i.e., team member’s expertise and dominance) and the moderator (i.e., team competition) were restricted to fixed levels (i.e., either “above average/average” or “present/absent”), even though there may be more subtle differences within and between real-life work teams on these variables. Moreover, the lack of support for the interactive effect of expertise and team competition on influence (i.e., Hypothesis 3) may be due to the fact that study participants did not sufficiently experience the potential consequences of having expertise under different levels of intra-team competition. This may require a certain degree of interaction and experience with the target that we were unable to capture in a scenario study. To tackle these issues, we retested our four hypotheses in a field study, utilizing a larger sample with real-life organizational work teams and using measures that more realistically capture our concepts in the natural flow of organizational team work.

Study 3 – Generalizability

Method

Sample and Procedures. Survey data were collected from 58 organizational work teams in the Netherlands. There were 24 teams that operated in the profit sector (i.e., banking, consultancy, information technology, trade/commerce, construction, hospitality, industry, agriculture, real estate, telecommunication, and transportation), 27 teams that operated in the non-profit sector (i.e., education, health care, and government services), and 7 teams operating in other sectors. Teams were selected based on the criteria that team members interacted frequently, shared resources and information, and coordinated efforts toward the accomplishment of common objectives (Van der Vegt & Bunderson, 2005). Some specific jobs within the sample included account manager, financial administrator, data specialist, researcher, technician, software engineer, healthcare administrator, and HR advisor.

The teams were approached with the assistance of undergraduate business students in
return for course credit. The students contacted immediate team supervisors and informed them about the research project that involved a broad survey on team characteristics as well as intra-team interactions and assessments. When a team supervisor agreed to cooperate, he or she informed the team and provided the student assistants with information including the names of team members. Taking into account that the team supervisors were pre-informed about the nature and objectives of the study, they were not included in the sample. In the survey administered to employees, team members indicated their perceptions of team competition and rated one another on expertise, dominance, and influence using a round-robin design. Surveys were filled out on site during meetings with the student assistants to minimize communication between team members about the content of the survey. All measures were translated to Dutch using a double-blind back-translation procedure. Participation was voluntary and confidentiality was guaranteed.

To be included in our analyses, at least 50% of the team members had to participate in the survey (see Rulke & Galaskiewicz, 2000, cf. Bunderson, 2003a). Four work teams were removed from all analyses as they failed to meet this criterion. As a result, our final sample consisted of 351 employees representing 54 work teams in 45 organizations. The overall response rate among the included work teams was 87% and the average within-team response rate was 89%. These teams ranged in size from 5 to 21 members with an average of 7.50 employees ($SD = 3.23$). Participating employees’ average age was 40.44 years ($SD = 11.17$), and 56% were female. Ninety-nine percent had a vocational qualification or higher, and employees had an average tenure of 4.93 years ($SD = 5.30$) with their current teams.

Measures.

Perceived Expertise. We measured perceived expertise by asking each respondent to evaluate all other members of his or her work team on a single item: “How much expertise does person X possess in the work team?” (1 = “very little”, 7 = “very much”). The labor-intensive
character of such a round-robin design (i.e., participants had to fill in question items for each single team member) precluded us from using more than one such item per construct scale. We assessed the statistical adequacy of aggregating team members’ responses to create an individual-level measure of perceived expertise for each team member by calculating interrater reliability (ICC\(_1\) and ICC\(_2\); James, 1982) and by testing whether average expertise scores differed significantly across individuals, as indicated by one-way analyses of variance. We obtained sufficient support for aggregation (ICC\(_1\) = .35, ICC\(_2\) = .80, \(F(396,1985) = 4.96, p < .001\)). We also calculated the interrater agreement index (\(r_{wg}\); James, Demaree, & Wolf, 1984) and observed that team members agreed on the expertise level of their fellow team members; the median \(r_{wg}\) value using a uniform expected variance distribution was .80 (SD = .24).

Perceived Dominance. In line with previous research (see Cheng et al., 2013), we used bossiness as a measure of perceived dominance. Each respondent was asked to rate all other members of his or her work team on the following item; “To what extent is person X bossy in the work team?” (1 = “not bossy”, 7 = “very bossy”). We gained support for aggregating this variable, and thus created an individual-level measure of perceived dominance for each team member (ICC\(_1\) = .29, ICC\(_2\) = .75, \(F(396,2000) = 4.02, p < .001\)). The median \(r_{wg}\) value using a uniform expected variance distribution was .66 (SD = .28).

Team Competition. Team competition was measured with 2 items adapted from Campion, Medsker, and Higgs (1993) and one self-developed item: “There is a lot of competition among the members of my team”, “In my team there is a lot of competition about being the best”, and “The members of my team try to outperform each other”. These three items were measured using a seven-point response scale from 1 (strongly disagree) to 7 (strongly agree) and formed a reliable total representation of team competition, Cronbach’s alpha was .92. Before aggregating this variable to the team-level, we averaged the three responses to form an overall measure of
team competition for each team member. We then computed ICC\(_1\) and ICC\(_2\) and conducted one-way analyses of variance to test whether average team competition scores differed significantly across work teams. We received support for aggregation (ICC\(_1\) = .18, ICC\(_2\) = .62, \(F(53,295) = 2.60, p < .001\)). The median \(r_{wg(j)}\) value using a uniform expected variance distribution was .78 (\(SD = .17\)).

Perceived Influence. Perceived influence was measured with the item: “To what extent is person X influential in the work team?” (1 = “not influential”, 7 = “very influential”). We again obtained sufficient support for creating an individual-level measure of perceived influence for each team member (ICC\(_1\) = .38, ICC\(_2\) = .82, \(F(396,2005) = 5.65, p < .001\)). The median \(r_{wg}\) value using a uniform expected variance distribution was .76 (\(SD = .23\)).

Control Variables. As with other studies on social influence (e.g., Bunderson, 2003a; Salk & Brannen, 2000), we considered team size as well as individual members’ team tenure as potential control variables in all our analyses.

Results

Data Analysis

Due to the multilevel nature of our hypotheses and the hierarchically nested structure of our data, we tested the proposed main effects and the predicted cross-level relationships between expertise, dominance, team competition, and influence using hierarchical linear modeling (HLM; see Raudenbush & Bryk, 2002). The use of HLM is critically important for the analysis of multilevel data because this approach explicitly models both individual- and team-level residuals, therefore, recognizing the partial dependence among the scores for individuals within the same team. Moreover, this approach assumes that the intercept and slope for the predictor variables vary across work teams and hence takes into account the possibility of team differences in the relation between the variables of interest (cf. Van der Vegt, Emans, & De Vliert, 2000, p.642).
We used a two-level HLM model because our data comprised two levels of hierarchy: the expertise (or dominance and influence) of a given team member (level 1) within some team (level 2). We conducted multilevel analyses using the linear mixed models on SPSS and standardized all independent variables around their corresponding grand means prior to the analyses (Aiken & West, 1991).

Descriptive Statistics

Table 2.2 demonstrates means, standard deviations, and Pearson zero-order correlations for all variables that are included in our data analyses. As can be seen from Table 2.2, both expertise and dominance were positively related to influence ($r = .76$, $p < .001$ and $r = .31$, $p < .001$ respectively). The correlation between expertise and dominance was positive and significant ($r = .20$, $p < .001$). From our control variables, team size was negatively associated with influence ($r = -.31$, $p < .001$). Team tenure was not significantly associated with the main dependent variable of interest in this paper, i.e., perceived influence. We therefore excluded this variable from our analyses in order to prevent biased results arising from the inclusion of “impotent” covariates (Becker, 2005).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Team size</td>
<td>8.68</td>
<td>3.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Team tenure</td>
<td>4.93</td>
<td>5.30</td>
<td>.11*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Perceived expertise</td>
<td>4.89</td>
<td>0.92</td>
<td>-.17**</td>
<td>.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Perceived dominance</td>
<td>2.96</td>
<td>1.07</td>
<td>-.04</td>
<td>.18**</td>
<td>.20***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Team competition</td>
<td>2.51</td>
<td>1.30</td>
<td>-.04</td>
<td>.05</td>
<td>-.04</td>
<td>.15**</td>
<td></td>
</tr>
<tr>
<td>6. Perceived influence</td>
<td>4.27</td>
<td>1.01</td>
<td>-.31***</td>
<td>.00</td>
<td>.76***</td>
<td>.31***</td>
<td>-.01</td>
</tr>
</tbody>
</table>

Note. $N = 397$. * $p < .05$, ** $p < .01$, *** $p < .001$.
Hypotheses Testing

Table 2.3 presents the results of the multilevel analyses for expertise, dominance, and team competition on influence. In the first step of each analysis, we controlled for team size (model 1). In the second step of the analyses, the standardized values of expertise, dominance, and team competition were entered (model 2). In the final stage of the analyses, we added the interaction between team competition and both expertise and dominance (model 3).

Hypotheses 1 and 2 predicted that both perceived expertise and perceived dominance were significantly related to perceived influence. Positive and significant coefficients were found in both cases ($\gamma = .72$, $p < .001$ for perceived expertise and $\gamma = .26$, $p < .001$ for perceived dominance). We therefore received support for these hypotheses.

Consistent with Hypotheses 3 and 4, model 3 in Table 2.3 yields that after adding the control variable and the main effects to the multilevel model, we found that both the interaction between team competition and perceived expertise and the interaction between team competition and perceived dominance reached significance ($\gamma = -.09$, $t = -2.93$, $p < .001$ and $\gamma = .06$, $t = 1.95$, $p < .05$ respectively). Figures 2.1 and 2.2 depict graphical representations of the significant two-way interactions for team competition, perceived expertise, and perceived dominance. As anticipated, perceived expertise was more positively related to perceived influence when team competition was low (simple slope at -1 SD: $\gamma = .81$, $t = 21.25$, $SE = .04$, $p < .001$) than when team competition was high (simple slope at +1 SD: $\gamma = .63$, $t = 16.39$, $SE = .04$, $p < .001$). Yet perceived dominance was more positively related to influence when team competition was high (simple slope at +1 SD: $\gamma = .33$, $t = 7.94$, $SE = .04$, $p < .001$) than when team competition was low (simple slope at -1 SD: $\gamma = .21$, $t = 4.84$, $SE = .04$, $p < .001$). These results therefore support Hypotheses 3 and 4.
Table 2.3

Results of multilevel analysis for perceived expertise and perceived dominance

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\gamma) SE</td>
<td>(\gamma) SE</td>
<td>(\gamma) SE</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Team size</td>
<td>-.28** .08</td>
<td>-.18* .07</td>
<td>-.18* .08</td>
</tr>
<tr>
<td>Main Effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived expertise</td>
<td>.72*** .03</td>
<td>.72*** .03</td>
<td>.72*** .03</td>
</tr>
<tr>
<td>Perceived dominance</td>
<td>.26*** .03</td>
<td>.27*** .03</td>
<td>.27*** .03</td>
</tr>
<tr>
<td>Team competition</td>
<td>-.06 .06</td>
<td>-.10 .06</td>
<td>-.10 .06</td>
</tr>
<tr>
<td>Two-Way Interactions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived expertise *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Team competition</td>
<td>-.09** .03</td>
<td>-.09** .03</td>
<td>-.09** .03</td>
</tr>
<tr>
<td>Perceived dominance *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Team competition</td>
<td>.06* .03</td>
<td>.06* .03</td>
<td>.06* .03</td>
</tr>
</tbody>
</table>

Note. \(N = 397 \). * \(p < .05 \), ** \(p < .01 \), *** \(p < .001 \).

Figure 2.1 Relationship between expertise and perceived influence in high and low team competition
Figure 2.2 *Relationship between dominance and perceived influence in high and low team competition*

GENERAL DISCUSSION

Previous research has debated whether perceptions of dominance can structure patterns of interpersonal influence within organizational work settings, independently from perceptions of expertise. Combining theory and empirical research on work teams with sociobiological and evolutionary theories, we developed a conceptual framework that theoretically integrates expertise and dominance models of social influence in work teams. This framework proposed that the degree of competition within a work team represents an important contextual factor that would amplify or attenuate the link between each route to social influence; whereas the expertise route to social influence was expected to be more effective when intra-team competition is less pronounced, the dominance route to social influence was expected to be more persuasive when intra-team competition is more pronounced. In two sets of scenario studies and a field study conducted in real-life organizational work teams, we largely found support for these predictions.
Theoretical Implications

The findings presented in this paper offer important theoretical implications for our understanding of influence attainment processes in work teams. First, based on the assumption that organizations tend to (socially) sanction inappropriate work behavior, the vast majority of organizational scholars has focused on expertise as the central driver of influence in work teams and largely overlooked, or even confuted, the dominance route to influence (e.g., Driskell et al., 1993; Ridgeway & Diekema, 1989). Our results directly challenge this view, demonstrating that team members defer to others not only on the basis of task competencies, but also on the basis of dominance displays. As such, the presence of one route to social influence does not rule out the possibility to gain influence through the other route. In fact, individuals demonstrating superior task competencies can gain influence regardless of whether or not they exhibit dominant behavior (and vice versa). This means that the two routes to influence operate independently from one another. Together, these findings imply that one route alone cannot fully explain the conferral of influence in organizational work settings; it appears useful to complement the insights of existing social influence research with insights from sociobiological and evolutionary theories and research on the potency of dominance displays.

Second, given the ubiquity of competition among teams and departments in organizational settings (such as questing for limited resources; Kilduff et al., 2010), we proposed that intra-team competition would represent a natural condition that shapes influence relations within organizational work teams. As predicted, we found that expertise signals were more likely to increase a team member’s social influence under conditions of low intra-team competition (as opposed to high intra-team competition), whereas dominance signals were more likely to increase a member’s social influence under conditions of high intra-team competition (as opposed to low intra-team competition). The primary implication of this finding is that scholars need to
illuminate the contextual organizational climate in which work teams operate when examining the relationships between team members’ levels of expertise, dominance, and influence. Unfolding such factors provides a better understanding of the circumstances under which one of the two influence routes will prevail.

Strengths and Limitations

An important strength of the present research is that we employed a multi-method approach so that we could test our key predictions across independent samples and circumvent some of the problems prior research in this area has suffered from. The cross-sectional data in Study 3 represented a wide range of real-life work teams, allowing us to examine the observed effects across different organizational contexts, whereas the two sets of scenario studies enabled us to tackle questions of causality and independence, demonstrating that expertise and dominance displays both predicted one’s level of social influence in a work team. Answering these questions is important as some studies suggest that individuals with higher influence ranks are more likely to be perceived as experts (even regardless of their actual competence levels; e.g., Darley & Gross, 1983; Sande, Ellard, & Ross, 1986 cf. Anderson & Brown, 2010; Stogdill, 1974; Tsui, 1984), and are also more likely to treat others in hostile and aggressive ways (e.g., Morris, Larrick, & Su, 1999; Keltner, Capps, Kring, Young, & Heerey, 2001), rather than vice versa. Yet our research clearly shows that expertise and dominance perceptions can also function as antecedents of social influence in work teams. Each pathway may thus inform the other in a mutually reinforcing manner.

It is important to note, however, that there are also limitations to our work. For example, we were only able to establish that experts yield more influence under low, rather than high, levels of intra-team competition in the field study. One possible explanation for why we did not obtain this interaction effect in the scenario set-up could be that members of imagined work
teams are inclined to base their understanding of others’ actions on the norms they held as members of other groups in similar situations (see Bettenhausen & Murnighan, 1991, p.20). In the field study, the average team tenure among participants was 4.93 years, making it far more likely that their responses were informed by the prevailing norms within their work teams. That is, in this study, participants have spent sufficient time together to internalize team norms and base their perceptions of others on these norms. We therefore believe that this study provides a stronger link to our theoretical argumentation that norms that emerge from a competitive (or non-competitive) team climate help to explain when expertise and dominance perceptions will more potently predict one’s social influence in an organizational work team.

Moreover, in the field study, we used a cross-sectional design and a single method to capture others’ perceptions of a member’s expertise, dominance, and influence in a team, which may raise concerns about potential common-source problems (see Podsakoff, MacKenzie, Lee, & Podsakoff, 2003). Yet we feel that these concerns are minimized because common-source bias issues mainly pertain to direct relationships and are less relevant for interaction effects (Evans, 1985) as respondents are generally unlikely to consciously theorize interactive relationships between study variables when they complete a survey (see Siemsen, Roth, & Oliveira, 2010). Nevertheless, we recognize that future research could employ more objective data from, for example, observer ratings in order to further establish the validity of our findings in the field.

Directions for Future Research

Beyond addressing these limitations, the current paper calls attention to several other interesting avenues for future researchers to investigate. In our research, we directly captured the behavioral displays of expertise and dominance, and found independent effects on social influence for both routes. Yet we recognize that prior work has found that members who score high on trait dominance engender social influence in work teams because they trigger perceptions
of expertise (even when they lack actual superior competence; Anderson & Kilduff, 2009a; see also Littlepage et al., 1995; Tiedens, 2001). The effectiveness of the dominance route to social influence thus appeared to be driven by members’ assumptions about the expertise route, rather than by the direct and mere observation of dominant behavior. This means that there are situations where individuals do associate dominance with expertise even in the absence of the latter (and possibly vice versa). It is therefore important that future research sheds more light on how signals of expertise and dominance exactly unfold within work teams and creates more certainty on when the two routes to influence impact each other, and when they do not.

Moreover, in the first set of scenario studies we measured perceptions of liking in addition to perceptions of influence (see Footnote 3). We found that the member who signaled expertise gained influence and increased liking, while the member who signaled dominance gained influence only; he or she was not liked more compared to other members. This pattern of results has also been observed in previous research, which led scholars to conclude that being liked by others is neither necessary nor sufficient for influence attainment in groups (e.g., Cheng et al., 2013). However, recent research by Joshi and Knight (2014) has manifested that feelings of social affinity – which is based on interpersonal liking, friendship, or an affective interpersonal connection (Ashforth & Mael, 1989; Kalkhoff & Barnum, 2000) – can evoke influence from peers in work teams. We did not directly test this third possible route to influence, but we believe that there is merit in further examining how social influence and interpersonal liking are conceptually related to each other. Such research will solve the current ambiguity that exists in the literature and will move the conceptual debate surrounding different possible models of influence attainment forward.

Somewhat related to this, our research also raises the question whether expertise and dominance displays lead to equally stable influence levels in a work team. Past research posits
that experts are seen as critically important by members of work teams because their competencies facilitate the pursuit of collective task goals and hereby enlarge the stock of resources available to all members (Van der Vegt et al., 2006). Hence, team members tend to defer to experts voluntarily and strive to maintain positive long-term relationships with them. By contrast, theory suggests that team members tend to comply with the demands of dominant members out of fear (Henrich & Gil-White, 2001), which is generally less sustainable over time because there are no personal benefits to gain (see Van Vugt, Jepson, Hart, & De Cremer, 2004). Future research that examines potential differences in the stability of influence relations in work teams would therefore make a significant contribution to our understanding of the viability of each route to social influence in the long run.

Finally, having underlined the relevance of contextual factors for elucidating social influence attainment in work teams, one intriguing area of future research could be to observe whether the effectiveness of each route to influence will also vary depending on the type of task that organizational work teams perform. For example, perceptions of dominance may be a major source of influence in factory-line teams that execute relatively simple or routine tasks because such tasks benefit from clear orders and do not require a lot of work-related assistance or knowledge-transfer. By contrast, perceptions of expertise may be more determining in innovation teams that perform rather complex and non-routine tasks because such tasks demand interactive problem solving, intense information exchange, and high quality work relationships. As such, future research might consider further moderated effects from expertise and dominance to social influence and thus elaborate on the circumstances under which one route wins over the other.

Conclusion and Practical Implications

The present research suggests important guidelines for practitioners seeking to climb up the social ladder in organizational work teams. Although one may be tempted to assume that, in
most organizational climates today, one can no longer gain influence by demonstrating dominant, aggressive behavior, the current research demonstrates that this route to influence can be a potent source of social influence among peers as well. Yet it is important to realize that the extent to which team members compete for scarce resources (e.g., bonus payments, promotions, other career-related opportunities, etc.) plays a decisive role for detecting which route to follow when. Enacting dominant behavior proves more successful when the team climate is characterized by high levels of intra-team competition whereas exhibiting superior task-related knowledge, skills, and capabilities will be given greater weight when competition among the team members is low. In addition, one must take into account that experts tend to be liked by others, whereas dominant team members are not. One clear practical implication for individual team members would thus be to be aware that although both expertise and dominance pave the way for influence, they do so under different circumstances and differ in the extent to which they come with social costs.