Compositional analysis and control of dynamical systems
Kerber, Florian Josef

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2011

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 25-09-2019
Decentralized control

6.1. Introduction

In this chapter we want to use the compositional reasoning techniques developed in the previous chapters to derive decentralized control schemes. As a first step, we specialize compositional and assume-guarantee reasoning to a decentralized setting. Provided the local controllers used in this set-up are such that the locally controlled subsystems satisfy certain specifications themselves the network of locally controlled plants is then guaranteed to satisfy a given global specification. In the second step, we combine compositional analysis techniques with conditions under which one can find controllers that render the closed loop system satisfy a given specification. In particular, we focus on the so-called sandwich conditions which have been derived as necessary and sufficient conditions for achievable simulation. We present two bottom-up schemes starting from conditions on the locally controlled plants and one top-down scheme based on a global sandwich condition. An important consequence of the latter result is that whenever there exists a global controller satisfying a global specification it can be replaced by local ones due to completeness of circular assume-guarantee reasoning.

6.2. Problem setting

In our decentralized control setting we distinguish between the following types of linear continuous-time systems. Plant systems are of the form

\[
\Sigma_i : \begin{align*}
\dot{x}_i &= A_i x_i + B_i u_i + G_i e_i \\
y_i &= C_i x_i \\
z_i &= H_i x_i
\end{align*}
\]

(6.1)

where \(u_i, y_i\) are the pair of interconnection variables and \(e_i, z_i\) the pair of external specification variables. All variables are taken from vector spaces of appropriate dimensions, \(x_i \in \mathcal{X}_i, u_i \in \mathcal{U}_i, e_i \in \mathcal{E}_i, y_i \in \mathcal{Y}_i, z_i \in \mathcal{Z}_i\).

A controller system \(\Sigma_C\) is a linear system without external variables,

\[
\Sigma_C : \begin{align*}
\dot{x}_C &= A_C x_C + B_C u_C \\
y_C &= C_C x_C
\end{align*}
\]

(6.2)
6. Decentralized control

A specification Σ_Q defines the desired external behavior. Hence, Σ_Q does not have any interconnection variables and is given as

$$\Sigma_Q : \begin{align*}
\dot{x}_Q &= A_Q x_Q + G_Q e_Q \\
z_Q &= H_Q x_Q
\end{align*}$$

(6.3)

6.3. Interconnections in control networks

The control systems defined in Section 6.2 can be interconnected in different ways. First, we discuss plant-controller interconnections for which the interconnection variables u_i, y_i are related by means of a permutation matrix.

Definition 6.1. Consider a plant system Σ_P of the form (6.1) and a controller system Σ_C. Then $\Sigma_P \parallel_{u,y} \Sigma_C$ denotes the plant-controller interconnection with respect to the interconnection variables u, y and a permutation matrix Π,

$$\Pi = \begin{bmatrix}
\Pi_{11} & \Pi_{12} \\
\Pi_{21} & \Pi_{22}
\end{bmatrix}, \quad \begin{bmatrix}
u_P \\
y_P
\end{bmatrix} = \Pi \begin{bmatrix}
u_C \\
y_C
\end{bmatrix}$$

(6.4)

The dynamics of the interconnected system $\Sigma_P \parallel_{u,y} \Sigma_C$ are thus given by

$$\begin{bmatrix}
\dot{x}_P \\
\dot{x}_C
\end{bmatrix} = \begin{bmatrix}
A_P & B_P \Pi_{12} C_C \\
0 & A_C
\end{bmatrix} \begin{bmatrix}
x_P \\
x_C
\end{bmatrix} + \begin{bmatrix}
B_P \Pi_{11} \\
B_C
\end{bmatrix} u_c + \begin{bmatrix}
G_P \\
0
\end{bmatrix} e_p$$

$$z_P = \begin{bmatrix}
H_P \\
0
\end{bmatrix} \begin{bmatrix}
x_P \\
x_C
\end{bmatrix}$$

(6.5)

In particular, $\parallel_{u,y}$ denotes the special case where Π is the identity matrix.

Remark 6.2. Allowing for a permutation matrix Π in the definition of plant-controller interconnections gives more freedom for controller design. Standard feedback interconnection is included in this framework by taking $\Pi = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$. By contrast, the special case $\Pi = I$ entails algebraic constraints on the state variables. In this case (6.5) can be written as DAE system in pencil form,

$$\Sigma_P \parallel_{u,y} \Sigma_C : \begin{align*}
E_{PC} \dot{x}_{PC} &= A_{PC} x_{PC} , x_{PC} \in V^{*}_{PC}, w_{PC} \in W^{*}_{PC} \\
w_{PC} &= H_{PC} x_{PC}
\end{align*}$$

(6.6)
6.3. Interconnections in control networks

where \mathcal{V}_{PC}^* denotes the consistent subspace and \mathcal{W}_{PC}^* the admissible inputs as defined in Definition 3.33 and

$$
E_{PC} = \text{diag}\{G_P^\perp, G_P^\perp, 0\}, \quad x_{PC} = \begin{bmatrix} x_P \\ x_C \\ u_C \end{bmatrix}, \quad w_{PC} = \begin{bmatrix} z_P \\ u \end{bmatrix}
$$
(6.7)

$$
A_{PC} = \begin{bmatrix}
G_P^\perp A_P & G_P^\perp B_P \Pi_{12} C_C & B_P \Pi_{11} \\
0 & A_C & B_C \\
C_P & -\Pi_{22} C_C & -\Pi_{21}
\end{bmatrix}, \quad H_{PC} = \begin{bmatrix} H_P & 0 & 0 \\
0 & 0 & I
\end{bmatrix}
$$

In a decentralized control setting the overall plant is usually given as an interconnection of subsystems. The topology of the global system model is determined by the type of interconnection between the individual components. In the remainder of this chapter, we consider series of feedback interconnections with respect to the external variables e_i, z_i as the standard interconnection between plant systems and specifications.

Definition 6.3. Consider k systems $\Sigma_i, i = 1, \ldots, k$ of the form (6.1) with external variables e_i, z_i and interconnection variables u_i, y_i. Then define the series interconnection $\Sigma_1 \parallel \cdots \parallel \Sigma_k$ with respect to the external variables e, z using feedback interconnections as follows:

$$
z_i^- = e_{i-1}^+ \quad z_i^+ = e_{i+1}^-, \quad i = 2, \ldots, k - 1
$$
$$
e_1^- = e_1, \quad e_1^+ = z_2^-, \quad e_k^- = e_{k-1}^+, \quad e_k^+ = e_k
$$
(6.8)

The matrices G_i and H_i corresponding to the external inputs are partitioned accordingly into submatrices

$$
G_i = \begin{bmatrix} G_i^+ \\ G_i^-
\end{bmatrix}, \quad H_i = \begin{bmatrix} H_i^+ \\ H_i^-
\end{bmatrix}, i = 1, \ldots, k.
$$
(6.9)

Figure 6.1.: Series interconnection $(\Sigma_{P_1} \parallel \Pi_{u,y} \Sigma_{C_1} \parallel \cdots \parallel (\Sigma_{P_k} \parallel \Pi_{u,y} \Sigma_{C_1}) k$.
6. Decentralized control

Remark 6.4. Considering series of feedback interconnections allows us to specialize the results of Chapter 3 to the decentralized setting. However, these results are valid in more generality to treat networks with other topologies, see also Remark 3.23.

6.4. Compositional analysis in the decentralized setting

In this section we will lay the foundation to analyze decentralized control problems using compositional analysis techniques based on simulation relations.

6.4.1. Simulation theory in the decentralized setting

In the following the notation in the definition of (bi)simulation relations is adjusted to be applicable in a decentralized setting. To that end, we require in the definition of a (bi)simulation relation that the external variables \(e_i, z_i \) remain equal whereas the interconnection variables \(u_i, y_i \) – if existent – are treated like disturbances.

Definition 6.5. A linear subspace \(S \subset X_1 \times X_2 \) is a simulation relation of \(\Sigma_1 \) by \(\Sigma_2, \Sigma_i, i = 1, 2 \), of the form (6.1), if it satisfies the following properties: Take any \((x_{10}, x_{20}) \in S \) and any joint external input function \(e(\cdot) = e_1(\cdot) = e_2(\cdot) \). Then for any input function \(u_1(\cdot) \) there exists an input function \(u_2(\cdot) \) such that the resulting state trajectories \(x_1(\cdot) \) and \(x_2(\cdot) \), starting at \(x_i(0) = x_{i0} \), satisfy

\[
\begin{align*}
(i) :
(x_1(t), x_2(t)) &\in S \forall t \geq 0 \\
(ii) :
z_1(t) &= z_2(t) \forall t \geq 0
\end{align*}
\]

A simulation relation \(S \) is called full and denoted by \(\Sigma_1 \leq \Sigma_2 \) if the projection on the first state component covers the whole state space, \(\Pi_{X_1} S = X_1 \).

A bisimulation relation \(R \) between \(\Sigma_1 \) and \(\Sigma_2, \Sigma_i, i = 1, 2 \), of the form (6.1), is a linear subspace \(R \subset X_1 \times X_2 \) with the following property: \(R \) defines a simulation relation of \(\Sigma_1 \) by \(\Sigma_2 \) and \(R^{-1} := \{(x_2, x_1) \mid (x_1, x_2) \in R \} \) defines a simulation relation of \(\Sigma_2 \) by \(\Sigma_1 \). Moreover, \(R \) is full if \(\Pi_{X_i} R = X_i, i = 1, 2 \), which will be denoted by \(\Sigma_1 \approx \Sigma_2 \).

Algebraic characterizations and algorithms to compute (bi)simulation relations are immediately translated from the results in Chapter 2.

6.4.2. Decentralized control using compositional analysis techniques

We want to investigate control networks consisting of interconnections of arbitrarily (yet finitely) many systems. In our setting, the global plant sys-
6.4. Compositional analysis in the decentralized setting

tem Σ_P is considered to be a series interconnection of component systems $\Sigma_{P_i}, i = 1, \ldots, k,$ of the form (6.1),

$$\Sigma_P := \Sigma_{P_1} \parallel \ldots \parallel \Sigma_{P_k}. \tag{6.11}$$

The global specification, denoted by Σ_Q, is assumed to be decomposable into local subspecifications $\Sigma_{Q_i}, i = 1, \ldots, k,$ of the form (6.3) corresponding to the plant subsystems,

$$\Sigma_Q := \Sigma_{Q_1} \parallel \ldots \parallel \Sigma_{Q_k}. \tag{6.12}$$

Making available the results obtained in Section 3.2.4 for compositional analysis of k systems will allow us to formulate decentralized control schemes. Note that in contrast to Section 3.2.4 the variables e_i, z_i will be used for feedback interconnections of plant systems and/or specifications. The only other plant variables u_i, y_i are exclusively used for plant-controller interconnections and are therefore not available for compositions between plants and specifications. Under these circumstances the results of Section 3.2.4 can be specialized immediately to a decentralized setting. We first state as a corollary of Theorem 3.24 that series of plant-controller interconnections are compositional.

Corollary 6.6. Consider k plant-controller interconnections $\Sigma_{P_i} \parallel_{u,y} \Sigma_{C_i}, i = 1, \ldots, k,$ of the form (6.5) and k specifications Σ_{Q_i} of the form (3.1). Then compositional reasoning is sound for series interconnections of k control systems, i.e.

$$\forall i = 1, \ldots, k : \Sigma_{P_i} \parallel_{u,y} \Sigma_{C_i} \preceq \Sigma_{Q_i},$$

$$\implies$$

$$(\Sigma_{P_1} \parallel_{u,y} \Sigma_{C_1}) \parallel \ldots \parallel (\Sigma_{P_k} \parallel_{u,y} \Sigma_{C_k}) \preceq \Sigma_{Q_1} \parallel \ldots \parallel \Sigma_{Q_k}. \tag{6.13}$$

Corollary 6.6 represents our first decentralized control scheme: Given local controllers $\Sigma_{C_i}, i = 1, 2, \ldots,$ that satisfy the local specifications Σ_{Q_i}, the global control network consisting of series interconnections of locally controlled plants is guaranteed to fulfill the global specification given itself by a series interconnection of local specifications.

A similar scheme can be derived on the basis of circular assume-guarantee reasoning. We therefore specialize Theorem 3.26 to the decentralized setting.

Corollary 6.7. Consider $k \geq 2$ plant-controller interconnections $\Sigma_{P_i} \parallel_{u,y} \Sigma_{C_i}, i = 1, \ldots, k,$ of the form (6.5) and k corresponding specifications Σ_{Q_i} of the form (6.3).
6. Decentralized control

Let k circularly dependent conditions

\[S_I : \quad (\Sigma_{P_1} \parallel \Sigma_{C_1}) \parallel \Sigma_{Q_2} \parallel \ldots \parallel \Sigma_{Q_k} \preceq \Sigma_{Q_1} \parallel \Sigma_{Q_2} \parallel \ldots \parallel \Sigma_{Q_k} \]
\[S_{II} : \quad \Sigma_{Q_1} \parallel (\Sigma_{P_2} \parallel \Sigma_{C_2}) \parallel \ldots \parallel \Sigma_{Q_k} \preceq \Sigma_{Q_1} \parallel \Sigma_{Q_2} \parallel \ldots \parallel \Sigma_{Q_k} \]
\[\vdots \quad \vdots \quad \vdots \quad \vdots \]
\[S_k : \quad \Sigma_{Q_1} \parallel \Sigma_{Q_2} \parallel \ldots \parallel (\Sigma_{P_k} \parallel \Sigma_{C_k}) \preceq \Sigma_{Q_1} \parallel \Sigma_{Q_2} \parallel \ldots \parallel \Sigma_{Q_k} \] (6.14)

be satisfied. Then the global interconnected plant

\[\Sigma_P := (\Sigma_{P_1} \parallel \Sigma_{C_1}) \parallel \ldots \parallel (\Sigma_{P_k} \parallel \Sigma_{C_k}) \]

fulfills the global specification \(\Sigma_Q := \Sigma_{Q_1} \parallel \Sigma_{Q_2} \parallel \ldots \parallel \Sigma_{Q_k} \), that is

\[S : \quad \Sigma_P \preceq \Sigma_Q \] (6.15)

Moreover, if (6.14) holds with bisimilarity then (6.15) also holds with bisimilarity.

Figure 6.2.: Decentralized control scheme based on circular assume-guarantee reasoning.
6.4. Compositional analysis in the decentralized setting

Figure 6.4.2 depicts the decentralized control scheme based on Corollary 6.7. The conditions \(S_i, i = I, II, \ldots, k \), require that the global specification \(\Sigma_Q \) is satisfied in each case for a network including the locally controlled plant \(\Sigma_{P_i} ||_{u,y} \Sigma_{C_i} \) assuming that the other locally controlled plants satisfy their individual specifications \(\Sigma_{Q_j}, j = I, II, \ldots, k, j \neq i \). The \(k \) conditions \(S_i \) are therefore circularly dependent.

It is also possible to combine conditions of the form (6.13) and (6.14) in a triangular proof rule to obtain a decentralized control scheme based on non-circular assume-guarantee reasoning. Soundness is always ensured due to compositionality of series interconnections and transitivity of simulation. Not stating this formally, we provide a simple example instead to illustrate this point.

Example 6.8. Consider three plant systems \(\Sigma_{P_i}, i = 1, 2, 3 \), and three specifications \(\Sigma_{Q_i} \). Let local controllers \(\Sigma_{C_i}, i = 1, 2, 3 \), be given such that the following conditions hold:

\[
S_1 : \quad \Sigma_{P_1} ||_{u,y} \Sigma_{C_1} \not\leq \quad \Sigma_{Q_1} \\
S_{II} : \quad \Sigma_{Q_1} || \left(\Sigma_{P_2} ||_{u,y} \Sigma_{C_2} \right) \not\leq \quad \Sigma_{Q_1} || \Sigma_{Q_2} \\
S_{III} : \quad \Sigma_{Q_1} || \Sigma_{Q_2} || \left(\Sigma_{P_3} ||_{u,y} \Sigma_{C_3} \right) \not\leq \quad \Sigma_{Q_1} || \Sigma_{Q_2} || \Sigma_{Q_3} \quad (6.16)
\]

Combining \(S_1 \) and \(S_{II} \) by interconnecting the systems involved in \(S_1 \) with \(\Sigma_{S_2} \) yields

\[
S_{1,II} : \quad \left(\Sigma_{P_1} ||_{u,y} \Sigma_{C_1} \right) || \left(\Sigma_{P_2} ||_{u,y} \Sigma_{C_2} \right) \not\leq \quad \Sigma_{Q_1} || \Sigma_{Q_2} \quad (6.17)
\]

while by the same reasoning, \(S_{1,II} \) and \(S_{III} \) result in

\[
S : \quad \left(\Sigma_{P_1} ||_{u,y} \Sigma_{C_1} \right) || \left(\Sigma_{P_2} ||_{u,y} \Sigma_{C_2} \right) || \left(\Sigma_{P_3} ||_{u,y} \Sigma_{C_3} \right) \not\leq \quad \Sigma_{Q_1} || \Sigma_{Q_2} || \Sigma_{Q_3} \quad (6.18)
\]

Finally, as a special case of Theorem 3.31, circular assume-guarantee reasoning is also complete in the decentralized setting.

Corollary 6.9. Consider \(k \) linear systems \(\Sigma_{P_i}, i = 1, \ldots, k \), and \(k \) specifications \(\Sigma_{Q_i}, \) each of the form (6.1), (6.3), (6.5) or (6.7). Assume that

\[
\Sigma_{P_1} || \ldots || \Sigma_{P_k} \not\leq \quad \Sigma_{Q_1} || \ldots || \Sigma_{Q_k} \quad (6.19)
\]

Then there also exist full simulation relations \(S_i, i = 1, \ldots, k \), of

\[
\Sigma_{Q_1} || \ldots || \Sigma_{Q_{i-1}} || \Sigma_{P_i} || \Sigma_{Q_{i+1}} || \ldots || \Sigma_{Q_k}
\]

by

\[
\Sigma_Q = \Sigma_{Q_1} || \Sigma_{Q_2} || \ldots || \Sigma_{Q_k}
\]
6. Decentralized control

6.5. Achievable simulations

In this section, we will discuss achievable simulations, i.e., given a plant Σ_P and a specification Σ_Q, under which conditions does there exist a controller Σ_C and a permutation matrix Π such that the plant-controller interconnection $\Sigma_P \parallel_{u,y} \Sigma_C$ fulfills the desired specification Σ_Q. To obtain these conditions, we collect some basic facts about plant-interconnections of systems.

For every plant system Σ_i, define the associated system Σ_N by setting the interconnection variables to zero, $u_i = y_i \equiv 0$:

$$\Sigma_N_i : \begin{cases} \dot{x}_{N_i} &= A_i x_{N_i} + G_i e_{N_i} \\ z_{N_i} &= H_i x_{N_i} \\ C_i x_{N_i} &= 0 \end{cases}$$ (6.20)

This entails algebraic constraints on the state variables since $x_{N_i} \in \ker C_i$.

The null system Σ_0 has all variables set to zero,

$$\Sigma_0 : x_0 = 0, y_0 = u_0 = e_0 = z_0 = 0$$ (6.21)

Proposition 6.10. The system Σ_{N_P} associated with Σ_P is bisimilar to the plant-controller interconnection of Σ_P with the null system Σ_0.

$$\Sigma_{N_P} \approx \Sigma_P \parallel_{u,y} \Sigma_0$$ (6.22)

Proof. The interconnection $\Sigma_P \parallel_{u,y} \Sigma_0$ is given by

$$\begin{bmatrix} \dot{x}_P \\ \dot{x}_0 \end{bmatrix} = \begin{bmatrix} A_P & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_P \\ x_0 \end{bmatrix} + \begin{bmatrix} G_P \\ 0 \end{bmatrix} e_P$$ (6.23)

$$0 = \begin{bmatrix} C_P & 0 \end{bmatrix} \begin{bmatrix} x_P \\ x_0 \end{bmatrix}$$

$$z_P = \begin{bmatrix} H_P & 0 \end{bmatrix} \begin{bmatrix} x_P \\ x_0 \end{bmatrix}$$

which is an equivalent representation of Σ_{N_P} as in (6.20). Hence, the relation

$$S := \{(x_N, (x_P, x_0)) \mid x_N = x_P\}$$ (6.24)

defines a full bisimulation relation between Σ_{N_P} and $\Sigma_P \parallel_{u,y} \Sigma_0$. \qed

Proposition 6.11. The null system is simulated by any other system, i.e. for any Σ_P

$$\Sigma_0 \preceq \Sigma_P$$ (6.25)
6.5. Achievable simulations

Proof. The simulation relation S of Σ_0 by Σ_P is given by setting $x_Q = 0$,

$$S = \{(x_0, x_P) \mid x_P = 0\} \quad (6.26)$$

\square

Proposition 6.12. For any given linear system Σ_P of the form (6.1) and any controller system Σ_C it holds that

$$\Sigma_P \parallel_{u,y} \Sigma_C \preceq \Sigma_P \quad (6.27)$$

Proof. The plant-controller interconnection introduces a constraint on the state variables of Σ_P. Therefore,

$$S = \{(x_P, x_C), \bar{x}_P) \mid (x_P, x_C) \in \Sigma_P \parallel_{u,y} \Sigma_C, x_P = \bar{x}_P\} \quad (6.28)$$

defines a simulation relation of $\Sigma_P \parallel_{u,y} \Sigma_C$ by Σ_P. Indeed, setting $x_P = \bar{x}_P$ and taking $\bar{u} = \Pi_{12}C_C x_C + \Pi_{11}u$ yields

$$\dot{x}_P = A_P x_P + B_P (\Pi_{12}C_C x_C + \Pi_{11}u) + G_P e = \dot{\bar{x}}_P = A_P \bar{x}_P + B_P \bar{u} + G_P e$$
as well as $H_P x_P = H_P \bar{x}_P$. \square

As a corollary of Theorem 3.38, compositional reasoning also holds for plant-controller interconnections.

Corollary 6.13. Given two plants $\Sigma_{P_i}, i = 1, 2$, of the form (6.1) and two controllers Σ_{C_i} of the form (6.2), plant-controller interconnection is compositional,

$$\begin{align*}
\begin{array}{c}
\Sigma_{P_1} \preceq \Sigma_{C_1} \\
\Sigma_{P_2} \preceq \Sigma_{C_2}
\end{array}
\end{align*} \implies \Sigma_{P_1} \parallel_{u,y} \Sigma_{C_1} \preceq \Sigma_{P_2} \parallel_{u,y} \Sigma_{C_2} \quad (6.29)
$$

6.5.1. The canonical controller

The canonical controller Σ_{can} has been introduced by van der Schaft in a behavioral setting [73]. An analogous definition for input-state-output systems was given in [78] interconnecting the plant with its specification through the external variables e and z.

Definition 6.14. The canonical controller for a plant system Σ_P and a specification Σ_Q is defined as

$$\Sigma_{can} := \Sigma_P \mid_{e,z} \Sigma_Q, \quad (6.30)$$
i.e., by setting

$$e_P = e_Q, \quad z_P = z_Q \quad (6.31)$$
6. Decentralized control

![Diagram](Figure 6.3.: The canonical controller \(\Sigma_{\text{can}} = \Sigma_P \| \Sigma_Q \).)

6.5.2. Sandwich conditions for achievable simulations

The decentralized control scheme presented in the following relies on checkable conditions for the existence of a controller \(\Sigma_C \) for a given plant \(\Sigma_P \) and a specification \(\Sigma_Q \). The result presented here is formulated in terms of simulation relations and was first shown in [78].

Theorem 6.15. For a given plant system \(\Sigma_P \) and a specification \(\Sigma_Q \), the following statements hold

(i): \(\Sigma_Q \nleq \Sigma_P \implies \exists \Sigma_C, \Pi : \Sigma_Q \nleq \Sigma_P \|_{u,y} \Sigma_C \)

(ii): \(\Sigma_{N_P} \nleq \Sigma_Q \implies \exists \Sigma_C, \Pi : \Sigma_P \|_{u,y} \Sigma_C \nleq \Sigma_Q \)

(iii): \(\Sigma_{N_P} \nleq \Sigma_Q \nleq \Sigma_P \implies \exists \Sigma_C, \Pi : \Sigma_P \|_{u,y} \Sigma_C \approx \Sigma_Q \)

(iv): \(\forall \Sigma_C, \Pi : \Sigma_P \|_{u,y} \Sigma_C \approx \Sigma_Q \implies \Sigma_{N_P} \nleq \Sigma_Q \nleq \Sigma_P \)

Proof. The proof of (i) – (iii) follows the lines of [78].

(i): Consider the canonical controller \(\Sigma_C = \Sigma_{\text{can}} \). Since there exists a full simulation relation \(S_{QP} \) of \(\Sigma_Q \) by \(\Sigma_P \), we know that for every \((x_Q, x_P) \) there exists a joint input \(e = e_Q = e_P \) such that \(z_s = z_P \). This ensures also that the canonical controller has at least one state \((x_P, \bar{x}_P, x_s) \in \Sigma_P \|_{u,y} \Sigma_{\text{can}} \) as it contains as states all the pairs \((x_P, x_Q) \in S_{QP} \). Take now any state \(x_Q \in \Sigma_Q \). Due to \(S_{QP} \), there exists a \(x_P \) such that \((x_P, x_P, x_Q) \in \Sigma_P \|_{u,y} \Sigma_{\text{can}} = \Sigma_P \|_{u,y} (\Sigma_P \|_{e,z} \Sigma_P) \) such that for every joint \(e = e_P = e_{\Sigma_P \|_{u,y} \Sigma_{\text{can}}} \) the outputs are equal, that is \(z_Q = H_Q x_Q = H_P x_P = z_{\Sigma_P \|_{u,y} \Sigma_{\text{can}}} \).

(ii): We want to show that by using the canonical controller there indeed exists a full simulation relation of \(\Sigma_P \|_{u,y} \Sigma_{\text{can}} \) by \(\Sigma_Q \), i.e. for any \((x_P, \bar{x}_P, x_Q) \in \Sigma_P \|_{u,y} \Sigma_{\text{can}} \) there exists a state \(\bar{x}_Q \in \Sigma_Q \) such that \(z_{\Sigma_P \|_{u,y} \Sigma_{\text{can}}} = H_P x_P = H_x \bar{x}_Q = z_Q \). Observe first that for any state \((x_P, \bar{x}_P, x_Q) \in \Sigma_P \|_{u,y} \Sigma_{\text{can}} \) it holds that \(x_P - \bar{x}_P \in \Sigma_{N_P} \) since the plant-controller interconnection forces \(C_P x_P = C_P \bar{x}_P \). Since all simulation relations considered here are linear subspaces, we can rewrite

\[
(x_P, \bar{x}_P, x_s) = (\bar{x}_P + x_N, \bar{x}_P, x_Q) \in \Sigma_P \|_{u,y} \Sigma_{\text{can}}, \ x_N \in \Sigma_{N_P} \quad (6.32)
\]

Moreover, since there exists a full simulation relation \(S_{NS} \) of \(\Sigma_{N_P} \) by \(\Sigma_Q \), for every \(x_N \in \Sigma_{N_P} \) there exists a \(\bar{x}_Q \in \Sigma_Q \) such that \(H_{N_P} x_N = H_Q \bar{x}_Q \). Consider

96
now the state $x_Q + \bar{x}_Q \in \Sigma_Q$. Then the pair of states $(x_P, \bar{x}_P, x_s, x_Q + \bar{x}_Q)$ can be written as

$$(x_P, \bar{x}_P, x_s, x_Q + \bar{x}_Q) = (\bar{x}_P, \bar{x}_P, x_Q, x_Q) + (x_N, 0, 0, \bar{x}_Q) \quad (6.33)$$

where $(x_N, \bar{x}_Q) \in S_{NS}$ and $(\bar{x}_P, x_Q) \in \Sigma_{can}$. Thus, $H_{Np}x_N = H_Q\bar{x}_Q$ and $H_P\bar{x}_P = H_Qx_s$ and therefore

$$H_Px_P = H_Q(x_Q + \bar{x}_Q), \quad (6.34)$$

which proves the claim.

(iii): Combining the statements (i) and (ii) for the same Σ_C and Π yields $\Sigma_Q \ll \Sigma_P \parallel_{u,y} \Sigma_C \ll \Sigma_Q$ and thus $\Sigma_Q \approx \Sigma_P \parallel_{u,y} \Sigma_C$.

(iv): By Proposition 6.11, Σ_0 is simulated by any other system, so $\Sigma_0 \ll_{e,z} \Sigma_C$. Moreover, Proposition 6.10 states that $\Sigma_{NP} \ll_{e,z} \Sigma_P \parallel_{u,y} \Sigma_0$. Since simulation is reflexive and plant-controller interconnection is compositional, we therefore conclude

$$\Sigma_{NP} \ll \Sigma_P \parallel_{u,y} \Sigma_0 \ll \Sigma_P \parallel_{u,y} \Sigma_C \ll \Sigma_Q \quad (6.35)$$

and hence, $\Sigma_{NP} \ll \Sigma_Q$. Moreover, since $\Sigma_Q \approx \Sigma_P \parallel_{u,y} \Sigma_C$, Proposition 6.12 yields

$$\Sigma_Q \ll \Sigma_P \parallel_{u,y} \Sigma_C \ll \Sigma_P \quad (6.36)$$

\[\square \]

6.6. Decentralized control and achievable simulation

Theorem 6.15 gives conditions for the existence of a controller for a given plant and specification, and a constructive procedure to compute such a controller. Combining sandwich conditions with compositional analysis techniques from Section 6.4 yields decentralized control schemes that include existence conditions for controllers guaranteed to satisfy the specification requirements. Like in (6.11), the overall plant Σ_P is given as a series of feedback interconnections of k subsystems Σ_{P_i}. Accordingly, the global specification Σ_Q is assumed to be given as a series of feedback interconnections of k subspecifications as in (6.12). We present two approaches to solve the control problem defined as follows:

Find necessary and sufficient conditions under which there exists a control strategy such that the global closed loop system satisfies the global specification.
6. Decentralized control

6.6.1. Bottom-up schemes using local sandwich conditions

As depicted in Figure 6.4, a bottom-up scheme uses local conditions for achievable simulation. These conditions ensure the existence of local controllers Σ_C_i for each component Σ_P_i of the global plant such that the overall decentralized control network fulfills the global specification Σ_Q. The first bottom-up scheme we present here uses soundness of compositional reasoning for k systems as stated in Corollary 6.6.

Theorem 6.16. Consider a global plant system Σ_P of the form (6.11). Let $\Sigma_{NP_i}, i = 1, \ldots, k,$ be associated to the plant components Σ_P_i. Consider a corresponding specification Σ_Q be of the form (6.12).

1. If the local conditions

 $\Sigma_{NP_i} \preceq \Sigma_{Q_i} \forall i = 1, \ldots, k$ \hspace{1cm} (6.37)

 are fulfilled, there exist local controllers Σ_C_i and permutation matrices Π_i such that the series interconnections fulfills the global specification, i.e.

 $\exists \Sigma_C_i, \Pi_i, i = 1, \ldots, k:\hspace{0.5cm} (\Sigma_{P_1} \parallel_{u,y} \Sigma_{C_1}) \parallel \cdots \parallel (\Sigma_{P_k} \parallel_{u,y} \Sigma_{C_k}) \preceq \Sigma_Q$ \hspace{1cm} (6.38)

2. If

 $\Sigma_{NP_i} \preceq \Sigma_{Q_i} \preceq \Sigma_{P_i} \forall i = 1, \ldots, k$ \hspace{1cm} (6.39)

 then there exist local controllers Σ_C_i and permutation matrices Π_i such that

 $\exists \Sigma_C_i, \Pi_i, i = 1, \ldots, k:\hspace{0.5cm} (\Sigma_{P_1} \parallel_{u,y} \Sigma_{C_1}) \parallel \cdots \parallel (\Sigma_{P_k} \parallel_{u,y} \Sigma_{C_k}) \approx \Sigma_Q$ \hspace{1cm} (6.40)
6.6. Decentralized control and achievable simulation

\[\sum_{Q_1} \leq \sum_{Q_1} \quad \sum_{Q_2} \leq \sum_{Q_2} \quad \vdots \]

\[\sum_{Q_k} \leq \sum_{Q_k} \]

Figure 6.5.: Bottom-up decentralized control scheme combining local sandwich conditions and compositionality.

Proof. By Theorem 6.15 (i), the local conditions (6.37) guarantee the existence of local controllers such that

\[\Sigma_{P_i} \parallel \Pi_{u,y} \Sigma_{C_i} \preceq \Sigma_{Q_i} \quad \forall i = 1, \ldots, k \quad (6.41) \]

Compositionality for \(k \) plant-controller interconnections as stated in Corollary 6.6 then yields the desired result (6.38) for series interconnections.

If instead (6.39) holds, then by Theorem 6.15 (ii) the global controlled plant \((\Sigma_{P_1} \parallel \Pi_{u,y} \Sigma_{C_1}) \parallel \cdots \parallel (\Sigma_{P_k} \parallel \Pi_{u,y} \Sigma_{C_k})\) is bisimilar to the global specification \(\Sigma_Q \).

Next, we introduce a bottom-up scheme relying on soundness of circular assume guarantee reasoning, cf. Corollary 6.7. Figure 6.6.1 illustrates that the conditions for achievable simulation involve interconnections of plant sub-system \(\Sigma_{P_i}, i = 1, \ldots, k \) with subspecifications \(\Sigma_{Q_j}, j = 1, \ldots, k, j \neq i \), denoted by \(\Sigma_{P_i} \) and given as

\[\Sigma_{P_i} := \Sigma_{Q_1} \parallel \cdots \parallel \Sigma_{Q_{i-1}} \parallel \Sigma_{P_i} \parallel \Sigma_{Q_{i+1}} \cdots \parallel \Sigma_{C_k} \quad i = 1, \ldots, k \quad (6.42) \]

Associated with \(\Sigma_{P_i} \) are the systems

\[\Sigma_{N_{P_i}} := \Sigma_{Q_1} \parallel \cdots \parallel \Sigma_{Q_{i-1}} \parallel \Sigma_{N_{P_i}} \parallel \Sigma_{Q_{i+1}} \cdots \parallel \Sigma_{Q_k} \quad i = 1, \ldots, k \quad (6.43) \]

Theorem 6.17. Let the plant system \(\Sigma_{P_i} \) be of the form (6.11) and the corresponding specification \(\Sigma_{Q} \) be given as in (6.12). Consider \(k \) global systems \(\Sigma_{P_i}^i, i = 1, \ldots, k \), and their associated systems \(\Sigma_{N_{P_i}}^i \), as defined in (6.42) and (6.43), respectively. Then the following holds:
6. Decentralized control

1. If

\[\Sigma^i_{NP} \preceq \Sigma_{Q}, \quad i = 1, \ldots, k, \]

then there exist local controllers \(\Sigma_{C_i}, i = 1, \ldots, k \), and permutation matrices \(\Pi_i \) such that

\[(\Sigma_{P_1} \parallel_{u,y} \Sigma_{C_1}) \parallel \cdots \parallel (\Sigma_{P_k} \parallel_{u,y} \Sigma_{C_k}) \preceq \Sigma_{Q} \]

2. If

\[\Sigma^i_{NP} \preceq \Sigma_{Q} \preceq \Sigma^i_{P}, \quad i = 1, \ldots, k, \]

then there exist local controllers \(\Sigma_{C_i} \) and permutation matrices \(\Pi_i \) such that

\[(\Sigma_{P_1} \parallel_{u,y} \Sigma_{C_1}) \parallel \cdots \parallel (\Sigma_{P_k} \parallel_{u,y} \Sigma_{C_k}) \approx \Sigma_{Q} \]

Proof. By Theorem 6.15 (i), the local conditions (6.44) guarantee the existence of local controllers \(\Sigma_{C_i} \) and permutation matrices \(\Pi_i \) such that

\[\Sigma^i_{NP} \parallel_{u,y} \Sigma_{C_i} \preceq \Sigma_{Q}, \quad i = 1, \ldots, k. \]

Soundness of assume-guarantee reasoning for \(k \) control systems as stated in Corollary 6.7 then yields the desired result for feedback interconnections. If instead the sandwich condition holds, then by Theorem 6.15 (ii) the global controlled plant \((\Sigma_{P_1} \parallel_{u,y} \Sigma_{C_1}) \parallel \cdots \parallel (\Sigma_{P_k} \parallel_{u,y} \Sigma_{C_k}) \) is bisimilar to the global specification \(\Sigma_{Q} \). Indeed, it follows from (6.46) that there exists controllers \(\Sigma_{C_i} \) and permutation matrices \(\Pi_i \) such that

\[\Sigma^i_{NP} \parallel_{u,y} \Sigma_{C_i} \approx \Sigma_{Q}, \quad i = 1, \ldots, k. \]
6.6. Decentralized control and achievable simulation

We then have to use that circular assume-guarantee reasoning for \(k \) systems is also sound using bisimulation relations (compare with Corollary 6.7) to conclude from (6.48) that (6.47) holds.

So far we have shown that local conditions for achievable simulation are necessary and sufficient for the existence of local controller \(\Sigma_{C_i}, i = 1, \ldots, k \), such that the global specification is satisfied. This holds for both bottom-up schemes relying on compositional and circular assume-guarantee reasoning, respectively. Obviously, one can always construct a diagonally decoupled global controller \(\Sigma_C \) based on \(\Sigma_{C_i} \), i.e. \(\Sigma_C \) consists of \(k \) subsystems running in parallel without interference,

\[
\Sigma_C := (\Sigma_{C_1} \parallel \ldots \parallel \Sigma_{C_k})
\]

(6.49)

The construction (6.49) is also consistent with our definition of feedback interconnection \(\parallel \). According to Definition 6.3, the feedback interconnection \(\parallel \) involves the external specification variables \(e_i^\pm \) and \(z_i^\pm \) which are absent in controller systems. Hence, it trivially holds that

\[
\left(\Sigma_{P_1} \parallel_{u,y} \Sigma_{C_1} \right) \parallel \ldots \parallel \left(\Sigma_{P_N} \parallel_{u,y} \Sigma_{C_k} \right) \approx \left(\Sigma_{P_1} \parallel_{u,y} \Sigma_{C_1} \right) \parallel \ldots \parallel \left(\Sigma_{P_k} \parallel_{u,y} \Sigma_{C_k} \right)
\]

(6.50)

Thus, if (6.38) and (6.40) respectively (6.45) and (6.47) hold for the same permutation matrix \(\Pi \), e.g. for \(\Pi = I \), the decentralized control schemes of Theorems 6.16 and 6.17 can be interpreted as global feedback control strategies but based on local conditions for achievable simulation.

6.6.2. Top-down decentralized control scheme using global sandwich conditions

The top-down scheme for decentralized control starts from the perspective of the overall system, see Figure 6.4. Based on a global sandwich condition, we want to investigate whether the existence of a global controller \(\Sigma_C \) implies the existence of local controllers such that the overall controlled system satisfies the same specification. From the previous chapters it is known that compositional reasoning is not complete for closed interconnections. The result presented here therefore relies on completeness of circular assume-guarantee reasoning in the decentralized setting. Like before, we consider a global plant \(\Sigma_P \) composed of component systems \(\Sigma_{P_i}, i = 1, \ldots, k \), interconnected in series by feedback as in (6.11) and a global specification \(\Sigma_Q \) assembled as in (6.12). The system \(\Sigma_{N_P} \), associated with the global plant \(\Sigma_P \) is given by

\[
\Sigma_{N_P} = \Sigma_P \parallel_{u,y} (\Sigma_0 \parallel \ldots \parallel \Sigma_0) \approx (\Sigma_{P_1} \parallel_{u,y} \Sigma_0) \parallel \ldots \parallel (\Sigma_{P_k} \parallel_{u,y} \Sigma_0) = \Sigma_{N_{P_1}} \parallel \ldots \parallel \Sigma_{N_{P_k}}
\]

making use of Proposition 6.10.
6. Decentralized control

Theorem 6.18. Consider a global plant Σ_P as in (6.11) with an associated system Σ_{N_P} given by (6.51) and a global specification Σ_Q as in (6.12). Then the following two statements are equivalent:

1. There exists a global controller Σ_C and a permutation matrix Π_1 such that

$$\Sigma_P \|_{u,y} \Pi_1 \Sigma_C \approx \Sigma_Q$$ \hspace{1cm} (6.52)

2. There exist local controllers $\Sigma_{C_i}, i = 1, \ldots, k,$ and a permutation matrix Π_2 such that

$$\left(\Sigma_{P_1} \|_{u,y} \Sigma_{C_1} \right) \| \ldots \| \left(\Sigma_{P_k} \|_{u,y} \Sigma_{C_k} \right) \approx \Sigma_Q$$ \hspace{1cm} (6.53)

Proof. “2 \Rightarrow 1”: This is a consequence of (6.50), i.e. the global decoupled controller Σ_C is the series interconnection of the local controllers $\Sigma_{C_i}, i = 1, \ldots, k$ with $\Pi_1 = \Pi_2$.

“1 \Rightarrow 2”: Assume there exists a global controller Σ_C and a permutation matrix Π such that (6.52) holds. Then by Theorem 6.15, iv, the global sandwich condition

$$\Sigma_{N_P} \preceq \Sigma_Q \preceq \Sigma_P$$ \hspace{1cm} (6.54)

is fulfilled. Making use of (6.51), (6.54) can be rewritten as

$$\Sigma_{N_{P_1}} \| \ldots \| \Sigma_{N_{P_k}} \preceq \Sigma_{Q_1} \| \ldots \| \Sigma_{Q_k} \preceq \Sigma_{P_1} \| \ldots \| \Sigma_{P_k}$$ \hspace{1cm} (6.55)

We now split (6.55) into two statements and use the fact that circular assume-guarantee reasoning is complete in the decentralized setting (Corollary 6.7). Hence, we obtain from the first statement k full simulation relations $S^l_i, i = I, II, \ldots, k,$ of the form

$$S^l_i : \Sigma_{Q_1} \| \ldots \| \Sigma_{Q_{i-1}} \| \Sigma_{N_{P_i}} \| \Sigma_{P_{i+1}} \| \ldots \| \Sigma_{Q_k} \preceq \Sigma_{Q_i} \| \ldots \| \Sigma_{Q_k}$$

which by (6.43) can be simplified to

$$S^l_i : \Sigma_{N_P} \preceq \Sigma_Q.$$ \hspace{1cm} (6.56)

The second statement results in k full simulation relations $S^r_i, i = I, II, \ldots, k,$ of the form

$$S^r_i : \Sigma_{Q_1} \| \ldots \| \Sigma_{Q_k} \preceq \Sigma_{Q_1} \| \ldots \| \Sigma_{Q_{i-1}} \| \Sigma_{P_i} \| \Sigma_{P_{i+1}} \| \ldots \| \Sigma_{Q_k}$$

or, due to (6.42),

$$S^r_i : \Sigma_Q \preceq \Sigma_{P_i}.$$ \hspace{1cm} (6.57)
6.6. Decentralized control and achievable simulation

Note that (6.57) implies that Σ_Q refines Σ_P as mentioned in Remark 3.22. Hence, in order to apply circular assume-guarantee reasoning, we have to construct S^r_i as

$$S^r_i := \{(x_{Q_1}, \ldots, x_{Q_k}, x_{Q_1}, \ldots, x_{Q_{i-1}}, x_{P_1}, x_{Q_{i+1}}, \ldots, x_{Q_k}) \mid \exists x_{P_1}, \ldots, x_{P_{i-1}}, x_{P_{i+1}}, \ldots, x_{P_k} : (x_{Q_1}, \ldots, x_{Q_k}, x_{P_1}, \ldots, x_{P_k}) \in S^r\}$$

where S^r is a full simulation relation of Σ_Q by Σ_P. Transitivity of simulation allows to combine (6.56) and (6.57) to obtain sandwich conditions

$$S_i : \quad \Sigma^i_{NP} \preceq \Sigma_Q \preceq \Sigma^i_P, \quad i = 1, \ldots, k.$$ (6.58)

Theorem 6.17, 2, then ensures that there exist local controllers Σ_C_i and permutation matrices Π_i such that

$$(\Sigma_{P_1} \parallel^{\Pi_1}_{u,y} \Sigma_{C_1}) \parallel \ldots \parallel (\Sigma_{P_k} \parallel^{\Pi_k}_{u,y} \Sigma_{C_k}) \approx \Sigma_Q$$

holds. Using canonical controllers Σ^i_{can} we can choose $\Pi_1 = \ldots = \Pi_k = I$ and thus the claim is proved.

![Figure 6.7: Top-down decentralized control scheme.](image)

Figure 6.7 illustrates an intriguing consequence of Theorem 6.18: Although nothing is known about the structure of the global controller Σ_C, there always exist local controllers Σ_C_i in our decentralized control setting that satisfy the same global control target Σ_Q. Thus, provided the conditions of Theorem 6.18 hold – in particular that the specification Σ_Q is given as $\Sigma_Q = \Sigma_{Q_1} \parallel \ldots \parallel \Sigma_{Q_k}$ – decentralized control can achieve the same control performance as a more complex global feedback controller.