Major role of the extracellular matrix in airway smooth muscle phenotype plasticity
Dekkers, Bart Gerrit Jan

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Full papers

SS Roscioni, **BGJ Dekkers**, AG Prins, H Meurs, M Schmidt, H Maarsingh. *cAMP inhibits airway smooth muscle phenotype modulation via Epac and PKA*. Submitted 2010

H Maarsingh, **BGJ Dekkers**, AB Zuidhof, IST Bos, J Zaagsma, H Meurs. *Increased arginase activity contributes to airway remodeling, inflammation and hyperresponsiveness in chronic allergic asthma*. Submitted 2010

Published abstracts

H Maarsingh, AB Zuidhof, IST Bos, BGJ Dekkers, J Zaagsma, H Meurs. Arginase inhibition protects against allergen-induced airway remodeling, hyperresponsiveness and inflammation in chronic asthma. Am J Respir Crit Care Med 2010, 181, A2307

H Maarsingh, BGJ Dekkers, AB Zuidhof, IST Bos, J Zaagsma, H Meurs. Increased arginase activity underlies allergen-induced airway remodeling, fibrosis, inflammation and hyperresponsiveness in chronic asthma. Naunyn-schmiedeberg Archives of Pharmacology 2010, 381, 251

BGJ Dekkers, IST Bos, AJ Halayko, J Zaagsma and H Meurs. The laminin β1-competing peptide YIGSR induces a hypercontractile, hypoproliferative airway smooth muscle phenotype in an animal model of chronic asthma. Am J Respir Crit Care Med 2009, A5056

BGJ Dekkers, IST Bos, R Gosens, AJ Halayko, J Zaagsma and H Meurs. Inhibition of airway smooth muscle remodeling in an animal model of chronic asthma by the integrin-blocking peptide RGDS. Am J Respir Crit Care Med 2009, A5600

BGJ Dekkers, D Schaafsma, T. Tran, J Zaagsma, H Meurs. Increased expression of laminin is required for the insulin-induced hypercontractile airway smooth muscle phenotype. Am J Respir Crit Care Med 2008, A327

