Shock wave equation of state of powder material

Dijken, D. K.; de Hosson, J. Th. M.

Published in:
Journal of Applied Physics

DOI:
10.1063/1.356434

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1994

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Shock wave equation of state of powder material

D. K. Dijken and J. Th. M. De Hosson
Department of Applied Physics, Material Science Center, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
(Received 24 March 1993; accepted for publication 6 October 1993)

A model is proposed to predict the following quantities for powder materials compacted by shock waves: the pressure, the specific volume, the internal energy behind the shock wave, and the shock-wave velocity U_s. They are calculated as a function of flyerplate velocity u_f and initial powder specific volume V_{00}. The model is tested on Cu, Al2024, and Fe. Calculated U_s vs u_f curves agree well with experiments provided V_{00} is smaller than about two times the solid specific volume. The model can be used to predict shock-wave state points of powder or solid material with a lower or higher initial temperature than room temperature.

I. INTRODUCTION

Since the 1960s various approaches have been followed in describing the shock-wave equation of state (EOS) of powder materials. Roughly speaking modeling was done in two different ways: i.e., semiempirically, using quasistatic powder compaction models$^{1-5}$ and purely theoretically.$^{6-11}$ Except for Ref. 11 these models adopt the Mie–Grüneisen EOS, which relates the change in internal energy to the change in pressure at constant specific volume: $dE = V dP / \Gamma(V)$. In many materials the Mie–Grüneisen constant $\Gamma(V_0)$ ranges between 1.6 and 2.6.

These models, however, have some drawbacks because the internal energy and the pressure are divided into separate contributions of cold isothermal compressive and thermal components: $E = E_C + E_T$ and $P = P_C + P_T$, respectively. It follows that the pressure behind the shock wave is given by

$$P = \frac{2P_C V - 2\Gamma(V)E_C}{2V + \Gamma(V)V - \Gamma(V)V_{00}}. \quad (1)$$

P_C is always represented by the second-order isothermal Birch–Murnaghan EOS. This relationship is not very accurate and rather questionable.12,13 Further, for the cold isotherm E_C is supposed to be $E_C = \int P_C dV$. This is certainly not the case as it only holds for the adiabat and a large error is introduced. In addition the derivative of the isothermal bulk modulus K_0 with respect to pressure is needed as an input parameter for the Birch–Murnaghan relation. This value is difficult to determine experimentally.

Finally, it is clear that when $V_{00} > V_0[1 + 2/\Gamma(V_0)]$, the increasing linear denominator crosses the specific volume axis at the right of V_0 at $V = \{\Gamma(V)/(2 + \Gamma(V))\}V_{00}$. Now P is calculated between V_0 and $V = \{\Gamma'(V)/(2 + \Gamma'(V))\}V_{00}$ using the negative part of P_C. Since the Birch–Murnaghan EOS is only estimating P_C in the case of compression, Eq. (1) fails.

In this article another theoretical approach is reported that takes Oh and Persson’s work11 as a starting point while using the Mie–Grüneisen EOS instead.

II. BASIC CONCEPTS

A. Shock-wave conservation EOS for solid and powder material

Suppose a rigid planar flyer plate of infinite mass propagates at a constant velocity u_f. When it impacts onto solid or powder materials these will be compressed and a shock wave with velocity U_s will propagate through the material. The situation is schematically displayed in Fig. 1. The pressure, specific volume, internal energy, and temperature ahead and behind the shock front are represented by P_0, V_0, E_0, and T_0, and P, V, E, and T respectively for solid material and P_{00}, V_{00}, E_{00}, and T_{00} and P', V', E', and T' respectively, for powder material.

Figure 1(b) shows what happens to a powder material during shock-wave compaction. The powder is represented by separate infinite thin material plates. When the first plate collapses on the shock front, it behaves exactly like a solid material. Since there is some space left between the first and the second material plate, the first plate, after being compacted, starts to expand. Its compressive energy is transformed into internal kinetic energy. Then, more plates collide leaving the first plate oscillating between the flyer plate and the second plate. This goes on until all its internal kinetic energy is transformed to random thermal energy. Eventually the first flyer plate is “locked” in its final specific volume. For material with a higher V_{00}, behind the shock wave, more compressive energy is transformed to thermal energy. At first instance this transformation step does not take place in solid material. During pressure release the (remaining) compressive energy part is transformed and/or transferred to the surrounding material.

In order to derive EOS for shock compacting solid and powder material, the following four assumptions have to be made.

(a) It is assumed that compaction of a powder at zero pressure quasistatically from V_{00} to the solid specific volume V_0 does not cost any energy, so that $E_0 = E_{00}$.

(b) Behind the shock wave there are no voids present, i.e., the material is completely compacted.

(c) The increase in internal energy is equally distrib-
FIG. 1. (a) A rigid flyer plate impacts onto a solid or powder material. Area I is the flyerplate, area II is the compacted powder or solid material, area III is the uncompacted powder or solid material at rest. The flyerplate velocity is u_p or u_i ($u_{pi} = u_i$). The shock-wave velocity is U_s or U_i. (b) The powder is represented by separate solid plates collapsing sequentially on the shock-wave front.

uted inside the compacted material. It implies that the pressure and the temperature fields are uniform.

d) There are no volume or energy changes due to deformations or phase transformations.

B. Conservation of mass

The condition that the mass flux in and out the shock front must be equal is expressed by

$$V U_s = V_0 (U_i - u_p),$$

where for powder material

$$V' U'_s = V_0 (U'_i - u'_p).$$

Taking u_p equal to u'_p, $U_s (V_0 - V)/V_0 = U'_s (V_0 - V')/V_0$.

C. Conservation of momentum

The change of momentum of material impacted by a flyer plate with surface A in a time lapse δt is given by $\delta p = m v$, where $m = A U_s \delta t / V_0$ and $v = u_p$. Pressure is the change of momentum per unit area per unit time, so the momentum has to be divided by the impact area A and the impact time δt in order to obtain the (mean) pressure difference over the shock front. Taking $P_0 = 0$,

$$P = \frac{\delta p}{A \delta t} = \frac{U_s u_p}{V_0},$$

where for powder material

$$P' = \frac{U'_s u'_p}{V_0'.}$$

Taking u_p equal to u'_p leads to $P V_0 / U_s = P' V_{0'} / U'_s$.

D. Conservation of energy

Suppose the compacted material is at rest and the uncompacted material collides with a velocity u_p onto the shock front. Then the change of compressive and thermal energy of material impacting onto an area A in a time lapse δt is given by $dE = m v^2 / 2$, where $m = A U_s \delta t / V_0$ and $v = u_p$. The change of internal energy δE is defined as the change of internal energy per unit mass, i.e.,

$$\delta E = E - E_0 = \frac{1}{2} u_p^2,$$

and for powder material

$$E' = E_{00} = \frac{1}{2} u_p'^2.$$

By taking u_p equal to u'_p and since $E_{00} = E_0$ [assumption (a)], the increase in internal energy is exactly the same for solid and powder material, i.e., $E - E_0 = E' - E_{00}$, and only depends on u_p.

Recall that the work done by the flyer plate per kg of compressed material initially at rest is u_p^2 in which u_p^2 per kg is converted in increasing the internal energy of the compressed material and u'_p^2 per kg is converted in increasing the kinetic energy. By combining Eqs. (2) and (4) and Eqs. (3) and (5) the powder P', V' state points can be related to the solid P, V state points,

$$E' - E_{00} = \frac{1}{2} P'(V_0 - V') = \frac{1}{2} P(V_0 - V).$$

E. Solid system

The three solid conservation relations Eqs. (2), (4), and (6) contain four known variables, $E_0, P_0, V_0,$ and u_p, and four unknown variables, $E, P, V,$ and U_s. One more relation between any two variables is necessary.

For solid and powder materials U_s can be measured at different values of u_p. From these data it is known that the relationship between U_s and u_p for solid material is always nearly linear, i.e., $U_s = C + S u_p$, where C is approximately the zero pressure sound velocity and S is a constant. Combining Eqs. (2) and (4) with the linear relationship of U_s with u_p leads to an expression for the pressure behind the shock wave,

$$P' = \frac{C'(V_0 - V)}{[V_0 - S(V_0 - V)]^2}.$$

Equation (9) describes the solid Hugoniot which is the locus of the final shock state, but not the thermodynamic path followed by the material. The Hugoniot is an adiabat, neither an isotherm or an isentrope. The actual thermodynamic path followed is a straight line from the initial to the final state, called the Rayleigh line.

III. CALCULATIONS

When a flyer plate impacts onto a sample, either solid or powder material, the internal energy increase equals the
Copper

Specific volume \(\frac{\text{m}^3}{\text{kg}} \)

FIG. 2. (a) Copper Hugoniot and equienergy curves (b) \(E-E_0 = 0.25 \text{ MJ} \); (c) 0.50 MJ; (d) 0.75 MJ; (e) 1.00 MJ; (f) 1.25 MJ. The internal kinetic energy is zero. At fixed flyer-plate velocity, behind the shock wave, the internal energy of both the compacted solid and the powder material are the same. Therefore, the final \(P, V \) point must lie somewhere on the equienergy curve \((0-2) \); only explosive compaction of solid material; \((0-1) \) explosive compaction \((0-2) \) and heating at constant volume \((2-1) \); \((0-4) \); only heating at zero pressure \((0-3) \); heating at zero pressure \((0-4) \) and heating at constant volume \((4-3) \).

The total amount of internal energy, deposited by the flyer plate to the powder (00-1) (Fig. 2) is given by Eq. (8),

\[
E_1 - E_{0\text{p}} = E_1 - E_0 = \frac{1}{2} P_1 (V_{0\text{p}} - V_1) = \frac{1}{2} n_p^2 \tag{10}
\]

This amount of internal energy can be stored in the system by adding the shock-wave energy along the Rayleigh line \((0-2) \).

\[
E_2 - E_0 = \frac{1}{2} P_2 (V_0 - V_1) \tag{11}
\]

and the internal energy along the isochore \((2-1) \),

\[
E_1 - E_2 = \frac{(P_1 - P_2) V_1}{\Gamma(V_1)} \tag{12}
\]

By choosing \(V_1 \), the pressure \(P_2 \) is given by Eq. (9),

\[
P_2 = \frac{C_0^2 (V_0 - V_1)}{[V_0 - S(V_0 - V_1)]^2} \tag{13}
\]

For some materials such as Al, Cu, In, Fe, Pb, and NaCl, at room temperature, zero pressure, \(\Gamma(V_0) \) is determined experimentally by Ref. 16.

At other temperatures the Grüneisen constant is calculated by

\[
\Gamma(V_1) = \Gamma(V_0) \left(\frac{V_1}{V_0} \right)^{\frac{q}{2}} \tag{14}
\]

Constants for the isothermal and the adiabatic bulk modulus \(K_I(T) \) and \(K_S(T) \), respectively, and the specific heat at constant volume \(C_V(T) \) are scarcely available in the literature. \(C_P(T) \) is the specific heat at constant pressure. \(\alpha(T) \) is the temperature-dependent thermal-expansion coefficient. Consequently, it was proposed

\[
\Gamma(V_1) = \Gamma(V_0) \left(\frac{V_1}{V_0} \right)^{\frac{q}{2}} \tag{15}
\]

where \(q \) is a constant. For the above-mentioned materials \(q \) is determined experimentally as well.\(^{16}\) When no values for \(q \) are available it is assumed to be equal to unity.\(^{17}\)

Finally, the pressure in the fully shock-compacted powder material is calculated from Eqs. (10), (11), (12), and (13),

\[
P_1 = \frac{C_0^2 (V_0 - V_1)}{[V_0 - S(V_0 - V_1)]^2} \frac{[\Gamma(V_1)(V_0 - V_1) - 2 V_1]}{2[\Gamma(V_1)(V_0 - V_1) - 2 V_1]} \tag{16}
\]

At given \(V_{0\text{p}} \) and \(V_1 \), \(P_1 \) can be calculated using Eq. (16). \(u_p \) and \(E_1 - E_{0\text{p}} \) are calculated using Eq. (10) after which \(U_1 \) can be calculated either with Eq. (3) or Eq. (5).

TABLE I. Calculated copper state point values on different equienergy curves (Fig. 2), \(E-E_0 = \text{MJ} \), \(u_p \), \(P_1 \), and \(T_2 \) (Fig. 2).

<table>
<thead>
<tr>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.50</td>
<td>0.75</td>
<td>1.00</td>
<td>1.25</td>
</tr>
<tr>
<td>707</td>
<td>1000</td>
<td>1225</td>
<td>1414</td>
<td>1518</td>
</tr>
<tr>
<td>31.4</td>
<td>48.4</td>
<td>63.0</td>
<td>76.3</td>
<td>88.9</td>
</tr>
<tr>
<td>629</td>
<td>1314</td>
<td>1761</td>
<td>2177</td>
<td>2567</td>
</tr>
</tbody>
</table>

A. \(U_1 \) vs \(u_p \) calculation for powder materials: \(V_1 < V_0 \)

The total amount of internal energy, deposited by the flyer plate to the powder (00-1) (Fig. 2) is given by Eq. (8),

B. \(U_2 \) vs \(u_p \) calculation for powder materials: \(V_3 > V_0 \)

The total amount of internal energy, deposited by the flyer plate to the powder (00-3) (Fig. 2) is given by Eq. (8),

\[
E_3 - E_{0\text{p}} = E_3 - E_0 = \frac{1}{2} P_3 (V_{0\text{p}} - V_3) = \frac{1}{2} n_p^2 \tag{17}
\]

This amount of internal energy can quasi-statically be stored in the system by heating solid material at zero pressure from \(V_0 \) to \(V_4 \) \((0-4) \) and then heating at constant volume \(V_4 \) from \(P_4 \) to \(P_5 \) \((4-3) \).
So, at first the material is thermally expanded to a volume $V_4 (0 \to 4)$, after which T_4 and $E_4 - E_0$ are calculated from the temperature-dependent thermal-expansion coefficient $\alpha(T)$ and the specific heat at constant pressure $C_p(T)$.

The volume and the temperature are related according to

$$\int_{V_0}^{V_4} \frac{1}{V} dV = \int_{T_0}^{T_4} 3\alpha(T) dT. \quad (18)$$

For many solids, over a wide temperature range, i.e., $T_0 < T_4 < \pm 1300$ K, $\alpha(T)$ can be estimated accurately by $\alpha(T) = \alpha(T_0) + \beta(T) (T - T_0)$. Substituting $\alpha(T)$ in Eq. (18) relates V_4 to T_4,

$$\ln \frac{V_4}{V_0} = 3\alpha(T_0) (T_4 - T_0) + \frac{3}{2} \beta(T_4 - T_0)^2. \quad (19)$$

The energy needed to expand to V_4 is given by

$$E_4 - E_0 = \int_{T_0}^{T_4} C_p(T) dT. \quad (20)$$

For many solids, over a wide temperature range, i.e., $T_0 < T_4 < \pm 1300$ K, $C_p(T)$ can be estimated accurately by $C_p(T) = C_p(T_0) + \gamma(T) (T - T_0)$. Substituting $C_p(T)$ in Eq. (20) leads to

$$E_4 - E_0 = C_p(T_0) (T_4 - T_0) + \frac{1}{2} \gamma(T) (T_4 - T_0)^2, \quad (21)$$

where T_4 can be calculated using Eq. (21). Note that $\alpha(T)$ and $C_p(T)$ are calculated from experimental values for $V_4(T)$ and $E_4(T) - E_0$, respectively. Whenever available it is better to use direct experimental values for V_4 as a function of $E_4 - E_0$.

The internal energy increase along the isochore from P_4 to P_3 is given by

$$E_3 - E_4 = \left(\frac{P_3 - P_4}{\Gamma(V_3)} \right) V_3, \quad (22)$$

where $\Gamma(V_3)$ is given by Eq. (15). Finally, the pressure in the fully shock-compacted powder material is given by

$$P_3 = \frac{2\Gamma(V_3)}{[\Gamma(V_3)(V_{00} - V_3) - 2V_3]} \int_{T_0}^{T_4} C_p(T) dT. \quad (23)$$

Since V_{00} and V_3 are chosen, T_4 is calculated with Eq. (19), P_3 is calculated with Eq. (23), u_p and $E_3 - E_0$ are calculated with Eq. (17), after which U_p is calculated with Eq. (13) or Eq. (5).

The model can calculate U_p vs u_p values for powder and solid material as well at higher initial temperature than T_0. Further, in principle it is possible to calculate the solid Hugoniot, i.e., the constant S. Temperature calculations are presented in Ref. 8.[22]

IV. VALIDATION OF THE MODEL

In the compaction by shock waves of powder material there are six principal parameters having a main effect on the final compacted material. These are the particle or flyer plate velocity, which is mainly determined by the detonation velocity of the used explosive, next, the initial specific volume of the powder to be compacted, the particle grain size, the initial temperature, and the duration of the shock pressure, which is mainly determined by the size of the experiment. Finally, the compacted powder material, still at pressure, contains adiabatic compressive energy and thermal energy. The adiabatic part has to be transmitted to the surrounding material (flyer plate, canning material), otherwise extensive cracking will occur.

U_p vs u_p relations are calculated for Cu, Al2024, and Fe powder materials and compared with experimental data[14] (Figs. 3–5). Other material data are from Refs. 14, 16, 19, 20, and 21. It can be concluded that for $V_{00} < \pm 1.8 V_0$ powder $U_p - u_p$ calculations fit well with experiment. The amount of energy E_G needed to compact a homogeneous powder quasi-statically to full density mainly depends on the particle shape and is fixed. For powder material, the larger the u_p, the larger the ratio $E - E_0/E_G$ and in that case the better the model. So, the violation of assumption (a) in Sec. II depends on the flyer-plate veloc-

FIG. 3. U_p vs u_p relationship for Cu (solid line: calculated; dashed line: experiment).

FIG. 4. U_p vs u_p relationship for Al2024 (solid line: calculated; dashed line: experiment).
heavy canning material should be applied since the canning behind the shock wave, leading to a better sinter behavior by which the material may remain for a longer time at high powder material to full dense solid material. The model predicts the shock-wave velocity, the pressure, specific volume, and internal energy behind the shock wave, as a function of flyer-plate velocity, initial powder specific volume, and initial temperature. The model is based on the fact that the internal energy increase behind the shock wave is the same for both the solid and the powder compacted material.

The model indicates that: although at a given \(u_p \) for less dense powder more compressive energy is transformed to thermal energy the temperature behind the shock wave is roughly the same; at relatively high-flyer-plate velocities, e.g., \(u_p > \pm 3000 \text{ m/s} \), calculated \(U_s \) vs \(u_p \) lines may even cross.

For Cu, Al2024, and Fe, \(V_{on} < \pm 1.8 V_n \) the model predicts very well the \(U_s \) vs \(u_p \) relationship. At larger specific volume and \(u_p > \pm 2000 \text{ m/s} \) the calculated \(U_s \) values become too large. With the model it is easy to calculate \(U_s \) vs \(u_p \) relations of powders at temperatures other than room temperature.

V. CONCLUSIONS

A new EOS has been derived for shock-compacting powder material to full dense solid material. The model

![Graph](attachment:graph.png)

FIG. 5. \(U_s \) vs \(u_p \) relationship for Fe (solid line: calculated; dashed line: experiment).

ACKNOWLEDGMENT

The authors would like to thank Dr. A. C. van der Steen of Prins Maurits Laboratorium TNO (Rijswijk, The Netherlands) for his interest in this work and discussion.