Leptin acts on the central nervous system to cause a reduction in food intake and body weight. The melanocortin system in the brain is also implicated in energy homeostasis, with agonists of the melanocortin-4 (MC4) receptor reducing food intake and targeted mutation of the MC4 receptor causing obesity. We now show that MC4 receptor signalling is an important mediator of leptin's effects on food intake and body weight, demonstrating a link between the two systems.

Leptin receptors are on proopiomelanocortin (POMC) neurons in the arcuate nucleus that synthesize melanocortins, therefore it seemed likely that leptin-induced reductions in food intake might be mediated by the melanocortin system. To test this hypothesis, we determined whether pharmacological blockade of MC4 receptors attenuates the ability of leptin to reduce food intake or body weight. Because leptin also activates the hypothalamic paraventricular nucleus (PVN), as measured by c-Fos expression, we wished to determine whether this response involves melanocortin receptors. We injected male Long–Evans rats with the non-selective MC4 receptor antagonist SHU9119 i3vt before an i3vt injection of 3.5 nmol of SHU9119 or vehicle (see ref. 1 for details). Consistent with previous findings, leptin alone significantly reduced food intake after 4 h (−54%) and after 24 h (−46%, P < 0.05; Fig. 1a), and reduced body weight after 24 h (−18.6 g, P < 0.05). However, when these same animals were pretreated with SHU9119, leptin did not affect food intake or body weight.

To assess the specificity of SHU9119 to reverse anorexia induced by leptin, we administered glucagon-like-peptide-1 (7–36) amide (GLP-1), a potent inducer of anorexia when given intracerebroventricularly. The dose of GLP-1 (10 µg i3vt) that we selected reduces short-term food intake to an extent comparable to 3.5 µg leptin (−63% after 4 h) and this effect was not altered by pretreatment with 0.5 nmol SHU9119 (Fig. 1b).

We assessed c-Fos-like-immunoreactivity in the PVN after leptin treatment with or without SHU9119 pretreatment (see ref. 10 for methods). Consistent with our previous findings, leptin increased c-Fos-like immunoreactivity in the PVN by 254%, and this was completely blocked by SHU9119 (Fig. 1c).

Our findings provide direct evidence that MC4 receptor signalling is important in mediating leptin's effect on food intake and body weight. We suggest that obesity stemming from disrupted MC4 receptor signalling (for example, MC4-R knockout and agouti mice) results from the loss of an important downstream target in the leptin signalling cascade. The possibility that the melanocortin system is one mediator of leptin's action in the central nervous system is particularly intriguing in light of the recent finding that human obesity and hyperleptinæmia are strongly linked to a region of chromosome 2 near the POMC gene locus. The hypothesis that polymorphisms of the POMC gene are associated with leptin resistance and obesity is consistent with our findings implicating melanocortins in the leptin signalling pathway, and may have important implications for the pathogenesis and treatment of human obesity.

Randy J. Seeley
Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio 45267-0559, USA
e-mail: seeley@psyche.uc.edu

Keith A. Yageloff, Stewart L. Fisher, Paul Burn
Department of Metabolic Diseases, Hoffman-La Roche Inc., Nutley, New Jersey 07110, USA

Todd E. Thiele, Gertjan van Dijk
Denis G. Baskin, Michael W. Schwartz
Departments of Psychology, Medicine and Biological Structure, and Puget Sound VA Health Care System, Harborview Medical Center, University of Washington, Seattle, Washington 98195, USA

Transcriptional squelching re-examined

The introduction of a potent transcriptional activator into eukaryotic cells can paradoxically suppress the transcription of a co-introduced target gene. This so-called ‘squelching’ is thought to result from titration of one or more general transcription factors (GTFs), indicating that GTFs might be in limited supply within the cell. We now find that in mammalian cells, squelching is limited to episomal target genes, whereas genes integrated into cellular chromosomes are immune.

During the process of designing more potent transcriptional activation domains for use in gene therapy, we constructed chimeric transcription factors composed of the yeast GAL4 DNA-binding domain and activation domains derived from the herpes simplex virus protein VP16 and the NF-kB p65 protein. We tested the proteins on a target gene composed of a silenced alkaline phosphatase (SEAP) reporter under the control of a minimal human interleukin-2 (IL-2) gene promoter flanked by five GAL4 binding sites.

When we transiently introduced the