Functional capacity evaluation in subjects with early osteoarthritis of hip and/or knee; is two-day testing needed?

MW van Ittersum
HJ Bieleman
MF Reneman
FGJ Oosterveld
JW Groothoff
CP van der Schans

Reproduced by courtesy of Springer
Abstract

Introduction: The Work Well Functional Capacity Evaluation (WW FCE) is a two-day performance based test consisting of several work-related activities. Three lifting and carrying test items may be performed on both days. The objective of this study was to assess the need for repeated testing of these items in subjects with early osteoarthritis of the hip and/or the knee and to analyze sources of variation between the two days of measurement.

Methods: A standardized WW FCE protocol was applied, including repeated testing of lifting low, lifting overhead and carrying. Differences and associations between the two days were calculated using paired samples t-tests, Intraclass Correlation Coefficients (ICC) and limits of agreement (LoA). Possible sources of individual variation between the two days were identified by Wilcoxon signed rank’s tests. Pearson correlation coefficients were calculated for differences in performances between days and differences in possible sources of variation between days.

Results: 79 Subjects participated in this study, their mean (sd) age was 56.6 (4.8) years, Median (min-max) WOMAC scores for pain, stiffness and physical function were 5 (0-17), 3 (0-7) and 14 (0-49), respectively. Median (min-max) SF36 physical function was 75 (5-95), and SF36 pain score was 67 (12-76). Mean performance differences ranged from -0.2 to -0.8 kg (p > 0.05). ICC’s ranged from 0.75 (lifting overhead) to 0.88 (lifting low). LoA were: lifting low 8.0 kg; lifting overhead 6.5 kg; carrying 9.0 kg. Pearson’s correlations were low and non-significant.

Conclusions: All three tests show acceptable two-day consistency. WW FCE testing on two consecutive days is not necessary for groups of subjects with early osteoarthritis. Individual sources of variation could not be identified.

Key words: Functional Capacity Evaluation – osteoarthritis
Introduction

Osteoarthritis (OA) is the most common form of arthritis and a cause of long term disability among adults. It is a slowly progressive, chronic, non-inflammatory disease primarily of weight-bearing joints [1]. Risk factors for OA include age, occupations causing repetitive joint trauma, continuous overuse of joints, obesity, physical activities / participation in sports, gender and genetic factors [1,2]. The American College of Rheumatology has developed classification criteria for OA of the knee and hip, which include clinical and radiographic aspects [3]. Clients with OA usually present with pain, morning stiffness, joint stiffness after periods of rest or inactivity, and joint crepitating [1]. OA is associated with absence from work, inability to work and poor quality of life [4-6].

The ability to perform daily activities is considered one of the most important outcome measures for patients with OA of the hip or knee [7]. To have a complete overview of patients’ abilities is important for health related decisions, for example in referring to medical treatment and in return to work issues. Also for determining the outcome of clinical trials in OA a comprehensive measurement of (dis)abilities should be used.

Use of self-reported measures is generally preferred over performance based testing, because questionnaires are mostly well-validated, less expensive and less time consuming [7-9]. However, in several studies performance based tests have demonstrated to provide complementary information on degree of (dis)abilities. The authors of these studies recommend using both a performance based measure and a questionnaire to obtain a more comprehensive picture of the ability of the patient [10-12].

Performance based testing can be done by using Functional Capacity Evaluations (FCEs), which are performance based batteries of tests aimed at measuring functional abilities. One of the better known FCEs is the Work Well (WW) FCE. The WW FCE consists of 28 tests that measure activities such as lifting, carrying and bending [13,14]. Psychometric properties of this FCE have been investigated in patients with chronic low back pain (CLBP) and in healthy subjects. Support was found for aspects of validity [15-17]. In patients with CLBP and in healthy subjects acceptable reliability of the WW FCE was found.
The original FCE demands testing on two consecutive days, with a total testing time of 4 to 5 hours. Three items - lifting low, lifting overhead and carrying – may be tested twice, once on each consecutive day [14]. However, it is not clear whether this two day testing is necessary in patients with OA. The WW FCE will become much more efficient when testing time can be reduced and testing on one day would be sufficient. To our knowledge, the need for repeated measurements of these three items has not been studied in OA before. Therefore the objectives of this study were to investigate stability of three FCE test items (lifting low, lifting overhead, carrying) in subjects with OA on two consecutive days, to analyze consistency of individual test results, and to analyze whether pain, hip and / or knee complaints and disease severity are possible sources of individual variation between both days.
Methods

Subjects
Subjects participating in a large cohort study (Cohort Hip and Cohort Knee; CHECK [21]) were asked also to participate in this study. Inclusion criteria were: age between 45 and 65 years, pain and / or stiffness in hip and / or knee and never or not longer than 6 months ago visited the general practitioner for these symptoms for the first time. Subjects were excluded when they had any other pathological condition that could explain the existing complaints (e.g. other rheumatic disease, previous hip or knee joint replacement, congenital dysplasia, osteochondritis dissecans, intra-articular fractures, septic arthritis, Perthes’ Disease, ligament or meniscus damage, plicasyndrome, Bakers cyste) or co-morbidity that did not allow physical evaluation and/or follow-up of at least 10 years, malignancy in the last 5 years, and inability to understand the Dutch language. Participant selection methods are described extensively by Wesseling et al. (2008) [21]. Written informed consent was obtained from all participants. The local ethics committee approved the study.

Procedures
After an introduction of the FCE procedures, subjects were briefly instructed on how to perform each test. The evaluator first showed each test once. In this way, a total of 12 tests were performed on day 1 and 13 tests on day 2. The tests of the WW FCE protocol have been described elsewhere [19,20]. The first three tests of day 1 (lifting low, lifting overhead and carrying) were repeated on the second day. The first test consisted of lifting a weight from the floor to a table at waist height for 5 times with gradually (4-5 increments) increasing amounts of weight until maximum. With lifting overhead, the ability to lift a weight from waist height to crown height was assessed, in 5 times and with increasing the amount of weight in 4 to 5 steps. The carrying test consisted of two-handed carrying of boxed weights at waist height over 1.2 meters, 5 times with 4-5 weight increments. Each test was to be performed within 90 seconds (Table I).
The subjects were asked to perform to their maximum abilities. After each test subjects were asked to rate perceived exertion on a Borg CR10 scale [24]. Testing of lifting or carrying items could be terminated for three reasons (whichever came first):

1. Subjects were explained that they were allowed to stop the procedures at any point if they wished to do so, for example, because of insecurity or pain.
2. A heart rate monitor was worn by the subjects throughout the test procedures. A test was terminated when the subject’s heart rate met or exceeded 85% of his or her age-related maximum.
3. The evaluator terminated testing if it became unsafe. Unsafety was defined as a situation in which the subject was not in full control of him- or herself and / or of the load.

After each test the evaluator recorded the results. Evaluator, time and place of assessment were held constant for the two consecutive FCE sessions. Each session lasted 2 to 3 hours.

Before starting the FCE procedure subjects were asked to fill in three numerical rating scales (0-100 mm) on both days; one for pain in hip and / or knee at the moment, one for complaints of hip and / or knee at the moment, and one for disease activity at the moment.

Table I. Description of the WWS FCE Lifting low, Lifting overhead and Carrying test items performed on day 1 and day 2.

<table>
<thead>
<tr>
<th>FCE activity</th>
<th>Description</th>
<th>Scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifting low</td>
<td>5 lifts from table to floor v.v.; 4-5 weight increments; <90 sec.</td>
<td>Maximum amount of weight (kg)</td>
</tr>
<tr>
<td>Lifting overhead</td>
<td>5 lifts from table to crown height v.v.; 4-5 weight increments; <90 sec.</td>
<td>Maximum amount of weight (kg)</td>
</tr>
<tr>
<td>Carrying short two handed</td>
<td>5 carries 1.2 meters; waist height; 4-5 weight increments; <90 sec.</td>
<td>Maximum amount of weight (kg)</td>
</tr>
</tbody>
</table>
Analyses
Data were analyzed using SPSS 13.0. Of the FCE protocol, only the three material handling tests performed on both days were analyzed in this study. Differences between tests on the two days on weight lifted and carried were analyzed using paired samples t-tests. One-way random Intraclass Correlation Coefficients (ICC) were calculated to analyze association between day 1 and day 2. An ICC of 0.75 or more was considered as acceptable reliability [23,24]. Stability of test results between the two consecutive days on group level was defined as: small and non statistically significant differences between the test scores on the two days, and ICC’s of 0.75 or more. Bland and Altman analyses were performed to assess limits of agreement [25]. No criteria to interpret limits of agreement are available. Smaller limits of agreement indicate more stability because it indicates that the natural variation is small [25]. Individual performance differences between both days were expressed by calculating the % of subjects that scored better, worse or equal on day 2 compared to day 1. For the numerical rating scales Wilcoxon signed ranks tests were performed to analyze differences between the two days for these possible sources of variation in individual differences between the two days. Relationships between the day 1 – day 2 differences for self-reported pain, hip and / or knee complaints and disease severity and the differences in FCE test performances were expressed with Pearson’s correlation coefficients to identify if these three variables were possible sources of individual variability over both days. Variables with high and statistically significant correlation coefficients were considered indicators for sources of variation. A significance level of 0.05 was used.
Results

79 Subjects with early osteoarthritis of hip and/or knee were evaluated, of which 85% were female. Mean (sd) age of the patients was 56.6 (4.8) years, 13% of the subjects had complaints of hip, 22% complaints of knee and 65% of both hip and knee joints. At the start of the CHECK-study median (min-max) WOMAC scores for pain (range 0-20), stiffness (range 0-8) and physical function (range 0-68) were 5 (0-17), 3 (0-7) and 14 (0-49), respectively. Median (min-max) SF36 physical function was 75 (5-95), and SF36 pain score was 67 (12-76). These are comparable to the WOMAC and SF36 scores in the total CHECK cohort. In the CHECK cohort more than 65% of the participants scored Kellgren and Lawrence grade 0 for knee as well as for hip joint [21], indicating the early phase of disease in our population.

Table II. The amount of weight handled maximally on both days and differences between test and retest. Two-day reproducibility expressed in ICC (n = 79).

<table>
<thead>
<tr>
<th>FCE activity</th>
<th>Day 1 mean kg (sd)</th>
<th>Day 2 mean kg (sd)</th>
<th>Difference mean kg (sd)</th>
<th>p*</th>
<th>ICC</th>
<th>LoA</th>
<th>LoA % mean day 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifting low</td>
<td>20.2 (8.9)</td>
<td>19.4 (8.5)</td>
<td>-0.8 (4.1)</td>
<td>0.10</td>
<td>0.88</td>
<td>8.0</td>
<td>40%</td>
</tr>
<tr>
<td>Lifting overhead</td>
<td>9.9 (4.9)</td>
<td>9.2 (4.2)</td>
<td>-0.6 (3.3)</td>
<td>0.10</td>
<td>0.75</td>
<td>6.5</td>
<td>66%</td>
</tr>
<tr>
<td>Carrying</td>
<td>20.4 (8.9)</td>
<td>20.3 (8.6)</td>
<td>-0.2 (4.6)</td>
<td>0.78</td>
<td>0.87</td>
<td>9.0</td>
<td>44%</td>
</tr>
</tbody>
</table>

*Paired samples t-tests; ICC = Intraclass Correlation Coefficient; LoA = Limits of Agreement

Mean (sd) scores of the two days for lifting low, lifting overhead and carrying on day 1 and day 2, differences between both days, ICC’s and Limits of Agreement are presented in table II. Mean differences in test performance between the two days were statistically non-significant for all three activities (p > 0.05). ICC’s were ≥ 0.75 for all three tests. Most tests were terminated because the subject did not want to proceed, only 5% of the tests were terminated when the subject was not in full control of him- or herself and/or of the load. No safety problems occurred during testing.
Bland & Altman figures are presented to analyze stability of the test results (Figure 1). The 95% limits of agreement for lifting low are -8.8 and 7.2, for lifting overhead 95% limits are -7.1 and 5.9, and for carrying -9.2 and 8.8. There were no obvious relationships between the difference between both days and their mean test scores for all three tests.

Figure 1. Differences between the two days (day 1 – day 2) plotted against average ((day 1 + day 2) / 2) for lifting low (A), lifting overhead (B) and carrying (C) with 95% limits of agreement indicated.
Table III. shows the number of subjects that performed differently on the second day of testing, and reports the amount of the differences. Most individual subjects performed within a range of 20% less or more on day 2 compared to day 1, however a large proportion of subjects performed differently on day 2. Relatively large ranges in individual performance between both days were found.

Table III. Individual variation in FCE performance between both days

<table>
<thead>
<tr>
<th>FCE activity</th>
<th>Equal</th>
<th>Worse</th>
<th>Better</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n / %</td>
<td>Range (kg)</td>
<td>n / %</td>
</tr>
<tr>
<td>Lifting low</td>
<td>49 / 63%</td>
<td>0 – 5</td>
<td>16 / 21%</td>
</tr>
<tr>
<td>Lifting overhead</td>
<td>42 / 54%</td>
<td>0 – 3</td>
<td>21 / 27%</td>
</tr>
<tr>
<td>Carrying</td>
<td>46 / 59%</td>
<td>0 – 2</td>
<td>17 / 22%</td>
</tr>
</tbody>
</table>

1 Amount of weight lifted / carried on day 2 < 20% less or more than amount of weight lifted / carried on day 1
2 Amount of weight lifted / carried on day 2 ≥ 20% less than amount of weight lifted / carried on day 1
3 Amount of weight lifted / carried on day 2 ≥ 20% more than amount of weight lifted / carried on day 1

We hypothesized that the individual differences in FCE results between the two consecutive days could be influenced by pain, complaints and OA severity at the moment of the test. For this hypothesis to hold, we needed to find statistically significant differences on these variables between the two days, and high and statistically significant correlation coefficients between the two-day differences in these variables and the performance differences.

The self-reported pain, complaints of hip and / or knee and disease severity scores in our study population are presented in Table IV. Scores are not normally distributed, median scores on the second day are higher on all three measures, with large ranges. Differences between both days are statistically significant. On pain, 21% of subjects scored identical on both days, 14% reported less pain on the second day and 65% reported worse pain on the second day. For complaints of hip and / or knee and for self-reported disease severity similar percentages were found (21, 19, 60 and 16, 17 and 67% respectively).
Table IV. Results for self-reported pain, complaints of hip and/or knee and disease severity (0-100) just before FCE testing on both days

<table>
<thead>
<tr>
<th>Reported health problem</th>
<th>Day 1 (median (min-max))</th>
<th>Day 2 (median (min-max))</th>
<th>Difference day 1 – day 2^</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain</td>
<td>21 (0-67)</td>
<td>28 (0-86)</td>
<td>.000*</td>
</tr>
<tr>
<td>Complaints of hip and/or knee</td>
<td>24 (0-73)</td>
<td>27 (0-90)</td>
<td>.000*</td>
</tr>
<tr>
<td>Disease severity</td>
<td>22 (0-74)</td>
<td>29 (0-91)</td>
<td>.000*</td>
</tr>
</tbody>
</table>

^based upon Wilcoxon signed ranks tests, *statistically significant difference

Pearson’s correlation coefficients between differences in performances between days and the differences in reported health scores between both days are presented in Table V. They were all low (< 0.25) and non-significant.

Table V. Pearson’s correlation coefficients between differences in FCE performances and differences in self-reported pain, complaints and disease severity between both days

<table>
<thead>
<tr>
<th></th>
<th>Lifting low</th>
<th>Lifting overhead</th>
<th>Carrying</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain</td>
<td>-.051</td>
<td>.115</td>
<td>-.083</td>
</tr>
<tr>
<td>Complaints of hip and/or knee</td>
<td>-.101</td>
<td>.067</td>
<td>-.077</td>
</tr>
<tr>
<td>Disease severity</td>
<td>-.004</td>
<td>.079</td>
<td>-.123</td>
</tr>
</tbody>
</table>
Discussion

The results of this study show that two-day consistency of lifting low, lifting overhead and carrying is sufficient, because no relevant systematic differences between test performances on day 1 and day 2 were found and all ICC’s were ≥ 0.75. As indicated by LoA, the natural variation is interpreted as large. The results of this study are similar to results of FCE studies in healthy subjects and in patients with nonspecific low back pain [18-20].

The WW FCE is one of the few to conduct testing over two consecutive days. This two-day format is used to verify accuracy and to evaluate the effect of the first day assessment on the client [26]. Our results show that patients on average do not perform differently on lifting and carrying on the second day of testing. Repeated testing of these three items in patients with early OA therefore may not be necessary when testing groups of subjects. Based on our results the amount of time spent on group FCE testing can be reduced.

While this may be the case for groups of subjects, in daily practice FCEs are also performed to determine capacity of individual subjects. Based on the large limits of agreement and the individual differences in FCE scores between both days found in this study, some individuals may still need retesting. Testing on two days might be relevant when consistency of test results over two days is not expected. Results of this study indicate that differences in individual test performance between two consecutive days is unrelated to changes in self-reported pain, complaints and disease severity over both days. Sources of variation for the individual performance differences between both days could not be identified in this study. Probably other variables, for example motivation or fatigue, are of importance in individual FCE test stability in subjects with early osteoarthritis. More research is needed to identify which characteristics influence individual FCE test consistency in order to be able to modify the testing procedure or to select subjects that still need two-day testing when the FCE is used to assess physical function in individual subjects with early OA.
Former studies in FCE reliability were conducted in healthy subjects and in patients with chronic low back pain. Our sample consisted of subjects with only mild to moderate OA of hip and/or knee. Results from this study may not apply to subjects with more severe OA and to subjects with other health conditions.

Stability of test results over two days covers only one aspect of the psychometric properties of a measurement instrument. Test-retest reliability of the WWS FCE in subjects with OA should also be tested with a one to two week time interval between test sessions. The validity of the WW FCE in OA should also be addressed in future research. Safety of the FCE in subjects with OA is another important aspect that should be further analyzed; although while in our sample the majority of the subjects seemed to experience some pain and discomfort after testing, 2nd day performance was not significantly different from the first day, indicating that this pain increase was not related to injury or disability. During testing no safety problems occurred and no formal claims were made by the subjects.

FCE test selection is based upon the job factors of the Dictionary of Occupational Titles (DOT), a publication of the United States Department of Labor [27]. This dictionary describes the physical activities (job factors) that a job requires in a systematic way, by means of physical demands analysis. Whether the FCE is suitable for measuring one of the three, or all, main ICF health outcomes (impairment, activity limitation and participation restriction) remains unclear. The job factors described in the DOT and tested with the FCE may well be more physical demanding than activities as described in the ICF. Participation in work is an important aspect in OA because of the expected increase in prevalence of OA in working subjects and the substantial productivity related costs in OA [28,29]. Testing of job factors could prevent productivity loss by adjustment of working place and circumstances in subjects with OA.
In conclusion, this study indicated acceptable two-day consistency of three FCE test items in OA. The need for repeated testing of lifting low, lifting overhead and carrying on two consecutive days on group level could not be confirmed. Differences in individual test performance between both days were not related to changes in self-reported pain, complaints and disease severity over the two days.
References

