The Unique Solution of the Inverse Diffraction Problem

Hoenders, B.J.

Published in:
Optics Communications

DOI:
10.1016/0030-4018(79)90362-6

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1979

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
THE UNIQUE SOLUTION OF THE INVERSE DIFFRACTION PROBLEM

B.J. HOENDERS

Department of Applied Physics, State University at Groningen,
Nijenborgh 18, 9747 AG Groningen, The Netherlands

Received 30 May 1979

The problem of the determination of the values of a field on a surface from its values on a surface to which it has propagated is shown to have a unique solution if the field satisfies any linear elliptic partial differential equation.

Suppose that a scalar field ψ is the solution of a linear second order elliptic partial differential equation

$$ L \psi = 0, $$

in a domain D bounded by two closed surfaces S_1 and S_2, (see fig. 1). The equation (1) can for instance be the Helmholtz equation $(\nabla^2 + k^2 n^2)\psi = 0$, valid in a medium with variable index of refraction, or the time independent Schrödinger equation in the presence of an electromagnetic field, characterized by the vector potential A and the scalar potential ϕ:

$$ e^{2\pi i m n} \psi \nabla^2 \psi + \frac{eh}{im} A \cdot \nabla \psi + \left(\frac{e^2}{2m} |A|^2 - e\phi \right) \psi = E \psi. $$

The field outside A is supposed to be uniquely determined by its values on S_1 and Sommerfeld’s radiation condition at infinity, i.e. It is assumed that the Dirichlet problem for the operator L in the domain D outside S_1 admits a unique solution. The inverse diffraction problem then requires to determine the values of ψ at S_1 from its values at S_2 (or perhaps on some part of S_2), to which the field has propagated. For a review see Hoenders [1].

For the solution of this problem we need the following corollary of a remarkable theorem derived by Beckert [2]:

Theorem Let P denote a continuously differentiable surface lying entirely within a n-dimensional domain E with boundary ∂E. The dimension s of P satisfies $1 \leq s \leq n - 1$, and P does not separate E. Let u be a solution of the elliptic partial differential equation

$$ - \frac{\hbar^2}{2m} \nabla^2 u + \frac{eh}{im} A \cdot \nabla u + \left(\frac{e^2}{2m} |A|^2 - e\phi \right) u = E u. $$

The functions a_{ik} are two times Hölder continuous differentiable, c and f are Hölder continuous, and b_i are one time Hölder continuous differentiable.

Suppose that the interior Dirichlet problem $L \psi = 0$, with $\psi = \mu(x)$ if $x \in \partial E$, and if $\mu(x)$ denotes an arbitrary L^2 function is solvable. Then the set of functions $$ \{ \psi_n(x) \}, x \in \Gamma, $$ generated by a suitable set of boundary values $\{ \mu_n(x) \}, x \in \partial E$ or $x \in$ any subset of ∂E, $n = 1,2, \ldots$ is together with its normal derivatives dense in the Hilbert space of all L^2 functions on Γ, i.e. Any L^2 functions $h(x)$ and $(\partial/\partial n)h(x), x \in \Gamma$ can be approximated simultaneously in the mean arbitrarily closely by a set of solutions $\{ \psi_n \}$ of $L \psi_n = 0$ generated by an appro-
appropriate set \(\{ \mu_n \} \) of surface distributions on \(\partial E \).

We will need Green's formula, which reads as

\[
\int_{\partial E} [\phi(L\psi) - \psi(M\phi)] \, d\tau = \int_{\sigma} \left[(\phi \partial \psi/\partial n - \psi \partial \phi/\partial n) + b \psi \phi \right] \, d\sigma,
\]

if \(M \) denote the adjoint operator to \(L \):

\[
M\phi = \sum_{i,k} \frac{\partial}{\partial x_k} \left(a_{ik}(x) \frac{\partial}{\partial x_i} \phi(x) \right) - \sum_i \frac{\partial}{\partial x_i} (b_i(x) \phi(x)) + c(x) \phi(x),
\]

\(\sigma \) denotes the boundary of the domain \(\tau \), and

\[
a = \sum_{i,k} a_{ik} n_i, \quad b = \sum_i e_i n_i,
\]

\[
e_i = b_i - \sum_{k=1}^n \frac{\partial a_{ik}}{\partial x_k},
\]

and \(n_i \) denote the cartesian components of the normal \(n \) or \(\sigma \).

Let \(S_1' \) and \(S_2' \) be the surfaces drawn in the figure. Suppose that \(DCE \) and that \(\phi \) is a solution of \(M(\phi) = 0 \) if \(x \in E \), with

\[
\phi(x) \simeq 0,
\]

\[
\frac{\partial}{\partial n} \phi(x) \simeq \delta_1(x - y), \quad \text{if} \; x \; \text{and} \; y \in S_1',
\]

and \(\delta_1(x - y) \) denotes a regularisation of the \(\delta \)-func-
tion. The existence of such a function is ascertained by the corollary to Beckert's theorem, stated above. Eqs. (1) and (4) lead to:

\[
\int_{S_1'} \left\{ a(\phi \partial \psi/\partial n - \psi \partial \phi/\partial n) + b \psi \phi \right\} \, d\sigma
\]

\[
= - \int_{S_2'} \left\{ a(\phi \partial \psi/\partial n - \psi \partial \phi/\partial n) + b \psi \phi \right\} \, d\tau,
\]

or, on using eqs. (7) and (8) we derive from (9):

\[
a(x) \psi(x)\bigg|_{x \in S_1'}
\]

\[
= - \int_{S_2'} \left\{ a(\phi \partial \psi/\partial n - \psi \partial \phi/\partial n) + b \psi \phi \right\} \, d\sigma.
\]

Hence, the values of the field on \(S_1' \) can be determined from the known values of the r.h.s. of eq. (10): \(\phi \) and \(\partial \phi/\partial n \) are known by construction, and \(\psi \) is assumed to be known on \(S_2' \). The knowledge of \(\psi \) on \(S_2' \) together with Sommerfeld's radiation condition enables us to determine \(\partial \psi/\partial n \), so that the r.h.s. of eq. (10) is a known quantity.

The proof of Beckert's theorem as well as the corollary used in this letter will be given in a forthcoming paper, which also contains some explicit examples.

The author is greatly indebted to dr. H.A. Ferwerda and dr. A.M.J. Huiser for many discussions and a critical reading of the manuscript.

References