Environment of iodine ions. A spectroscopic, magnetic and structural investigation on transition - metal diiodides
Kuindersma, Sjouke Romke

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date: 1980

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
In this thesis the results of spectroscopic, magnetic and structural investigations on \(\text{VI}_2 \), \(\text{NiI}_2 \) and \(\text{CoI}_2 \) and solid solutions of \(\text{NiI}_2 \) and \(\text{CoI}_2 \) in \(\text{CdI}_2 \) and \(\text{PbI}_2 \) are discussed. Many of the properties are related to the layer-type structure and the partly filled d orbitals of the transition-metal ions.

In Chapter II we report investigations of the nuclear and magnetic structures of \(\text{NiI}_2 \) and \(\text{CoI}_2 \). In \(\text{NiI}_2 \) two phase transitions appear, one at 75 K attributed to the antiferromagnetic ordering and a structural phase transition near 60 K. The latter is investigated by X-ray and neutron diffraction; the symmetry is lowered from trigonal to monoclinic or triclinic. The magnetic structure is deduced from the magnetic satellites in the neutron diffractogram. A helix-1 type structure with propagation vector \(Q_x = 0.1384a^* \) and \(Q_z = 1.457c^* \) is found. The spins rotate in a plane which makes an angle of about 55.4° with the uniaxial axis. The unusual anisotropy of the susceptibilities observed for oblique orientations of the crystal with respect to the applied field is presumably related to the oblique direction of the cone.

Measurements of the susceptibility of \(\text{CoI}_2 \) show an anisotropy for \(H \perp c \) and \(H//c \). The out-of-plane anisotropy is caused by the spins of \(\text{Co}^{2+} \), which lie in the ab-plane. The in-plane order is examined by neutron diffraction. \(\text{CoI}_2 \) has the same type of magnetic order as \(\text{NiI}_2 \), hence a helix-1 type with \(Q_x = 1/8 \ a^* \) and \(Q_z = 1/2 \ c^* \).

Using the theory developed by Rastelli the stability of the magnetic structures of \(\text{NiI}_2 \) and \(\text{CoI}_2 \) is discussed. We found that the nearest neighbour exchange \(J_1 \) is positive, and the next-nearest neighbour exchange \(J_2 \) negative. Furthermore, the interlayer exchange interactions in the iodides play an important role in \(\text{NiI}_2 \) and \(\text{CoI}_2 \).

In Chapter III the magnetic susceptibility of single crystals of \(\text{VI}_2 \) is discussed. At 14 K an anomaly is discovered. Neutron diffraction at a few selected temperature near 14 K shows that the anomaly can be ascribed to a magnetic phase transition from a \(120^\circ \) structure above 14 K to a collinear structure with cell dimensions of \(a_{\text{magn}} = a/3 \), \(b_{\text{magn}} = 2a \) and \(c_{\text{magn}} = 2c \). Several arguments make it plausible that the \(120^\circ \) structure is not a magnetic phase with long-range order, but rather a paramagnetic phase with a high degree of short-range order. The dipolar anisotropy and the interlayer exchange inter-
actions are most likely responsible for the phase transition. The collinear structure, in which the spins of V$^{2+}$ make an angle of about 60° with the a-axis, is compatible with 129I-Mössbauer spectra. Calculations show that the 1200 structure is stable for $J_1<0$ and $J_2>0$ in the absence of anisotropy; the collinear structure of VI$_2$, for the same J_1 and J_2, is stabilized, if a strong anisotropy couples the spins of V$^{2+}$ to one particular direction in the lattice.

Chapter IV describes measurements of infrared reflection spectra of NiI$_2$ and CoI$_2$ from 50 to 650 cm$^{-1}$. Two infrared-active lattice vibrations of NiI$_2$ and CoI$_2$ are found: an E_u mode at about 155 cm$^{-1}$ with atomic displacements in the ab-plane, and an A_{2u} mode at about 180 cm$^{-1}$ with displacements parallel to the c-axis. The spectra are analyzed with an oscillator fit and a Kramers-Kronig analysis. The oscillator strength of the E_u mode is much larger than that of the A_{2u} mode. This anisotropy is caused by the presence of static and oscillating dipoles; the dipoles are due to the asymmetric coordination of the iodine ions. The data are analyzed in terms of the polarizable-ion model of Van der Valk, and the obtained parameters are compared with the values for the chlorides and bromides.

In Chapter V the optical transitions of d electrons of NiI$_2$, CdI$_2$:Ni$^{2+}$ and CoI$_2$ in the near-infrared wavelength region are discussed. The spectra are interpreted in terms of electron repulsion, the octahedral crystal field and spin-orbit coupling. The large covalency of the compounds makes it necessary to include the spin-orbit interaction of the 5p orbitals of the iodine ions. From the parameters of the spin-orbit coupling spin densities are deduced: $f_\sigma \approx 7\%$ and $f_\pi \approx 3\%$. These values are comparable with values calculated from Mössbauer data. A birefringence experiment on NiI$_2$ as a function of temperature confirms the presence of two phase transitions.

In Chapter VI a theoretical explanation of the vibronic coupling of the phonons of layered diiodides to isoconfigurational d-d transitions is given. In the spectra of such transitions in the solid solutions CdI$_2$:Ni$^{2+}$, PbI$_2$:Ni$^{2+}$ and CdI$_2$:Co$^{2+}$ a complicated vibronic fine structure is observed. This fine structure is discussed in terms of the coupling of a localized t$_{1u}$-type distortion, which modulates the metal-ligand distance, to the electronic transitions; the displacements of the t$_{1u}$-type distortions are decomposed into contributions of the phonons of the host lattices. The vibronic coupling in layer compounds is shown to be strongly anisotropic due to the presence of dipoles at the iodine ions.

The maxima of the vibronic fine structure in the spectra are assigned to vibrations belonging to special points in the Brillouin Zones of CdI$_2$ and PbI$_2$.

The dispersion of the vibrational branches of PbI$_2$ have been partly measured and calculated, so that a straightforward assignment is possible. The dispersion of the branches in the Brillouin Zone of CdI$_2$ is unknown. The experimental data for CdI$_2$ are used to deduce the dispersion of the phonon branches also for CdI$_2$.