Mechanosensation at the molecular level
Yilmaz, Duygu

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Chapter 7

Summary and Future Perspectives

Nederlandse Samenvatting

Acknowledgement
Summary and Future Perspectives

Mechanotransduction, the conversion of physical force into biochemical information, is fundamental to development and physiology. For example, in the vascular system, pressure and shear stress from pumping blood influence the morphology and pathology of the heart and vasculature. Bone is shaped by forces from gravity and muscle contraction. Hearing and touch are based on neural responses to pressure. Physical forces regulate a broad array of physiological processes, and dysregulation of mechanical responses contributes to major human diseases.

Extensive research has been done to uncover how mechanical forces are transduced into biochemical signals and how mechanotransduction affects cellular function. At the molecular level, mechanosensation is accomplished by mechanosensitive channels, which are sensors of the cells sensing the mechanical stimulus in the cell membrane. Despite its prevalence in many biological processes, molecular mechanism underlying mechanosensation is still unknown.

Our research aims at a better understanding of mechanosensation at the molecular level by using one of the “simplest” mechanosensors: Mechanosensitive channel of Large Conductance (MscL) from bacterium Escherichia coli. We engineered MscL and investigated its gating mechanism by employing different methodologies (Chapters 2, 3 and 4). While learning more about its molecular mechanism, we applied our findings to develop two-component drug release system from liposomes (Chapter 5). Engineering MscL aside, we also engineered amphiphiles that are permeable to ions, mimicking ion channels (Chapter 6).

Ion Mobility Mass Spectrometry Reveals Global Conformational Changes of MscL during its gating

Based on patch clamp electrophysiology and short-range interaction of MscL amino acids, it was modeled that MscL undergoes large conformational changes during its transition from the closed to the open state. However, until now, these global changes could not be observed directly. In chapter 2, we studied MscL gating by Ion Mobility Mass Spectrometry (IM-MS). By activating MscL to different magnitudes and following the resulting changes in the rotationally averaged collision cross-sections, we could monitor the resulting global conformational changes and relate them to the mechanosensing mechanism. This work also showed that MscL can gate in the absence of a lipid bilayer. We supported this observation by employing electron paramagnetic resonance spectroscopy (EPR) and electron microscopy (EM) and concluded that the gating associated structural changes are intrinsic to the protein, and are not dictated by the membrane.
MscL is a jigsaw puzzle

Till now, the homopentameric nature of MscL restricted the use of two different cysteine-specific probes (i.e., one to activate the channel, the other to observe the resulting conformational changes) within the same pentamer at desired ratios. We solved this challenge in chapter 3, by dissociating and re-associating MscL subunits in a controlled manner. We could obtain MscL labeled with two different cysteine-specific probes (a light switch to trigger MscL gating and a paramagnetic spin label to follow the resulting conformational changes) at desired ratios. By this method, we gate MscL into defined intermediate states and monitor the resulting structural changes by EPR.

Watching the helical movements of MscL during its gating

After seeing the global structural changes starting from an early stage of channel gating, we also investigated these changes locally. In chapter 4, we designed an environment-sensitive fluorescent probe that is sensitive enough to report the polarity changes in the microenvironment of the protein during MscL gating. By conjugating this probe to the individual cysteine residues in the pore forming TM1 helix, we could determine the polarity profile of the channel in the closed and different sub-open states. By this way, we could identify conformational changes at different parts of the pore-forming TM1 helix at various sub-open transitions of MscL during its gating. Our data forms the basis of a gating model of MscL from the onset of mechanosensation and will allow us to back-model the membrane forces that might generate such movements of MscL.

A click reaction activates MscL embedded liposomes

Having control over the gating of MscL, in chapter 5, we develop a two-component release system with MscL embedded liposomes. Spatio-temporal control over the release of liposomal content allows interfering with many processes within the body, including cancer imaging and therapy. In our bioorthogonal strategy, interaction of two specific components allowed the activation of the liposomes and resulted in the release of liposomal content. One component was chemically labeled MscL that is embedded in the liposomes, while the other component was a tetrazine that is added to the solution externally. Inverse electron-demand Diels-Alder reaction between these two components gate MscL so that release from liposomes could occur when and where desired. We believe that such a specific reaction could be promising in targeted delivery and/or controlled release of therapeutic agents.

Ion Permeable Lipid Bilayers: A paradox?

Functioning of ion channels in cells fascinated not only biologists but also chemists and material scientists. Many efforts have been focused on mimicking ion channels with synthetic ones towards generating artificial cells with controllable membrane
permeability. Hence communication. Recently, the permeability of the lipid bilayer itself has also been modified. In chapter 6, we developed amphiphiles, which self-assemble into ion-permeable bilayers. Our amphiphiles form not only stable planar lipid bilayers, but also cell-sized containers. Conductance and fluorescence dequenching ensemble measurements together with single molecule electrophysiology show that the bilayers allow the passage of small ions but retain large anions, and they can accommodate a biological ion channel in its functional form. Our results hold promise for the generation of an electro-chemical gradient across the lipid bilayer and the development of artificial cellular systems.

Perspectives

This thesis focused on understanding the gating mechanism of MscL, as a model to understand mechanosensation at the molecular level. Till now, the major experimental challenge was to stabilize MscL at an early sub-open state from the onset of mechanosensation and study the conformational changes during the transition from the closed to that state. We solved this problem by developing and applying new methods. With these methods, we elucidated both global and local conformational changes starting at a very early stage of channel gating. Now it is time to look back and correlate what kind of forces can generate these conformational changes. How is the force sensed and transduced? Do all mechanosensitive channels behave the same? Or does the protein–lipid–water junction hold even more secrets? Much work lies ahead if the answers to these questions are to be found; as Ching Kung says, ‘perhaps, just like after a long spell of rain, the floodgates of knowledge are about to be opened’...
Nederlandse Samenvatting

Mechanotransductie, de omzetting van fysieke kracht in biochemische informatie, staat aan de basis van de ontwikkeling en fysiologie van organismen. In het vasculaire systeem bijvoorbeeld, beinvloeden druk en schuifspanning, veroorzaakt door het pompen van bloed, de morfologie en pathologie van het hart en het stelsel van bloedvaten. Bot krijgt zijn vorm door de zwaartekracht en de kracht van het samenrekken van spieren. De reacties van neuronen op fysieke druk staan aan de basis van het gehoor en de tastzin. Fysieke krachten regelen een breed scala aan fysiologische processen en de ontregeling van mechanische reacties draagt bij aan belangrijke menselijke ziekten.

Uitgebreid onderzoek is uitgevoerd om te ontrafelen hoe mechanische krachten worden omgezet in biochemische signalen en hoe mechanotransductie de functie van de cel beinvloedt. Op moleculair niveau veroorzaken mechanosensitieve kanalen, celsensoren die de mechanische stimulans in de cellombraan voelen, de mechanosensatie. Ondanks het voorkomen in vele biologische processen is het moleculaire mechanisme dat ten grondslag ligt aan mechanosensatie nog onbekend.

Ons onderzoek richt zich op een beter begrip van mechanosensatie op moleculair niveau, met behulp van een van de "eenvoudigste" mechanosensors: het "Mechanosensitive channel of Large conductance" (MscL) van de bacterie Escherichia coli. We veranderden MscL en onderzochten het openingsmechanisme door gebruik te maken van verschillende methoden (hoofdstuk 2, 3 en 4). Terwijl we meer leerden over het moleculaire mechanisme, pasten we onze bevindingen toe in de ontwikkeling van een tweecomponenten geneesmiddelgiftesysteem met liposomen (hoofdstuk 5). Daarnaast hebben we ook iondoorlaatbare amfifielen die ionkanalen nabootsen, ontworpen (hoofdstuk 6).

Ion Mobility Mass Spectrometry onthult algemene vormveranderingen van MscL gedurende de openingstijd.

Gebaseerd op de patch clamp elektrofysiologie en de korte afstand interactie van aminozuren in MscL, kon worden gemodelleerd dat MscL grote conformationele veranderingen ondergaat tijdens de overgang van de gesloten naar de open toestand. Tot nu toe konden deze globale veranderingen niet direct worden waargenomen. In hoofdstuk 2 onderzochten we het openen van MscL door middel van Ion Mobility Mass Spectrometry (IM-MS). Door MscL op verschillende niveaus te activeren en daarna de daaruit voortvloeiende veranderingen in de zogenaamde rotationally averaged collision cross-sections te volgen, konden we de resulterende globale conformatieveranderingen volgen en relateren aan het mechanisme van mechanosensatie. Dit werk toonde ook aan dat MscL als poort kan fungeren in de afwezigheid van een lipide dubbellaag. We ondersteunden deze waarneming met electron paramagnetische resonantie spectroscopie (EPR) en electronen
microscopie (EM) en concludeerden dat de opening behorende bij de structurele veranderingen inherent aan het eiwit zijn, en niet worden gedicteerd door het membraan.

MscL is een legpuzzel

Tot nu toe beperkte het feit dat MscL een homopentameer is het gebruik van twee verschillende cysteine-specifieke probes (een om het kanaal te kunnen activeren, de andere om de resulterende conformatieveranderingen waar te kunnen nemen) in dezelfde pentameer in vantevoren bepaalde verhoudingen. Deze uitdaging hebben we opgelost in hoofdstuk 3, door MscL gecontroleerd te dissociëren en te re-associëren. Hiermee konden we MscL labelen met twee verschillende cystine-specificieke probes in de gewenste verhouding (een lichtschakelaar om MscL gating aan te kunnen schakelen en een paramagnetische spinlabel om de resulterende conformatieveranderingen te kunnen volgen). Met deze methode konden we MscL openen in gedefinieerde tussenliggende toestanden en konden we vervolgens de daaruit voortvloeiende structurele veranderingen met EPR volgen.

Het observeren van de helix-actige bewegingen van MscL tijdens het openen

Nadat we de algemene structurele wijzigingen vanaf een vroeg stadium van het openen van het kanaal hadden geobserveerd, hebben we ook de meer lokale veranderingen onderzocht. In hoofdstuk 4 ontwierpen we een milieu-gevoelige fluorescente probe die gevoelig genoeg is om de polariteit van de veranderingen in de micro-omgeving van het eiwit tijdens het openen van MscL vast te stellen. Door het conjugeren van deze probe met de afzonderlijke cysteïneresiduen in de porievormende TM1 helix, konden we het polariteitprofiel van het kanaal in zowel de gesloten als verschillende sub-openingstoestanden bepalen. Op deze manier kunnen we conformatieveranderingen in de verschillende delen van de porievormende TM1 helix op verschillende sub-openingsovergangen van MscL tijdens het openen van het kanaal identifieren. Onze gegevens vormen de basis van een openingsmodel van MscL vanaf het begin van mechanosensatie en zal ons toestaan de membraankrachten die zulke bewegingen van MscL kunnen genereren terug te modelleren.

Een klikreactie activeert liposoomingesloten MscL

Nu we controle hebben over de gating van MscL, ontwikkelden we in hoofdstuk 5 een twee-componenten afgifte systeem met in liposomen ingesloten MscL. Spatio-temporale controle over de afgifte van de inhoud van liposomen maakt het mogelijk te interfereren met vele processen in het lichaam, waaronder het in beeld brengen en de behandeling van kanker. In onze bio-orthogonale strategie maakte de interactie van twee specifieke componenten de activatie van de liposomen en het vrijkomen van liposomale inhoud mogelijk. Een van de componenten is chemisch gelabeld MscL dat is ingebed in liposomen, terwijl de andere component
een tetrazine is, die extern wordt toegevoegd aan de oplossing. Een Inverse elektron-demand Diels-Alder-reactie tussen deze twee componenten opent MscL zodat vrijlating uit de liposomen kan optreden waar en wanneer gewenst. Wij geloven dat een dergelijke specifieke reactie veelbelovend kan zijn voor gerichte aflevering en / of gecontroleerde afgifte van therapeutische middelen.

Ion permeabele lipidedubbellagen: een paradox?

Het functioneren van ionenkanalen in cellen fascineert niet alleen biologen, maar ook chemici en materiaalwetenschappers. Veel pogingen zijn gericht op het nabootsen van ionenkanalen met synthetisch gegenereerde kanalen met als doel het maken van kunstmatige cellen met regelbare membraanpermeabiliteit, en daarmee communicatie. Onlangs is het ook gelukt de doorlatbaarheid van de lipidebilaag zelf te wijzigen. In hoofdstuk 6 hebben we amfifielen ontwikkeld, die zichzelf assembleren tot ionendoorlatende dubbellagen. Onze amfifielen vormen niet alleen stabiele vlakke lipidedubbellagen, maar ook containers ter grote van een cel. Geleiding en fluorescentie dequenching metingen samen met single molecule electrofysiologie laten zien dat de bilagen de passage van kleine ionen toelaten maar grote anionen tegenhouden, en ze kunnen een biologische ionkanaal in de functionele vorm accommoderen. Onze resultaten beloven het genereren van een elektrochemische gradiënt over de lipide bilaag en de ontwikkeling van kunstmatige cellulaire systemen.

Vooruitzichten

Dit proefschrift richt zich op het begrijpen van het openingsmechanisme van MscL, als een model om mechanosensatie op moleculair niveau te begrijpen. Tot nu toe was de grote experimentele uitdaging om MscL te stabiliseren op een vroege sub-geopende toestand vanaf het begin van mechanosensatie en om de conformationele veranderingen tijdens de overgang van de gesloten naar die toestand te bestuderen. We hebben dit probleem opgelost door nieuwe methoden te ontwikkelen en toe te passen. Met deze methoden hebben we zowel lokale als globale conformationele veranderingen die beginnen in een zeer vroeg stadium van de opening van het kanaal, opgehelderd. Nu is het tijd om terug te kijken en te correleren wat voor krachten deze vormveranderingen kunnen genereren. Hoe wordt de kracht gevoeld en getransduceerd? Gedragen alle mechanosensitieve kanalen zich hetzelfde? Of houdt het eiwit-lipide-water junction nog meer geheimen verborgen? Er ligt veel werk in het verschiet als de antwoorden op deze vragen gevonden willen worden; zoals Ching Kung zegt 'misschien, net als na een lange periode van regen, staan de sluizen van de kennis op het punt om te worden geopend "...
Acknowledgement

Now it is time to complete this story... But I know that it would never be complete without mentioning the people who has been a part of it.

Firstly, of course, Armağan hocam. None of the great things that happened to me would have happened if it wasn't for you. Without your multiple perspectives to problems, analysis of situations, never-ending enthusiasm, greatest support and trust on me, I would not be the person who I am now. Thank you for all the things I learnt from you, from bench to life, you will always remain as my mentor.

Bert, thank you for welcoming me in your big group. So many different cultures, so many different characters, I loved the variety in the group. I always enjoyed being a part of it. The difference of opinions in the group meetings always made me to think, analyze, question further and further.

George, thank you for all the constructive comments and criticism during this thesis.

I also would like to thank my reading committee, Prof. Dr. A. J. Minnaard, Prof. Dr. S. J. Marrink and Prof. Dr. M. Sokabe for their critical reading and valuable comments throughout this thesis.

My MscL group...

Martin, there is a reason why your name appears in almost all my chapters. Your guidance helped me a lot during my whole PhD. After you left I always missed your mind in the group meetings. As I always say, your students are so lucky to have you. Thank you for everything!

Helgi, we did quite some work together and it was always a great pleasure for me to work with you. When I was dealing with 15 projects at the same time, seeing you also doing so, how to say was a bit of relief for me :) Your professional attitude was a very good example to me. Thank you!

Mac Donald, I remember like it was yesterday, when Armagan assigned you as my ‘lab-buddy’. You were the one who patiently taught me all the practical things at the beginning. I always admired how hard working you are. Thank you for all your help!

Jan Peter. Ah JP, I don’t know if I should thank you for putting me under your ‘German training’ and leaving chromatofocussing to me as your legacy. At the end it all worked well though. Armagan decided that I am ‘JP-proof’ so I could handle it :) I remember I had a lot of fun in the office with you and Anton (playing games like ‘guess what Gea is talking about’). So thank you!
Acknowledgement

Anna... My dear Anna... It took so much time before I started to understand your EPR language. But now I do, you should be proud of me! My feelings to EPR did not change much. How can they when I grow 10 L fermentor, do thousands of purifications (ok a bit exaggerated) and hundreds of chromatofocussing (again a bit exaggerated) and give you one eppendorf and after 1 min EPR experiment you tell me 'Duygu there is not enough protein here'?! Still at the end we managed to have chapter 3! Jokes aside, I am so happy that I met and collaborated with you. Thank you for being a great support for me all the time.

Nobina, my hectic Nobina... Your ambition towards your work is great! I wish you all the best in the future. I have no doubt you will be very successful.

One thing I learnt during my PhD is interdisciplinary approach can solve many problems at once. Collaborations make the research rich and satisfying. So I would like to thank here all the people who contributed so much to this thesis.

Marc, thank you for the project we did together in Chapter 5. It was a great pleasure for me to work and discuss with you. Your professional views always inspired me.

Frank and Albert, I am still amazed how quick the whole collaboration started and yielded great results but how long it took it to publish! Thanks for all the great work in Chapter 2.

Derk Jan, you and your lipids made my life a bit harder at first but it was a surprising finding at the end, so all worth it. Thanks for all the contribution to Chapter 6. We still need to celebrate that!

Menno, thanks for providing us with hydro-gel whenever we need.

And my students... I supervised five students in four years. You know what they say, ‘the best way to learn is to teach’.

Martijn, you were my first student so I was really amateur, but apparently it was not all bad, thanks to Helgi, we get a paper out of your work!

Aline... Thanks for all your contribution to Chapter 4. I have no doubt that you will be an excellent teacher!

Arek, I am so greatfull that you came to the Netherlands, finish a great amount of work in three months that helped me so much (Chapter 4)! I hope all the best for you in Germany! You will have a great PhD, no doubt.

Claudio, it was not the best time for me when you joined in our group. All the moving to UMCG, setting up things in a new lab plus writing a thesis... I am sure you experienced the grumpiest Duygu :) But you were so adaptable and independent, it made the things a lot easier for me. And at the end we got what we want, the 70 kDa band! Hey, by the way I loved the real Italian tiramisu you made!
And Marwah, my last but the most enthusiastic student who wants to know everything! On my last days in the lab, I am very happy that I pass the torch to someone like you. You will achieve so many things in your career.

Membrane Enzymology was a dynamic group. It has changed a lot during my PhD. So many people were there when I started.

Ronnie, Josy, Jacek, Guus, Justyna, Alicja, Marysia, Fabrizia, Liesbeth, Annemarie, Petra, Astrid, Faizah, Nadia, Jeanette, George, Erik, Andreja, Inga, Tejas, Karlien...

Thank you all for all the help and the great time we had together.

And the ones who are still enjoying their time there:

Dirk, Ria, Rianna, Lotteke, Sonja, Dorith, Michael, Paul, Jonas, Arnold, Rusland, Giorges, Weronika, Albert, Katja, Boqun, Ryan, Franz, Florance, Raj and Hallie...

I wish you all the best for the rest of your time in the group.

And yet it was not all. Towards the end of my PhD, I joined a new group in UMCG. Michel, Thaiany, Corien, Rianne, Ilia, Koen, Duco, Thais, Inge thanks for being so welcoming and helping me with all the questions that one can ask in a new lab :) I wish you all the best.

This story would not be the same if my way didn't cross with some others.

Gemma, my dearest... I can not imagine how it would be if you weren't by my side in all the good and the bad times. It was such a comfort feeling just to know that you were there. Thank you for always being there. But I already told you, it is just the beginning, we still have a lot to do together. Still so many places to go! And Edu of course. I loved it when you start the sentence 'But Duy-gu'! Four of us had so much fun together, right? Thank you for always being there!

Frans, blondie, my second favorite Bianchi :) I am usually not wrong with the first impressions but I was very wrong with you (but now you know that you don't give the very best first impression to people :)) You are a great friend. Thanks for all the dinners we had (mainly cooked by you ofcourse), all the beers we had (yes Frans I still think that I have a higher threshold than you), all the coffee/icecream/cookie breaks during the incubation periods in the lab. I think it is amazing that within four years, I could not give you a piece of my optimism instead I took considerable part of your pessimism :) (I know I know you are not pessimist, you are realist blabla...)

Antooooon! Kitabim var! :) Don't you think it is very funny that the first sentence you learnt in Turkish, makes so much sense when I tell you now! You were the one who makes my adaptation to new environments easier. Firstly when I first came from Turkey, being in the same office made me social, then when I moved to UMCG,
I was not alone, you were there again! You have such a positive energy that I love being around you. Thank you also for all the scientific support whenever I need. I am looking forward to hear your speech on my wedding :)

Gea, do you remember the day you took me to the bicycle shop so that I have a bicycle after 3 months in the Netherlands? With that and many other things, you were always helpful to me. Thank you so much! I can not imagine how things would work in the Poolman group without you.

Pranav, my dear office mate! You and your secret kit-kat stash! It is a good strategy of yours, whenever I start to complain in the office, you give one kit-kat to shut me up :) I loved the enzymology parties you organized! Thank you for all the fun you brought to the group!

Dusan, you and your mind games... Am I the only one around here who thinks that if you know how to play they are kind of fun? :) Apart from your games, I always loved talking to you, jumping from one subject to other, from science to politics then literature to movies... You are much more than you show outside, only if people knew... Don't ever lose your sarcastic side but maybe play less with people's minds to be more socially acceptable :)

Stephanie, you and Andrew were the biggest support I had after I moved to UMCG. I have always been so happy that we lived so close! I will miss our wednesday-night dinners a lot after I move to Den Haag. I will also miss our shopping nights. I also want to thank you for introducing me with Pichia so that I could teach it to my students :) I will never forget our fancy dinner in Sydney. We will definitely visit you in Australia!

Andrew, my drinking buddy! And now, thanks to you, I love whiskey! Thank you for being a shoulder whenever I need!

Joury, you brought so much fun joining the group! Cycling to/from work with you was great for me, especially seeing your wonderful smile in the mornings when I am so grumpy. I hope all the best for you, I have no doubt that you will do great!

And finally my family...

Annem, babam, kardeşim... 4 yıl öncesi daha dün gibi. Elimde iki bavul, tek başıma havaalanından sizden ayrılışım... Çok zordu, hayatımıda yaptığım en zor şeydi belki, ama iyi ki yapmışım. Annecığım yemek tariflerini bana telefonda anlattın, babacıgım skypta bana lavabonun borusunu tamir ettirdin, uğur’cuğum beni arayıp ‘Bak şimdi sana ne dinleteceğim?’ diye bana binlerce şarkı çaldın.... Yani aslında hep yanımdaydınız. Beni hiç bırakmadınız. İyi ki varsınız!
Ve Kivanç...

Bu hikayemde de her hikayemdeki gibi hep yanımda olan... Beraber dünyanın dolaştık, ilk evimizde yaşadık, yeni insanlar tanıdık, bazen geride bıraktıklarımızı özledik, türkçemiz bozuldu :) hollandaca öğrenmeye çalıştık, bisiklete alıştık... Arada bir de ben doktora yatırım işte. Sen olmasan bu hikaye bambaşka olurdu. İyi ki yanımdaydın da böyle oldu!

Now it is complete.

Time to take off.

Time to leave this story behind.

With a smile on my face, time to look ahead...

THE END