Constitutive activation of NF-κB is not sufficient to disturb normal steady-state hematopoiesis

Schepers, Hein; Eggen, Bartholomeus; Schuringa, Jan Jacob; Vellenga, Edo

Published in:
Haematologica-the Hematology Journal

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Constitutive activation of nuclear factor-κB (NF-κB) has been observed in a number of patients with acute myeloid leukemia (AML), predominantly in the myelomonocytic and monocytic subtypes, rather than in normal CD34+ cells. With a multiplicity of signal transduction pathways converging on NF-κB, this protein is therefore suggested to play a relevant role in disturbed hematopoiesis in AML. Various reports have indicated that constitutive activation of NF-κB is sufficient to induce cellular transformation, but, however, limited information is available on the role of NF-κB in regulating normal hematopoiesis. Its role in primary hematopoietic cells has been investigated mainly by inactivation studies using chemical inhibitors, gene knock-outs or overexpression of dominant negative constructs. Furthermore, these studies largely focused on the anti-apoptotic properties of NF-κB, and its effects on other important characteristics of cell biology such as proliferation, differentiation and self-renewal were rarely considered. We, therefore, established a model for studying the

Constitutive activation of NF-κB is not sufficient to disturb normal steady-state hematopoiesis

Since nuclear factor-κB (NF-κB) is frequently activated in acute myeloid leukemia, we questioned whether active NF-κB can affect the cellular properties of cord blood CD34+ cells. The results demonstrated that NF-κB activation did not influence growth or differentiation properties of these cells. Furthermore, NF-κB activation was not sufficient to induce changes in stem- and progenitor cell numbers.

Haematologica 2006; 91(12) (http://www.haematologica.org/journal/2006/12/1710.html)
influence of constitutive NF-κB activation on hematopoiesis of primary human CD34+ cells.

Transfection experiments in 293T HEK cells demonstrated that overexpression of wild-type (wt) p65 or a constitutively active IKK-2 (IKK2SE), a kinase upstream of NF-κB, is sufficient to activate an NF-κB responsive luciferase reporter construct (Figure 1A), which is not activated in control-transfected cells (MIGR1). A TF-1 cell-line, stably transfected with p65, demonstrated enhanced DNA-binding of p65 in EMSA as well as enhanced NF-κB luciferase reporter activity (2.6-fold greater DNA binding for p65 compared to the level in mock transfected cells, data not shown). In addition, quantitative polymerase chain reaction analysis for the NF-κB target gene IL8 demonstrated a 12-fold increase in IL8 mRNA expression in p65-expressing TF-1 cells (data not shown). Together these data demonstrated that overexpression of either p65 or IKK2SE results in an activated NF-κB signal transduction pathway.

Long-term co-cultures of transduced cord blood (CB)-derived CD34+ stem- and progenitor cells on MS-5 stromal cell layers indicated that neither p65 nor IKK2SE-transduced cells had a proliferative advantage, as demonstrated by stable percentages of green fluorescence protein (GFP) (Figure 1B, dotted lines) compared to MIGR1-transfected cells. Cumulative cell counts from these cultures gave comparable results (Figure 1B, solid lines). Parallel flow-cytometric analysis demonstrated no significant changes in the percentage of GFP cells positive for the myeloid differentiation markers, CD11b, CD14, CD15 and CD36, when compared to either GFP- cells within the same culture or to MIGR1-transfected cells (N=3, a representative example is shown in Figure 1C). In addition, progenitors were enumerated in limiting dilution CFC assays. IKK2SE transduction produced no significant advantage compared to MIGR1 transduction in progenitor frequencies (14.5% vs. 13.7%; data not shown). In separate BFU-GM and BFU-E assays also no differences were observed (data not shown).

In order to investigate whether active NF-κB affected the self-renewal capacity of hematopoietic stem cells, LTC-IC assays were performed with MIGR1- , p65- and IKK2SE-transduced CB CD34+ cells, by adding methyl-cellulose to a week 5 MS-5 co-culture (as described previously) and determining the number of colonies at week 7. No significant differences in colony formation were detected comparing p65-, IKK2SE- or MIGR1-transduced cells (Figure 6,7). Together these findings indicate that constitutive activation of NF-κB is not sufficient to change the differentiation potential of human CD34+ cells. Others have shown that a reduction of NF-κB activity in murine fetal liver cells or ES-derived hematopoietic progenitors results in severely disturbed myeloid differentiation. Apparently NF-κB activation is required for normal myelopoiesis, but its increased activity is not sufficient to impair differentiation. In normal and leukemic stem and progenitor cells it has been demonstrated that NF-κB antagonizes (ROS-mediated) apoptosis. In contrast, we did not detect lower levels of apoptosis (assessed by annexin V staining, data not shown) in p65- or IKK2SE-transfected CB CD34+ cells compared to control cultures. Additionally, interleukin-3 deprivation of p65-expressing stable TF-1 cell lines did not cause reduced apoptosis (data not shown). This is in line with data from Romano et al., demonstrating that constitutive NF-κB activity is not relevant for sustained basal cell survival of CB CD34+ and AML cells, but only for cells triggered with a stress response, e.g. exposure to chemotherapy.

Collectively, these data demonstrate that constitutive activation of NF-κB as a single hit is not sufficient to induce changes in steady-state hematopoiesis with regard to proliferation, differentiation, self renewal and apoptosis during steady-state hematopoiesis, which could potentially shift cells towards a more leukemogenic phenotype. Whether constitutive NF-κB activation in concert with additional triggers has other effects on hematopoiesis needs to be further defined in order to gain insight into their respective and potentially additive roles in events leading towards AML.

References

5. Fan Y, Rayet B, Gelinas C. Divergent C-terminal transactivation domains of Rel/NF-κB proteins are critical determinants of their oncopogenic potential in lymphocytes. Oncogene 2004;23:1080-42.