Optimizing therapy in patients with atrial fibrillation and heart failure
Mulder, Bart

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Chapter 6: Beta-blockers and Outcome in Heart Failure and Atrial Fibrillation: A Meta-Analysis

Michiel Rienstra
Kevin Damman
Bart A. Mulder
Isabelle C. Van Gelder
Dirk J. Van Veldhuisen
John J. Mc Murray

CHAPTER 6

Beta-blockers in heart failure and atrial fibrillation

Introduction

Beta-blockers are a cornerstone in the treatment of patients with heart failure (HF).1 Large scale trials with carvedilol (US Carvedilol Study2 and COPERNICUS3,4), metoprolol (MERIT-HF5), bisoprolol (CIBIS-II6), and nebivolol (SENIORS7) have shown that these drugs reduce morbidity and mortality in HF. As a result, they are now widely used and have received a class IA recommendation in current HF guidelines.1 Atrial fibrillation is common in HF, and depending on the severity of HF, occurs in up to 30-40% of all patients.8 The large HF trials that led to the recommendations also included a significant proportion of patients with AF. In current guidelines for HF1 the recommendation for beta-blockers is not restricted to patients with sinus rhythm, and indeed includes all HF patients, i.e. also those with AF, but it is unknown whether beta-blockers are equally effective and safe in these patients, as they are in those with sinus rhythm.

In patients with sinus rhythm with and without HF, lower heart rate is associated with a better outcome,9-11 and reduction of heart rate (by beta-blockers) probably plays an important role in the beneficial effect of these drugs. In patients with AF, with or without HF, lower heart rate, however, is not associated with a better outcome as was shown recently.12 Although patients with AF were included in the large HF trials, the absolute number of patients with AF in each individual study was rather limited.13-16 The aim of the present meta-analysis was therefore to assess the effect of beta-blockade on outcome in patients with both HF and AF.

Methods

Literature Search

We searched MEDLINE using search tools provided by Pubmed (http://www.ncbi.nlm.nih.gov/pubmed/clinical; used April 1st 2012) and via OVID. These search tools have been validated by Haynes et al. to optimize retrieval.17 We also used keywords including atrial fibrillation, heart failure, beta-blocker therapy, beta-blockade, medical therapy and a combination of these, and included papers published in English language. Furthermore, we reviewed reference lists from eligible studies, used the “see related articles” feature for key publications in PubMed, consulted the Cochrane Library, and searched...

Summary

Background

Beta-blockers are widely used in patients with heart failure (HF) and atrial fibrillation (AF). Recommendation for these drugs in current HF guidelines, however, is based on populations in which the majority had sinus rhythm. Whether beta-blockers are as useful in atrial fibrillation (AF) is uncertain. We assessed the effect of beta-blockade on outcome in patients with HF and AF.

Methods

For this meta-analysis we used Medline to identify randomised controlled studies. Information about study design, sample characteristics, and outcome (HF hospitalization and mortality) was extracted.

Findings

We identified 4 studies which enrolled 8680 patients with HF and reduced systolic left ventricular function, and 1677 of them had AF (19%; mean age 69 years, 30% women); there were 842 patients treated with beta-blockers, and 835 with placebo. In patients with AF, beta-blockade did not reduce mortality (odds ratio (OR) = 0.86 (0.66-1.13), P = 0.28), while in patients with sinus rhythm there was a significant reduction (OR 0.63 (0.54-0.73), P<0.0001). There was a significant difference in the effect of beta-blocker therapy in AF versus sinus rhythm (P = 0.046). By meta-regression analysis we did not find confounding by all relevant covariates. When looking at HF hospitalizations in these studies, beta-blocker therapy was not associated with a reduction in patients with AF (OR 1.11 (0.85-1.47), P = 0.44), in contrast to those with sinus rhythm (OR 0.58 [0.49-0.68] P<0.0001) (P = 0.01 for difference in beta-blocker therapy effect between AF and sinus rhythm).

Interpretation

The effect of beta-blockers on outcome in HF patients who have AF is different than in those who have sinus rhythm. This finding may have implications for the place of these drugs in patients with AF and HF.

Funding

None.
CHAPTER 6 Beta-blockers in heart failure and atrial fibrillation

follow-up rates, 10) study design and 11) duration of follow up. Grading was as follows: good quality: eight-11 criteria, fair quality: five-seven criteria and poor quality: < five criteria.20

Statistical Analysis
Meta-analysis was performed using a fixed-effects model to determine risk associated with beta-blocker therapy and all-cause mortality, as measured by combined crude mortality rates. In the secondary analysis, heart failure hospitalizations were studied in a similar matter. For comparison with patients in sinus rhythm, subgroup analysis was carried out by testing of heterogeneity across subgroups. Among studies heterogeneity of risk estimates was examined using a standard chi-square test and I² statistic for heterogeneity. I² is the percentage of variance that is due to between-study variance. Reasons for diversity in study results were explored using meta-regression analysis. Variables explored included age, sex, hypertension, diabetes, ischemic heart disease, left ventricular ejection fraction, heart rate, blood pressure and medical treatment. Results are presented as odds ratios (ORs) with their 95% confidence intervals (CIs) and p values. Evidence of publication bias was assessed by visual inspection of the Funnel plot. A P value of < 0.05 was considered statistically significant. Statistical analyses were performed using Stata 10.0, College Station, Texas and Revman 5.1.21

Role of the funding source
No sponsor of any of the individual trials had any role in the study design, data collection, data interpretation, drafting, or review of the report.

Results
Study search and general characteristics
The search retrieved 248 citations, of whom four fulfilled all criteria as they investigated the randomized treatment allocation of beta-blocker therapy in patients with HF and AF (Figure 1). All of these studies were specific AF substudies from large HF outcome trials (US-Carvedilol13, CIBIS II14, MERIT-HF15, and SENIORS16) that studied the effect of beta-blockers. We were not able to retrieve data from one other large HF beta-blocker study (COPERNICUS), since presence of AF on electrocardiograms at baseline
CHAPTER 6 Beta-blockers in heart failure and atrial fibrillation

Table 1. Study characteristics.

<table>
<thead>
<tr>
<th>First Author</th>
<th>Study</th>
<th>Published</th>
<th>F/U</th>
<th>N (% of total sample)</th>
<th>Type Patients</th>
<th>Endpoints</th>
<th>Major Exclusion Criteria</th>
<th>HR Reduction by blocker (bpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joglar</td>
<td>US-Carvediol</td>
<td>2001</td>
<td>Max 400 days</td>
<td>136 (12%)</td>
<td>HF LVEF ≤ 35%</td>
<td>All-cause Mortality</td>
<td>Stable HF</td>
<td>-13 in AF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heart rate < 68 bpm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Class I or III anti-arrhythmic drugs</td>
<td></td>
</tr>
<tr>
<td>Lechat</td>
<td>CIBIS-II</td>
<td>2001</td>
<td>Max 400 days</td>
<td>521 (21%)</td>
<td>HF LVEF ≤ 35% NYHA III-IV</td>
<td>All-cause Mortality HF Hospitalizations</td>
<td>Stable HF</td>
<td>-8.8 in AF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heart rate < 60 bpm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anti-arrhythmic drugs other than amiodarone</td>
<td>-10.6 in SR</td>
</tr>
<tr>
<td>Van Veldhuisen</td>
<td>MERIT-HF</td>
<td>2006</td>
<td>Mean F/U 1 year</td>
<td>556 (14%)</td>
<td>HF LVEF < 40% NYHA II-IV</td>
<td>All-cause Mortality HF Hospitalizations</td>
<td>Stable HF</td>
<td>-14.8 in AF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heart rate < 68 bpm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CCB or Amiodarone</td>
<td>-13.7 in SR</td>
</tr>
<tr>
<td>Mulder</td>
<td>SENIORS</td>
<td>2011</td>
<td>Mean F/U 21 months</td>
<td>464 (22%)</td>
<td>≥ 70 years HF admission < 1 year or LVEF ≤ 35%</td>
<td>All-cause Mortality</td>
<td>Stable HF</td>
<td>-11 in AF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BBL</td>
<td></td>
</tr>
</tbody>
</table>

Only patients from SENIORS with LVEF ≤ 35% were included.

was similar for AF and sinus rhythm, although the baseline and end-of-titration heart rate were higher in AF patients. Dosages of beta-blockers were comparable in CIBIS-II, MERIT-HF, and SENIORS (no data of US-Carvedilol).

All-cause mortality. Follow up duration of the included studies ranged between a maximum of 13 months in the US-carvedilol study to a mean of 21 months in SENIORS. The crude mortality rates of AF patients with beta-blocker therapy versus those without were 13.5% and 15.7%, respectively, and for sinus rhythm with and without beta-blocker therapy 8.3% and 13.1%, respectively. This resulted in a combined mortality risk for AF patients of OR = 0.86 (0.66 – 1.13), P = 0.28 for beta-blocker therapy, versus a combined mortality risk for sinus rhythm patients of OR = 0.63 (0.54 – 0.73), P< 0.0001 for beta-blocker therapy (Figure 3). There was a difference in the effect of beta-blocker therapy in AF versus sinus rhythm (P = 0.046). There was no heterogeneity observed among the studies with AF included (I² = 0%, P = 0.46). We performed meta-regression analysis to determine factors explaining possible confounding. We found no confounding by any of the explored variables. Figure 4 shows the Funnel plot for the main outcome analysis, which shows no evidence of publication bias.

Heart failure hospitalisations
Three of the four studies investigated the effect of beta-blocker therapy on HF hospitalisations, including 7586 HF patients with reduced systolic left ventricular function (1541 (20%) AF patients).

Table 2. Patient characteristics.

<table>
<thead>
<tr>
<th>First Author</th>
<th>Age (years)</th>
<th>Men (%)</th>
<th>HTN (%)</th>
<th>DM (%)</th>
<th>IHD (%)</th>
<th>Stroke (%)</th>
<th>LVEF (%)</th>
<th>HR (bpm)</th>
<th>SBP (mmHg)</th>
<th>Digoxin (%)</th>
<th>ACEi (%)</th>
<th>Diuretics (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joglar</td>
<td>65</td>
<td>90</td>
<td>NA</td>
<td>NA</td>
<td>24</td>
<td>87</td>
<td>87</td>
<td>117</td>
<td>117</td>
<td>99</td>
<td>96</td>
<td>98</td>
</tr>
<tr>
<td>Lechat</td>
<td>62</td>
<td>83</td>
<td>17</td>
<td>13</td>
<td>27</td>
<td>87</td>
<td>87</td>
<td>117</td>
<td>117</td>
<td>85</td>
<td>96</td>
<td>98</td>
</tr>
<tr>
<td>Van Veldhuisen</td>
<td>66</td>
<td>62</td>
<td>25</td>
<td>12</td>
<td>27</td>
<td>87</td>
<td>87</td>
<td>117</td>
<td>117</td>
<td>99</td>
<td>96</td>
<td>98</td>
</tr>
<tr>
<td>Mulder*</td>
<td>77</td>
<td>63</td>
<td>25</td>
<td>12</td>
<td>27</td>
<td>87</td>
<td>87</td>
<td>117</td>
<td>117</td>
<td>99</td>
<td>96</td>
<td>98</td>
</tr>
</tbody>
</table>

Abbreviations: ACEi: Angiotensin converting enzyme inhibitors, bpm: beats per minute, HTN: History of hypertension, IHD: Ischemic heart disease, LVEF: Left ventricular ejection fraction, NA: Not available, SBP: Systolic blood pressure.

Beta-blocker therapy in AF patients was not associated with a reduction of HF hospitalisations (14.8% versus 16.2% events), resulting in an OR of 1.11 (0.85 – 1.47), P = 0.44 (Figure 5). In sinus rhythm patients (8.5% versus 14.3% events), beta-blocker therapy was associated with a reduction of HF hospitalisations (OR 0.58 (0.49 – 0.68), P< 0.00001). There was a difference in the effect of beta-blocker therapy in AF versus sinus rhythm (P< 0.001).

Discussion
The main finding of the present meta-analysis indicates that the effect of beta-blockers in patients with HF and AF is significantly different from the effect of these drugs in patients with HF and sinus rhythm. Indeed, beta-blockers were not found to have a favourable effect of HF hospitalisations or mortality in 1677 AF patients who had been enrolled in placebo-controlled, randomized studies.

This finding is important since HF with AF and AF receive beta-blocker treatment. Beta-blockade is recommended in the current guidelines for HF and AF, albeit for different indications. In the HF guidelines, beta-blockers are recommended for all patients in order to reduce morbidity and mortality, without differentiation regarding rhythm (i.e. sinus rhythm or AF). As such, these drugs are part of the standard medical therapy for all patients with HF with reduced systolic left ventricular ejection fraction. In addition, beta-blocker therapy has been shown to prevent new-onset or recurrent AF in...
In patients with sinus rhythm, it has been proven that a pronounced reduction in heart rate is associated with improved morbidity and mortality independent of the dose of the used beta-blocker, or by additive therapy with selective IF-channel blockade. For patients with permanent AF, it was recently demonstrated, that a more strict rate control was not superior to a lenient rate control. Third, due to loss of the atrial kick and the irregularity in ventricular response during AF, patients with AF may need a higher heart rate to maintain a similar cardiac output, possibly even more so during heart failure.

Fourth, a low heart rate in patients with AF may be an expression of an underlying conduction disorder, which may be associated with impaired outcome itself. Finally, AF in patients with HF may be a marker of a poorer hemodynamic situation leading to a worse outcome.

In addition to these potential explanations, we also cannot exclude the fact that the present findings could apply to some but not all beta-blockers, as differences in the pharmacological profiles of beta-blockers may have played a role. Metoprolol and bisoprolol are selective beta-1 receptor antagonists, and carvedilol and nebivolol are beta-blockers with additional vasodilating properties. A subanalysis of the COMET trial (in which there were 600 patients with AF) demonstrated that carvedilol had a
Limitations

Although the number of AF patients in the included randomized studies was 1677, this is still rather low for survival analysis, and we cannot exclude the possibility that lack of power may have played a role. Nevertheless, although this number may have been small to detect an effect in the group of AF patients alone, there was a significant difference with regard to this (beta-blocker) treatment effect between AF and sinus rhythm patients, which further supports our findings. Also, in present analysis we pooled the effects of different beta-blocker therapies and thereby assumed a class-effect. However, specific differences in pharmacologic profiles may have added to the heterogeneity of our cohort and thereby results. Inherent limitations of pooled analysis of studies include the limited availability of confounding variables, including history of AF, duration of AF, pattern of AF (paroxysmal vs. persistent/permanent AF), new onset AF, dose response and tolerability of the drugs.

Conclusion

The present analysis shows that the effect of beta-blockade in HF patients with AF with regard to outcome is different than in HF patients with sinus rhythm. This may affect the place of these drugs in patients with AF and HF. Clearly, prospective randomized controlled trials in HF specifically aiming at AF patients are warranted to study the prognostic effects of beta-blockers in this population.

Table 1: Beta-blocker therapy in HF and AF

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Beta-Blocker</th>
<th>Placebo</th>
<th>Total</th>
<th>Weight</th>
<th>Odds Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBSII</td>
<td>36</td>
<td>257</td>
<td>45</td>
<td>264</td>
<td>7.0% (0.49, 1.28)</td>
</tr>
<tr>
<td>MERIT-HF</td>
<td>37</td>
<td>282</td>
<td>35</td>
<td>274</td>
<td>6.4% (1.03 [0.63, 1.69])</td>
</tr>
<tr>
<td>SENIORS</td>
<td>51</td>
<td>237</td>
<td>35</td>
<td>237</td>
<td>5.6% (1.67 [1.04, 2.69])</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>766</td>
<td>775</td>
<td>19.7%</td>
<td>1.11 [0.85, 1.47]</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>124</td>
<td>115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Ch² = 4.86, df = 2 (P = 0.09), I² = 59%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 0.77 (P = 0.44)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBSII</td>
<td>91</td>
<td>1013</td>
<td>144</td>
<td>1004</td>
<td>27.6% (0.52 [0.39, 0.69])</td>
</tr>
<tr>
<td>MERIT-HF</td>
<td>138</td>
<td>1569</td>
<td>223</td>
<td>1563</td>
<td>42.1% (0.56 [0.46, 0.73])</td>
</tr>
<tr>
<td>SENIORS</td>
<td>45</td>
<td>651</td>
<td>57</td>
<td>644</td>
<td>10.7% (0.70 [0.50, 1.01])</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>3854</td>
<td>3911</td>
<td>80.5%</td>
<td>0.88 [0.69, 1.10]</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>394</td>
<td>424</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Ch² = 2.10, df = 2 (P = 0.35), I² = 5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 0.53 (P = 0.00001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5: Combined HF hospitalisation risk: Effect of beta-blocker therapy in patients with heart failure and atrial fibrillation, and in patients with heart failure and sinus rhythm.

Figure 4: Funnel plot for the main analysis.
Conflicts of interest
Drs. Rienstra, Damman, and Mulder report no disclosures. Dr. Van Gelder received lecture fees from Bayer, Biotronik, Boehringer Ingelheim, BMS, Medtronic and Pfizer, and grant support from Medtronic and Biotronik.

References

