
Ronald P. W. Kesselmans, Joannes B. P. A. Wijnb erg,* Adriaan J. Minnaard, Robert E. Walinga, and Aëde de Groot*

Laboratory of Organic Chemistry, Agricultural University, Dreyenplein 8, 6703 HB Wageningen, The Netherlands

Received May 29, 1991

The syntheses of (+)-selin-11-en-4α-ol (5), (+)-intermedeol (6), (+)-neointermedeol (7), (+)-amiteol (9), and the four remaining unnatural stereoisomers (±)-paradisiol (8), (+)-7-epi-amiteol (10), (+)-5-epi-neointermedeol (11), and (+)-5-epi-paradisiol (12) are described. In addition, the related (±)-evuncifer ether (25) has been prepared. The syntheses started from the octahydro-8-hydroxy-4α,8-dimethyl-2(1H)-naphthalenones 1-4. The reaction sequence employed for the synthesis of 5, 7, 9, and 12 involved Wittig reaction, oxidative hydroboration, oxidation, equilibration, and olefination. For the synthesis of 6, 8, 10, and 11 the interm equilibration step was omitted. The oxidative hydroboration was the key step in these syntheses.

In the preceding paper,1 we have described a method for the synthesis of the trans- and cis-fused hydroxy ketones 1-4 which might be used as key intermediates in the total synthesis of the stereoisomeric eudesmane alcohols 5-12. Some of these compounds, i.e., intermedeol (6),2 neointermedeol (7),3 and amiteol (9)4 have been found in the defensive secretion of termite soldiers. Selin-11-en-4α-ol (5)5 and also 6 and 7 occur in plants of different sources. Despite their frequent occurrence in nature, the characterization of these compounds is often problematical primarily for lack of clear spectroscopic data. In this paper, we describe the total synthesis of all stereoisomers 5-12 of eudesm-11-en-4-ol starting from the hydroxy ketones 1-4, with the object of establishing their relative configuration unambiguously. The compilation of the NMR spectroscopic data can be of particular value in the analysis and characterization of this type of eudesmane sesquiterpenes.

In the synthesis of the trans-fused decalins 5-8 we anticipated that the conversion of the carbonyl group of the hydroxy ketones 1 and 2 into the eudesmanes 6 and 8 with a less favorably oriented 1-methylethenyl substituent could lead to some difficulties. The conformational mobility of the cis-fused decalin structure makes the stereochemical outcome difficult to predict for the eudesmanes 9-12 (Figure 1).

For conformationally fixed trans-fused compounds an elegant solution to the problem of producing an axial 1-methylethenyl substituent could lead to some difficulties. The conformational mobility of the cis-fused decalin structure makes the stereochemical outcome difficult to predict for the eudesmanes 9-12 (Figure 1).

For conformationally fixed trans-fused compounds an elegant solution to the problem of producing an axial 1-methylethenyl group has been reported.6 This method could not be applied in our approach because the strongly acidic conditions in this reaction led to dehydration of the tertiary alcohol group. Therefore, the introduction of the axial alkenyl group via a stereoelectronic controlled 1,4-addition of a cuprate reagent to the α,β-unsaturated ketones 13 and 14 was investigated (Scheme I). These compounds were prepared from the corresponding hydroxy ketones via reported methods.7 Conjugate addition of Li2(i-C3H7)2Cu(JCN)11 to 13 gave 15 as a single stereoisomer. Two methods were employed for the conversion of 15 into 8. A Wolff–Kishner reduction gave 8 in low yield. The other method involved the reduction of the carbonyl group to an alcohol followed by a deoxygenation reaction.8 The disadvantage of this method is the nonselective reduction of the carbonyl group which gave almost equal amounts of the α- and β-alcohols. The α-alcohol could not be converted into the corresponding xanthate in the deoxygenation reaction, while the application of this reaction...
The synthesis of 5, 6 and 7, respectively. This result suggests that the hindrance of the angular methyl substituted at C(7) as the main product, probably as a result of the preferentially equatorial attack of the BH$_3$ reagent. This selectivity can be used in a straightforward route to the remaining eudesmane alcohols 6, 8, 10, and 11, as is demonstrated in this paper.

For the synthesis of 5 and 6 the trans-fused hydroxy ketone 1 was the starting material (Scheme II). Treatment of 1 with Ph$_3$P=CHCH$_3$ in DMSO yielded 17a as a 1:1 mixture of geometric isomers. Oxidative hydroboration (BH$_3$.THF, NaOH, H$_2$O$_2$) of 17a, directly followed by oxidation with PDC in CH$_2$Cl$_2$, gave a 1:2.3 mixture of 18a and 19a, respectively. Equilibration of this mixture with KOH in CH$_2$OH afforded 18a as the sole product. From these results it was concluded that BH$_3$ attacks 17a preferentially from the β side. Pure 5 was obtained upon treatment of 18a with Ph$_3$P=CH$_2$ in DMSO in an overall yield of 53% starting from 1. For the preparation of 6, the original 1:2.3 mixture of 18a and 19a was subjected to silyl-Wittig olefination reaction conditions (CH$_2$)$_2$SiCH$_2$Li, THF; KH, THF) to afford a 1:2.3 mixture of 19a and 22, respectively. It is obvious that during this reaction no epimerization occurs. Although the separation of 5 and 6 was not easy to perform, careful chromatography gave pure 6 in an overall yield of 39% from 1. Starting from the hydroxy ketone 2, the procedure outlined above, i.e., 2 \rightarrow 17b \rightarrow 18b + 19b (ratio 1:3.1), followed by equilibration and a Wittig reaction afforded 7 in an overall yield of 58%. Without the interim equilibration step an 1.3:1 mixture of 7 and 8, respectively, was obtained after the silyl-Wittig reaction. This mixture could be separated, and 8 was isolated in an overall yield of 33% from 2 (Scheme II).

In a similar reaction sequence as applied to the synthesis of 5-8, the cis-eudesmane alcohols 9-12 could be prepared from the hydroxy ketones 3 and 4. Treatment of 3 with Ph$_3$P=CHCH$_3$ in DMSO afforded 20 as a 1:1 mixture of geometric isomers. The oxidative hydroboration (BH$_3$.THF, NaOH, H$_2$O$_2$) of 21 yielded 22 as a 1:1 mixture of geometric isomers. Oxidative hydroboration (BH$_3$.THF, NaOH, H$_2$O$_2$) of 23, directly followed by oxidation with PDC in CH$_2$Cl$_2$, gave a 1:2.3 mixture of 24 and 25, respectively. It is obvious that during this reaction no epimerization occurs. Although the separation of 24 and 25 was not easy to perform, careful chromatography gave pure 25 in an overall yield of 39% from 1.

Scheme III

Figure 1

The conversion of 14 into 6 was even less satisfactory. With the unprotected tertiary alcohol group in 14, the cuprate addition proceeded only when forced reaction conditions were applied and the ketone 16, with an equatorial 1-methylethenyl substituent, was isolated as the reaction product. Protection of the tertiary alcohol group in 14 as its TMS ether successively followed by cuprate addition, reduction, deoxygenation, and deprotection finally did give 6, but again in a low yield.

On the other hand, a well-established procedure is available for the introduction of a thermodynamically more stable equatorial 1-methylethenyl substituent starting from the carbonyl group in trans- and cis-fused decalones. This synthetic sequence is exemplified in Scheme II and involves the conversion of a carbonyl group into an ethyldiene substituent, oxidative hydroboration, oxidation, and a base-catalyzed equilibration, resulting in an equatorially orientated acetyl substituent. A subsequent Wittig olefination then generates the desired 1-methylethenyl group. This reaction sequence was successfully employed in the synthesis of the eudesmane alcohols 5, 7, 9, and 12. During the synthesis of 5 we noticed that the oxidative hydroboration of the olefin 17a gave an adduct with an axial substituent at C(7) as the main product, probably as a result of the preferentially equatorial attack of the BH$_3$ reagent. This selectivity can be used in a straightforward route to the remaining eudesmane alcohols 6, 8, 10, and 11, as is demonstrated in this paper.

For the synthesis of 5 and 6 the trans-fused hydroxy ketone 1 was the starting material (Scheme II). Treatment of 1 with Ph$_3$P=CHCH$_3$ in DMSO yielded 17a as a 1:1 mixture of geometric isomers. Oxidative hydroboration (BH$_3$.THF, NaOH, H$_2$O$_2$) of 17a, directly followed by oxidation with PDC in CH$_2$Cl$_2$, gave a 1:2.3 mixture of 18a and 19a, respectively. Equilibration of this mixture with KOH in CH$_2$OH afforded 18a as the sole product. From these results it was concluded that BH$_3$ attacks 17a preferentially from the β side. Pure 5 was obtained upon treatment of 18a with Ph$_3$P=CH$_2$ in DMSO in an overall yield of 53% starting from 1. For the preparation of 6, the original 1:2.3 mixture of 18a and 19a was subjected to silyl-Wittig olefination reaction conditions (CH$_2$)$_2$SiCH$_2$Li, THF; KH, THF) to afford a 1:2.3 mixture of 5 and 6, respectively. It is obvious that during this reaction no epimerization occurs. Although the separation of 5 and 6 was not easy to perform, careful chromatography gave pure 6 in an overall yield of 39% from 1.

Starting from the hydroxy ketone 2, the procedure outlined above, i.e., 2 \rightarrow 17b \rightarrow 18b + 19b (ratio 1:3.1), followed by equilibration and a Wittig reaction afforded 7 in an overall yield of 58%. Without the interim equilibration step an 1.3:1 mixture of 7 and 8, respectively, was obtained after the silyl-Wittig reaction. This mixture could be separated, and 8 was isolated in an overall yield of 33% from 2 (Scheme II).

In a similar reaction sequence as applied to the synthesis of 5-8, the cis-eudesmane alcohols 9-12 could be prepared from the hydroxy ketones 3 and 4. Treatment of 3 with Ph$_3$P=CHCH$_3$ in DMSO afforded 20 as a 1:1 mixture of geometric isomers. The oxidative hydroboration (BH$_3$.THF, NaOH, H$_2$O$_2$) of 21 yielded 22 as a 1:1 mixture of geometric isomers. Oxidative hydroboration (BH$_3$.THF, NaOH, H$_2$O$_2$) of 23, directly followed by oxidation with PDC in CH$_2$Cl$_2$, gave a 1:2.3 mixture of 24 and 25, respectively. It is obvious that during this reaction no epimerization occurs. Although the separation of 24 and 25 was not easy to perform, careful chromatography gave pure 25 in an overall yield of 39% from 1.
THF; NaOH, H₂O₂) of the olefinic alcohol 20 provided a diastereomeric 1:1 mixture of only two diols to which structure 21 was assigned (Scheme III). Since we assume that 20 consists in the nonsteroid conformation, just as 3; one would expect the borane reagent to approach the double bond in 20 from the more open convex face of the molecule. This can explain the selective formation of 21. The structure of 21 was further confirmed after treatment with NDC and pyridine in CH₂Cl₂,²⁰ which gave the crystalline lactol 22 in 90% yield. Furthermore, the IR, ¹H NMR, and ¹³C NMR spectral data of 22 show the presence of the α-acetyl alcohol 23 in about 20%. Thus, in solution the lactol 22 exists in equilibrium with its open form 23. This observation led us to examine the base-catalyzed equilibration of the lactol 22 in order to prepare a suitable intermediate for the synthesis of 9. The best result was obtained when 22 was treated with 2 equiv of t-BuOK in DMSO at room temperature for a short period (1 min). In this way an easily separable mixture of the β-acetyl alcohol 24 (59%) and 22 (25%) was produced. Longer reaction times gave lower yields of 24, probably as a result of aldo condensation reactions.²¹ Treatment of 24 with zinc powder and CH₃I under the influence of titanium(IV) chloride in dry THF gave (±)-9 as the sole product in 74% yield (27% overall from 3).²² Reaction of 22 with 4 equiv of Ph₃P=CH₂ in DMSO also afforded (±)-9, but now together with its C(7) epimer 10 in isolated yields of 45 and 42%, respectively. Clearly, during this Wittig reaction partial epimerization at the C(7) position of 23 had occurred. On the other hand, after a silyl-Wittig olefination reaction of the lactol 22 no epimerization at all was observed and 10 was produced in an overall yield of 61% starting from 3.

The lactol 22 is also a highly suitable intermediate for the synthesis of the (±)-evuncifer ether (25), the main component of the defensive secretion of Armitermes. Recently, a method has been reported in which a direct reaction of β-lactols with modestly nucleophilic organometals in the presence of a Lewis acid provides substituted tetrahydropyrans.²⁰ The application of a modified version of this method to 22, using Li₃(C₅H₅)₂Cu(µ-CN) in place of dimethylzinc, afforded 25 in 64% yield (39% overall from 3).

The unnatural cis-fused eudesmane alcohols, 11 and 12, were prepared from the hydroxy ketone 4 in a similar fashion as described for the synthesis of 9 and 10 starting from 3 (Scheme III). When 4 was subjected to a Wittig reaction with Ph₃P=CHCH₃ in DMSO the olefinic alcohol 26 was produced as a 3:1 mixture of geometric isomers.

(23) When 24 was subjected to silyl-Wittig conditions no reaction at all was observed.
(26) The yield is lowered because of the volatility of 25.

The oxidative hydroboration of 26, which is thought to exist predominantly in the nonsteroid conformation, gave a mixture of at least three diols, which without further purification was oxidized with PDC to afford an inseparable mixture of the epimeric acetyl compounds 27 and 28 in a ratio of 1:2.3, respectively. It is obvious that the conformation of the cis-fused compounds 29 and 26 plays an important role in directing the incoming hydroborating reagent. The hydroboration of 20 (nonsteroid) proceeds stereospecifically from the β side. On the other hand, in the hydroboration of 26 (predominantly nonsteroid) the favored attack is from the α side (Figure 2).

The 1:2.3 mixture of 27 and 28 was equilibrated with KOH in CH₃OH to a 19:1 mixture. Treatment of this 19:1 mixture with Ph₃P=CH₂ in DMSO and recrystallization of the resulting product gave pure 12 in an overall yield of 52% from 4. The spectroscopic data of 12 were identical with those of a cis-fused eudesmane alcohol synthesized previously.²⁷ The structure of this latter product has been determined by X-ray crystallography thus supporting the stereochemical assignments of the epimeric acetyl alcohols 27 and 28 (vide supra).

For the preparation of 11, the original 1:2.3 mixture of 27 and 28 was subjected to silyl-Wittig olefination reaction conditions to afford a mixture of 11 and 12 in high yield. According to GC and 'H NMR analysis, this mixture consisted of 70% of 11 as the main product and 30% of 12. Unfortunately, 11 was separated only with difficulty from the minor product 12. After careful chromatography a sample of 93% pure (±)-11 could be obtained in a moderate yield of 55%. To prepare pure 11, we examined a more effective synthesis starting from the commercially available (−)-α-santonin. Via a slightly modified version of a known procedure²⁶ (−)-α-santonin was converted into the cis-fused olefinic ester 31, i.e., (−)-α-santonin → 29 →

Table I. Selected 13C NMR Data (50 MHz) for the Eudesmane Alcohols 5–12 in CDCl3

<table>
<thead>
<tr>
<th>Signal</th>
<th>trans-eudesmanes</th>
<th>cis-eudesmanes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>54.69</td>
<td>51.84</td>
</tr>
<tr>
<td>6</td>
<td>48.19</td>
<td>49.08</td>
</tr>
<tr>
<td>7</td>
<td>39.25</td>
<td>48.67</td>
</tr>
<tr>
<td>8</td>
<td>39.13</td>
<td>39.13</td>
</tr>
<tr>
<td></td>
<td>46.82</td>
<td>47.66</td>
</tr>
<tr>
<td>9</td>
<td>53.03</td>
<td>49.01</td>
</tr>
<tr>
<td>10</td>
<td>45.49</td>
<td>51.91</td>
</tr>
<tr>
<td>11</td>
<td>39.62</td>
<td>45.32</td>
</tr>
<tr>
<td>12</td>
<td>39.51</td>
<td>39.51</td>
</tr>
</tbody>
</table>

* Multiplicities are obtained from DEPT experiment. Assignments are made from COSY and "H-13C heteronuclear shift correlation experiments.

30 → 31 (Scheme IV). Epoxidation of 31 with in situ generated dimethyldioxirane and subsequent reduction with LiAlH₄ led to a mixture of diols which could be readily separated. The major diol 32, isolated in 70% yield, was converted into the corresponding ag iodide 34 via its monomethylether 33. The iodide 34 could be dehydrohalogenated with t-BuOK in refluxing t-BuOH to afford the desired optically active unnatural (+)-11 in an overall yield of 75% from diol 32. In an analogous fashion, i.e., 35 → 36 → 37 → 9, the minor diol 35 gave natural (+)-9 in an overall yield of 58%.

The compilation of the 13C shielding data of the eight stereoisomers 5–12 of eudes-11-en-4-ol can be helpful to the structural identification of similar compounds found in nature (Table I). The resonances attributed to C(15) in 5–12 are distinguishing in the determination of the stereochemistry at C(5). In the cis-fused compounds 9–12 the C(15) signals have shieldings in the range of 28.9–30.7 ppm, while the corresponding absorptions in the trans-fused compounds 5–8 are found at about 18.5 ppm. The shielding data of the C(14) signals in the trans-fused compounds correlate with the stereochemistry at C(4). When C(14) has the β orientation, as in 5 and 6, the signals appear at about 22.5 ppm. In contrast, the downfield shifts are distinguishing in the determination of the stereochemistry at C(14). The 'H NMR spectrum of 5-12 becomes obvious. The 'H NMR spectrum of 5-12 is made by comparison of the CH signals which appear at 2.26 ppm. The differences of the chemical shifts of the methyl groups at C(4) and C(10) are significant for the distinction between 10 and 12: 0.40 and 0.05 ppm for 10 and 12, respectively.

Experimental Section

Melting points were determined on an Olympus HSA melting point apparatus and are uncorrected. Infrared (IR) spectra were recorded on a Philips PU 9706 infrared spectrophotometer, and peak positions are expressed in cm⁻¹. NMR spectra were recorded on a Varian EM-390 at 90 MHz (1H) and a Bruker 200 E at 200 MHz (1H) and at 50 MHz (13C). Chemical shifts are reported in parts per million (δ) relative to tetramethylsilane (δ 0.0). NMR multiplicities are recorded by use of the following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad; J, coupling constant; Hz, hertz. Mass spectral data were determined on an AEI MS 902 spectrometer or a Hewlett-Packard 5970B series MSD coupled with a Hewlett-Packard 5890A gas chromatograph with a DB-17 fused silica capillary column, 30 m × 0.25 mm i.d., film thickness 0.25 μm. Elementary analyses were determined on a Carlo Erba elemental analyzer 1106. Gas-liquid chromatography (GC) analyses were carried out on a Varian Vista 6300 gas chromatograph with a flame ionization detector and a DB-17 fused silica capillary column, 30 m × 0.25 mm i.d., film thickness 0.25 μm. Peak areas were integrated electronically with a Spectra-Physics integrator SP 4290. Flash chromatography was performed using Merck silica gel 93 (230–400 mesh).

Solvents were dried and distilled fresh by common practice. For all dry reactions, flasks were dried at 150 °C and flushed with dry nitrogen just before use, and reactions were carried out under an atmosphere of dry nitrogen. Product solutions were dried over anhydrous MgSO₄, unless otherwise noted, prior to evaporation of the solvent under reduced pressure by using a rotary evaporator.

Starting Materials. The hydroxy ketones 1–4 were prepared as described in the preceding paper.1 (1α,4α,5β,8α)-(-)-Decahydro-7-ethylidene-1,4α-dimethyl-1-naphthalene (17a). To a stirred solution of 75 mL of 0.44 M (dimethylsulfoxidyl)iodine in dry DMSO at room temperature was added 12.5 g (33.0 mmol) of Ph₃PCH₂CH₃Br. After the solution was stirred at room temperature for 30 min, a solution of 2.06 g (10.5 mmol) of hydroxy ketone 1 in 25 mL of dry DMSO was added dropwise. The reaction mixture was stirred at room temperature for 15 h and then poured into 400 mL of water. The aqueous solution was extracted with eight 100-mL portions of EtOAc. The combined organic layers were washed with 200 mL of brine, dried, and evaporated. The remaining residue was flash chromatographed (10:1 petrol ether (bp 40–60 °C)/EtOAc) to give 1.98 g (91%) of 17a, which was a mixture of two geometric isomers in a ratio of 1:1, according to GCMS and 1H NMR analysis: 1H NMR (CDCl₃, 90 MHz) (major peaks) δ 0.96 (s, 3 H), 1.14 (s, 3 H), 1.59 (m, 1 H); mass spectrum (first isomer) m/e (relative intensity) 208 (M⁺, 23), 190 (39), 175 (32), 121 (38), 93 (28), 81 (30), 67 (30), 43 (100); mass spectrum (second isomer) m/e (relative intensity) 208 (M⁺, 20), 190 (37), 175 (30), 121 (37), 93 (28), 81 (29), 67 (30), 43 (100).

(2α,4α,8β,8α)-(-)-1-(Decahydro-8-hydroxy-4a,8-dimethyl-2-naphthalenyl)ethanone (18a) and (2α,4α,8β,8α)-(-)-1-(Decahydro-8-hydroxy-4a,8-dimethyl-2-naphthalenyl)ethanone (19a). To a stirred solution of 1.85 g (8.9 mmol) of olefin 17a in 75 mL of dry THF, cooled to 0 °C, was added dropwise 35 mL (35 mmol) of BH₄THF (1.0 M in THF). The reaction mixture was stirred at room temperature for 21 h and then heated at reflux for 1 h. The reaction mixture was cooled to 0 °C, after which a mixture of 35 mL of THF and 3.5 mL of water was added dropwise, immediately followed by addition of 21 mL of 3 N NaOH in water and 21 mL of 30% H₂O₂. The reaction mixture was stirred at room temperature for 15 h and then heated at reflux for 1 h. The reaction mixture was allowed to come to room temperature and poured into 200 mL of brine. The two-phase mixture was separated, and the aqueous layer was extracted with four 100-mL portions of CH₂Cl₂. The combined organic layers were dried and evaporated. The resulting oil was dissolved in 250 mL of CH₂Cl₂ and then 10.3 g (27.4 mmol) of PDC was added. The reaction mixture was allowed to stir at room temperature for 24 h and filtered through Celite, and the filtrate was washed with 100-mL portions of CH₂Cl₂. The solvent was evaporated under reduced pressure, and the resulting residue was flash chromatographed (6:1 petroleum ether (bp 40–60 °C)/EtOAc).
The reaction mixture was stirred at room temperature for 41 h and then poured into 200 mL of brine. After evaporation of CH3OH was added 2.0 g (36 mmol) of KOH. The reaction mixture was treated with Ph3P=CH2 as described for the synthesis of 18a. According to GCMS and 'H NMR analysis, the yield of 18a was 86%.

To a stirred solution of 0.76 g (3.4 mmol) of Ph3PCH3Br, and 0.59 g (2.6 mmol) of 18a in 25 mL of dry DMSO. When the addition was complete, the reaction mixture was allowed to stir for 30 min at 50 °C. After cooling to room temperature, the solution was extracted with five 100-mL portions of EtOAc. The combined organic layers were washed with brine, dried, and evaporated. The remaining residue was taken up in 100 mL of dry THF. The procedure described for the synthesis of 17a was employed in the synthesis of 17b. According to GCMS and 'H NMR analysis, the ratio of 18b and 19b was 7:3.

(±)-Intermedeol (6). A sample of the 1.3:1 mixture of alcohol 18b and 19b (2.00 g, 8.53 mmol) was equilibrated and treated with Ph3P=CH2 as described for the synthesis of 5 to give 1.49 g (75%) of 7: 'H NMR (CDCl3, 200 MHz) δ 0.95-2.00 (m, 15 H), 1.13 (s, 3 H), 1.71 (br s, 3 H), 4.66 (m, 1 H), 4.88 (m, 1 H); 'C NMR (CDCl3, 50 MHz) δ 18.03 (t), 18.66 (t), 20.69 (q), 25.76 (t), 26.81 (t), 30.23 (q), 33.66 (s), 41.24 (t), 41.56 (t), 43.85 (t), 46.67 (d), 51.84 (d), 71.92 (s), 108.31 (t), 150.75 (d); mass spectrum m/e (relative intensity) 222 (M+, 50), 207 (100), 184 (57), 171 (29), 147 (23), 133 (29), 122 (53), 105 (91), 91 (51), 71 (41), 43 (49); calcd for C11H18O (M+) 222.1984, found 222.1984. Anal. Calcd for C11H18O: C, 81.01; H, 11.82. Our synthetic (±)-8 exhibited spectra identical with those of (±)-neointermedeol.

(±)-Paradisol (8). A sample of the 1.3:1 mixture of 18b and 19b (0.72 g, 0.32 mmol) was treated with (CH3I)2SiCH2Li and KH as described for the synthesis of 8. Then, the crude mixture was chromatographed (201 petroleum ether (bp 40–60 °C)/EtOAc) gave in order of elution, 0.036 g (53%) of 7 and 0.030 g (42%) of 8.

6: 'H NMR (CDCl3, 200 MHz) δ 0.80-2.00 (m, 15 H), 1.06 (s, 3 H), 1.13 (s, 3 H), 1.71 (br s, 3 H), 4.78 (br s, 1 H), 4.88 (br s, 1 H); 'C NMR (CDCl3, 50 MHz) δ 17.81 (t), 18.31 (q), 22.38 (t), 22.59 (q), 23.18 (t), 25.78 (q), 34.14 (s), 39.13 (d), 39.38 (t), 40.11 (t); mass spectrum m/e (relative intensity) 222 (M+, 100), 204 (26), 189 (20), 161 (23), 156 (16), 121 (21), 109 (23), 81 (47), 43 (100); calcd for C11H18O (M+) 222.1984, found 222.1984. Our synthetic (±)-8 exhibited spectra identical with those of (±)-paradisol.

(1a,4a,6a,8a,11a)-Dehydro-7-ethylidene-1,4a-dimethyl-1-naphthalenol (20). The olefin 20 was prepared in 86% yield from the hydroxy ketone (6.00 g, 33 mmol) as described for the synthesis of 17a. According to GCMS and 'H NMR analysis, 21 was a mixture of two geometric isomers in a ratio of 1:1.
The remaining residue was flash chromatographed (20:1 petroleum ether (bp 40–60 °C)/EtOAc) to afford 0.061 g (37%) of 25. 1H NMR (CDCl$_3$, 500 MHz) δ 20.48 (s), 26.10 (s), 29.49 (s), 32.89 (s), 39.62 (d), 41.76 (t), 42.57 (t), 47.66 (d), 73.46 (s), 107.56 (t), 151.75 (s); mass spectrum m/e (relative intensity) 204 (M$^+$ – 18, 65), 179 (27), 175 (8), 161 (28), 147 (28), 133 (14), 121 (29), 109 (100), 97 (25); calculated for C$_{15}$H$_{26}$O (M$^+$) m/e 204.1876, found 204.1874. Our synthetic (\pm)-9 exhibited spectra identical with those of (\pm)-amitole.4

(\pm)-Evuncifer Ether (25). To a stirred solution of 8.3 mL (16.6 mmol) of CH$_3$I (1.6 M in ether), cooled to 0 °C, was added 0.630 g (7 mmol) of CuCN. The mixture was allowed to stir at 0 °C for 1 h, after which time it was cooled to –78 °C. To a solution of 0.152 g (0.68 mmol) of lactol 22 in 25 mL of dry DMSO was added 0.630 g (7 mmol) of CuCN. The mixture was allowed to stir at –78 °C for 2 min, and then added at once to the stirred cuprate mixture at –78 °C. The reaction mixture was allowed to stir for 3 min, and then quenched with saturated aqueous NH$_4$Cl. After addition of 50 mL of water, the two-phase mixture was separated, and the aqueous layer was extracted with two 25-mL portions of EtOAc. The combined organic layers were washed with brine, dried, and evaporated. The remaining residue was flash chromatographed (25:1 pentane/CH$_2$Cl$_2$) to give 0.061 g (37%) of 25. 1H NMR (CDCl$_3$, 500 MHz) δ 0.65–1.16 (m, 8 H), 1.03 (s, 3 H), 1.23–1.60 (m, 2 H), 1.23 (s, 3 H), 1.28 (s, 3 H), 1.33 (s, 3 H), 1.74–1.95 (m, 4 H); 13C NMR (CDCl$_3$, 500 MHz) δ 17.68 (t), 22.16 (t), 25.25 (t), 29.07 (t), 29.07 (q), 29.33 (t), 29.67 (q), 31.02 (q), 32.62 (d), 34.84 (d), 41.05 (t), 42.21 (t), 42.83 (d), 72.88 (s), 175.18 (s); mass spectrum m/e (relative intensity) 222 (M$^+$, 0.3), 207 (100), 189 (28), 164 (7), 149 (27), 133 (11), 123 (13), 109 (90), 93 (18), 81 (23), 48 (60); calculated for C$_{15}$H$_{26}$O (M$^+$) m/e 222.1984, found 222.1986. Our synthetic (\pm)-9 exhibited spectra identical with those of (\pm)-evuncifer ether.24

(1a,4aa,8aa)-(-)-Decahydr-7-ethylidene-1,4a-dimethyl-1-naphthalenol (26). The olefin 26 was prepared in 85% yield from the hydroxy ketone 4 (1.59 g, 8.1 mmol) as described for the synthesis of 17a. According to GCMS and 1H NMR analysis, 26 was a 3:1 mixture of two geometric isomers: 1H NMR (CDCl$_3$, 200 MHz) δ 0.65–1.16 (m, 8 H), 1.23–1.60 (m, 2 H), 1.23 (s, 3 H), 1.33 (s, 3 H), 1.74–1.95 (m, 4 H); 13C NMR (CDCl$_3$, 500 MHz) δ 17.68 (t), 22.16 (t), 25.25 (t), 29.07 (t), 29.07 (q), 29.33 (t), 29.67 (q), 31.02 (q), 32.62 (d), 34.84 (d), 41.05 (t), 42.21 (t), 42.83 (d), 72.88 (s), 175.18 (s); mass spectrum m/e (relative intensity) 222 (M$^+$, 60), 190 (61), 175 (61), 151 (13), 150 (8), 133 (11), 121 (42), 107 (14), 93 (29), 81 (31), 43 (100); mass spectrum (minor isomer) m/e (relative intensity) 208 (M$^+$ – 18, 65), 190 (61), 175 (19), 161 (65), 150 (33), 121 (28), 107 (19), 93 (25), 79 (21), 43 (100). 1H NMR (CDCl$_3$, 200 MHz) δ 0.65–1.16 (m, 8 H), 1.23–1.60 (m, 2 H), 1.23 (s, 3 H), 1.33 (s, 3 H), 1.74–1.95 (m, 4 H); 13C NMR (CDCl$_3$, 500 MHz) δ 17.68 (t), 22.16 (t), 25.25 (t), 29.07 (t), 29.07 (q), 29.33 (t), 29.67 (q), 31.02 (q), 32.62 (d), 34.84 (d), 41.05 (t), 42.21 (t), 42.83 (d), 72.88 (s), 175.18 (s); mass spectrum m/e (relative intensity) 222 (M$^+$, 60), 190 (61), 175 (19), 161 (65), 150 (33), 121 (28), 107 (19), 93 (25), 79 (21), 43 (100).
disopropyl ether, 0.89 g (68%) of 12: mp 83-84 °C (lit.27 mp 77 °C); 2 H NMR (CDCl3, 200 MHz) δ 0.91 (d, J = 6 Hz, 3 H), 1.00-2.20 (m, 17 H), 1.08 (s, 3 H), 1.20 (s, 3 H), 3.55 (m, 2 H); 13C NMR (CDCl3, 50 MHz) δ 14.50 (q), 19.12 (t), 23.24 (t), 25.86 (t), 29.24 (q), 30.41 (q), 35.76 (d), 34.29 (d), 41.51 (t), 47.54 (d), 69.59 (t), 73.29 (s); mass spectrum m/e (relative intensity) 222 (M* + 15), 35, 183 (25), 170 (20), 152 (24), 121 (24), 109 (22), 81 (11); calculated for C15H26O4S: C, 49.77; H, 8.31; S, 10.27; found: C, 49.79; H, 8.31; S, 10.26.

To a solution of this epoxide mixture was added 0.397 g (2.65 mmol) of NaI. The reaction mixture was stirred at 40 °C for 40 min and then concentrated under reduced pressure. The resulting residue was taken up in 50 mL of EtOAc and washed successively with 25 mL of 10% aqueous NaHCO3, 50 mL of brine. The organic layer was dried and evaporated. The crude product was flash chromatographed (31:21 petroleum ether (bp 40-60 °C)/EtOAc) to give 0.474 g (87%) of 8. 1H NMR (CDCl3, 200 MHz) δ 0.90-1.90 (m, 16 H), 0.98 (d, J = 6 Hz, 1 H), 1.17 (s, 3 H), 2.96 (s, 3 H), 4.06 (dd, J = 9.5, 6.2 Hz, 1 H), 4.17 (dd, J = 9.5, 4.2 Hz, 1 H); 13C NMR (CDCl3, 50 MHz) δ 18.46 (t), 18.56 (q), 19.14 (t), 23.25 (t), 25.86 (t), 29.24 (q), 30.41 (q), 35.76 (d), 34.29 (d), 41.51 (t), 47.54 (d), 69.59 (t), 73.29 (s); mass spectrum m/e (relative intensity) 222 (M* + 15), 35, 183 (25), 170 (20), 152 (24), 121 (24), 109 (22), 81 (11); calculated for C15H26O4S: C, 49.77; H, 8.31; S, 10.27; found: C, 49.79; H, 8.31; S, 10.26.

The workup and flash chromatography (21:1 petroleum ether (bp 40-60 °C)/EtOAc) gave, in order of elution, 0.139 g (20%) of 35 and 0.481 g (70%) of 36. To a solution of this mixture was added 0.432 g (88%) of 36: mp 83-84 °C (lit.27 mp 83-84 °C). 1H NMR (CDCl3, 200 MHz) δ 0.86 (d, J = 7 Hz, 3 H), 0.90 (s, 3 H), 1.21 (s, 3 H), 3.55 (m, 2 H); 13C NMR (CDCl3, 50 MHz) δ 12.83 (q), 17.20 (t), 22.91 (t), 26.07 (t), 29.26 (q), 29.4 (s), 30.95 (q), 32.18 (t), 32.78 (d), 40.94 (d), 41.51 (t), 42.10 (t), 47.54 (d), 69.59 (t), 73.29 (s); mass spectrum m/e (relative intensity) 222 (M* + 15), 35, 183 (25), 170 (20), 152 (24), 121 (24), 109 (22), 81 (11); calculated for C15H26O4S: C, 49.77; H, 8.31; S, 10.27; found: C, 49.79; H, 8.31; S, 10.26.
E/Z Isomerization, Solvolysis, Addition, and Cycloaddition Reactions of (E)-1,2-Bis(trifluoromethyl)ethylene-1,1-dicarbonitrile (BTF) as Enophile and confirmed earlier but to some extent also with

The cycloaddition chemistry of electron-rich olefins, particularly enol ethers, has been extensively investigated, mainly with the cyclophile tetracyanoethylene (TCNE) but to some extent also with 1,2-triazolines-3,5-diones (TAD). In a recent series of papers Huisgen and Brückner employed 2,2-bis(trifluoromethyl)ethylene-1,1-dicarbonitrile (BTF) as cyclophile and confirmed earlier studies with TCNE that the [2 + 2] cycloadducts are produced in a stepwise mechanism with a 1,4-dipole as a bona fide intermediate. Kinetics, solvent effect, and trapping experiments were used as mechanistic tools to establish rigorously the intervention of such dipolar species in these cycloaddition reactions.

Silyl ketene acetics, which, because of their high reactivity, serve as valuable building blocks in organic synthesis, have received comparatively little attention as cycloaddition partners with such reactive cyclophiles. For example, we showed that such ketene acetics afford with singlet oxygen α-silylperoxy esters. In this photo-oxygenation, at low temperature first the labile dioxetanes were isomerized into its Z isomer (Z/E ratio 90:10). For this novel E/Z isomerization a mechanism is proposed, in which addition and reelimination of the fluoro ketene, through a 1,4-dipolar intermediate operates. With the protic nucleophiles CH₂OH, CH₂CH₂OH, or PhOH, the ketene acetal E-1 afforded the ortho esters 2 as addition products, while CH₂CO₂H, CF₃CO₂H, or H₂O led to methyl pivalate as the solvolysis product. This chemistry is readily explained through protonation of the ketene acetal E-1 to generate the corresponding carbenium ion. At low temperature the reaction with TCNE gave the silylketene imine 3 as labile cycloadduct, which underwent on workup desilylation to give the TCNE-incorporated ester 6; the latter eliminated hydrogen cyanide at room temperature to give the ene 7. With MTAD the labile silyl ene product 4 was obtained initially, which underwent silyl migration to give N-silylated urazole 8; final desilylation led to the stable urazole 9. Also for the ene reactions of TCNE and MTAD with the silyl ketene acetal E-1, a 1,4-dipolar intermediate is proposed to intervene.

Introduction

The cycloaddition chemistry of electron-rich olefins, particularly enol ethers, has been extensively investigated, mainly with the cyclophile tetracyanoethylene (TCNE) but to some extent also with 1,2-triazolines-3,5-diones (TAD). In a recent series of papers Huisgen and Brückner employed 2,2-bis(trifluoromethyl)ethylene-1,1-dicarbonitrile (BTF) as cyclophile and confirmed earlier studies with TCNE that the [2 + 2] cycloadducts are produced in a stepwise mechanism with a 1,4-dipole as a bona fide intermediate. Kinetics, solvent effect, and trapping experiments were used as mechanistic tools to establish rigorously the intervention of such dipolar species in these cycloaddition reactions.

Silyl ketene acetics, which, because of their high reactivity, serve as valuable building blocks in organic synthesis, have received comparatively little attention as cycloaddition partners with such reactive cyclophiles. For example, we showed that such ketene acetics afford with singlet oxygen α-silylperoxy esters. In this photo-oxygenation, at low temperature first the labile dioxetanes were isomerized into its Z isomer (Z/E ratio 90:10). For this novel E/Z isomerization a mechanism is proposed, in which addition and reelimination of the fluoro ketene, through a 1,4-dipolar intermediate operates. With the protic nucleophiles CH₂OH, CH₂CH₂OH, or PhOH, the ketene acetal E-1 afforded the ortho esters 2 as addition products, while CH₂CO₂H, CF₃CO₂H, or H₂O led to methyl pivalate as the solvolysis product. This chemistry is readily explained through protonation of the ketene acetal E-1 to generate the corresponding carbenium ion. At low temperature the reaction with TCNE gave the silylketene imine 3 as labile cycloadduct, which underwent on workup desilylation to give the TCNE-incorporated ester 6; the latter eliminated hydrogen cyanide at room temperature to give the ene 7. With MTAD the labile silyl ene product 4 was obtained initially, which underwent silyl migration to give N-silylated urazole 8; final desilylation led to the stable urazole 9. Also for the ene reactions of TCNE and MTAD with the silyl ketene acetal E-1, a 1,4-dipolar intermediate is proposed to intervene.

Introduction

The cycloaddition chemistry of electron-rich olefins, particularly enol ethers, has been extensively investigated, mainly with the cyclophile tetracyanoethylene (TCNE) but to some extent also with 1,2-triazolines-3,5-diones (TAD). In a recent series of papers Huisgen and Brückner employed 2,2-bis(trifluoromethyl)ethylene-1,1-dicarbonitrile (BTF) as cyclophile and confirmed earlier studies with TCNE that the [2 + 2] cycloadducts are produced in a stepwise mechanism with a 1,4-dipole as a bona fide intermediate. Kinetics, solvent effect, and trapping experiments were used as mechanistic tools to establish rigorously the intervention of such dipolar species in these cycloaddition reactions.

Silyl ketene acetics, which, because of their high reactivity, serve as valuable building blocks in organic synthesis, have received comparatively little attention as cycloaddition partners with such reactive cyclophiles. For example, we showed that such ketene acetics afford with singlet oxygen α-silylperoxy esters. In this photo-oxygenation, at low temperature first the labile dioxetanes were isomerized into its Z isomer (Z/E ratio 90:10). For this novel E/Z isomerization a mechanism is proposed, in which addition and reelimination of the fluoro ketene, through a 1,4-dipolar intermediate operates. With the protic nucleophiles CH₂OH, CH₂CH₂OH, or PhOH, the ketene acetal E-1 afforded the ortho esters 2 as addition products, while CH₂CO₂H, CF₃CO₂H, or H₂O led to methyl pivalate as the solvolysis product. This chemistry is readily explained through protonation of the ketene acetal E-1 to generate the corresponding carbenium ion. At low temperature the reaction with TCNE gave the silylketene imine 3 as labile cycloadduct, which underwent on workup desilylation to give the TCNE-incorporated ester 6; the latter eliminated hydrogen cyanide at room temperature to give the ene 7. With MTAD the labile silyl ene product 4 was obtained initially, which underwent silyl migration to give N-silylated urazole 8; final desilylation led to the stable urazole 9. Also for the ene reactions of TCNE and MTAD with the silyl ketene acetal E-1, a 1,4-dipolar intermediate is proposed to intervene.

Introduction

The cycloaddition chemistry of electron-rich olefins, particularly enol ethers, has been extensively investigated, mainly with the cyclophile tetracyanoethylene (TCNE) but to some extent also with 1,2-triazolines-3,5-diones (TAD). In a recent series of papers Huisgen and Brückner employed 2,2-bis(trifluoromethyl)ethylene-1,1-dicarbonitrile (BTF) as cyclophile and confirmed earlier studies with TCNE that the [2 + 2] cycloadducts are produced in a stepwise mechanism with a 1,4-dipole as a bona fide intermediate. Kinetics, solvent effect, and trapping experiments were used as mechanistic tools to establish rigorously the intervention of such dipolar species in these cycloaddition reactions.

Silyl ketene acetics, which, because of their high reactivity, serve as valuable building blocks in organic synthesis, have received comparatively little attention as cycloaddition partners with such reactive cyclophiles. For example, we showed that such ketene acetics afford with singlet oxygen α-silylperoxy esters. In this photo-oxygenation, at low temperature first the labile dioxetanes were isomerized into its Z isomer (Z/E ratio 90:10). For this novel E/Z isomerization a mechanism is proposed, in which addition and reelimination of the fluoro ketene, through a 1,4-dipolar intermediate operates. With the protic nucleophiles CH₂OH, CH₂CH₂OH, or PhOH, the ketene acetal E-1 afforded the ortho esters 2 as addition products, while CH₂CO₂H, CF₃CO₂H, or H₂O led to methyl pivalate as the solvolysis product. This chemistry is readily explained through protonation of the ketene acetal E-1 to generate the corresponding carbenium ion. At low temperature the reaction with TCNE gave the silylketene imine 3 as labile cycloadduct, which underwent on workup desilylation to give the TCNE-incorporated ester 6; the latter eliminated hydrogen cyanide at room temperature to give the ene 7. With MTAD the labile silyl ene product 4 was obtained initially, which underwent silyl migration to give N-silylated urazole 8; final desilylation led to the stable urazole 9. Also for the ene reactions of TCNE and MTAD with the silyl ketene acetal E-1, a 1,4-dipolar intermediate is proposed to intervene.