An electrical analogue of the human circulatory system

de Pater, Lambertus

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1966

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
SUMMARY

The human circulatory system is, by nature, not well suited for direct research. To get a better insight into its physical aspects and to study the effects of pathological conditions, we have simulated the circulation by an electrical analogue. The physical basis, the design and construction of the analogue, and measurements on it are treated in this thesis.

The circulation can be divided into a primarily passive part, the vascular system, and a primarily active part, the heart. A brief description of both is given in Chapter 1.

The relationship between pressure and flow in a blood vessel is derived in Chapter 2. This relationship can be described by two differential equations.

To derive these equations the motion of the blood in a vessel due to a harmonic pressure variation is investigated under the following conditions:
1. Blood is a Newtonian fluid,
2. The flow is laminar.
3. The blood vessel is rotational-symmetrical.
4. The propagation velocity of the pulse wave is much larger than the axial material velocity.
5. The axial velocity is much larger than the radial velocity, i.e. the wave lengths for the frequencies involved are much larger than the inner radius of the vessel.
6. The wall material is homogeneous, distensible, isotropic, and follows Hooke's law; the wall thickness is small compared with the radius of the vessel, radial extensions are small and longitudinal movement is impossible; the inertia of the wall is negligible due to the large modulus of elasticity of the wall material.

With the first two restrictions the motion of the blood can be described by
the general hydrodynamical equations of Navier-Stokes. These equations, which are non-linear, are reduced to two linear equations using restrictions 3, 4 and 5. It is sufficient to investigate harmonic solutions of these linear equations since any motion can be composed of harmonic components. The boundary conditions are derived from the motion of the wall and the condition that the velocity of the wall and the blood are equal at the wall due to the viscosity of blood.

The solution of the equations yields an expression for the axial velocity of the blood. Integration of this velocity over the cross-section of the tube yields a linear differential equation between pressure and flow. Another equation between pressure and flow results from the integration of the continuity equation. These two linear differential equations are the basis of the design of the electrical analogue of the vascular system.

The influence of the restrictions introduced in deriving the equations is checked by comparison with data from the literature. It appears that these assumptions are fully justified or introduce only very small errors.

The equations relating pressure and flow in a blood vessel are analogous to the equations relating voltage and current in a transmission line, Chapter 3.

The properties of the transmission line are derived by equating the coefficients of the pressure and flow equations to the coefficients of the voltage and current equations. This allows different analogies between haemodynamics and electricity to be formulated. For the analogy chosen a pressure is represented by a voltage, a flow by a current, a mechanical resistance by an electrical resistance, an invariance by an inductance and a compliance by a capacitance.

The transmission line thus calculated has distributed parameters which are frequency dependent due to the frequency dependence of the velocity profile in blood vessels.

Since such a transmission line cannot be realized in practice, it is approximated by a series connection of \(n \)-filters with constant components. Calculations show that a blood vessel segment can accurately be approximated by a \(n \)-filter, if its length is not larger than \(1/8 \) wave length for the highest frequency involved. This frequency is fixed at 10 c/s, i.e. the tenth harmonic of a normal heart frequency of 60 beats/min. The relative contribution of this harmonic to pressure and flow is very small. The length corresponding with \(1/8 \) wave length for 10 c/s amounts to about 6 cm.

Since several blood vessels are longer than 6 cm, the errors caused by representing long vessels with different radii by a series connection of \(n \)-filters have been calculated. From these calculations it can be concluded that the vascular system can accurately be approximated by the blood vessels, and the pulse wave is not altered during the time transformation introduced.

In constructing the analogue heart material has been introduced for the scarcity of data. Large artery and small peripheral vessels are represented by \(n \)-different circuit elements having different compliance in the vascular system can be simulated.

In designing the analogue heart simulation of the haemodynamic conditions have not been simulated but only the contraction of the heart chamber has been represented by a purely elastic wall.

In the electrical system a line in series with a voltage generator of four generators. To simulate the ventricles and the atria the or and four power amplifiers, the contraction of the heart, producing a pulse, resulting from the contraction of the heart, is modelled by a single generator. The measuring methods on the analogue are divided into three groups:

1. Measurements of the proper pressure
2. Records of analogue haemodynamics
3. Measurements and records of other conditions

A large number of experiments on the analogue heart have been performed. The result of a surgical example, the result of a surgical operation can be predicted. The relevance of the analogue heart system can be verified.
cular system can accurately be simulated by an electrical analogue.

The components of the \(\pi \)-filters can be calculated from the dimensions of the blood vessels, and the physical properties of blood and the blood vessels' wall material. To obtain workable values for the inductances and capacitances a time transformation is introduced. All phenomena in the analogue occur 1000 times faster than in the actual system.

In constructing the analogue vascular system, Chapter 4, several simplifications have been introduced because of the large number of blood vessels and the scarcity of data. Large and intermediate vessels have been represented separately and small peripheral vessels collectively. The data needed to calculate the components of the \(\pi \)-filters have been taken from the literature. The different circuit elements have been made adjustable, so that changes of the vascular system can be simulated.

In designing the analogue of the heart, Chapter 5, we have emphasized the simulation of the haemodynamical quantities. The properties of the heart muscle have not been simulated but only the effect of its contraction. For this purpose, a heart chamber has been represented by a functional model consisting of a cavity with a purely elastic wall, on which an external pressure is exerted resulting from the contraction of the heart muscle.

In the electrical system a heart cavity is then represented by a capacitance in series with a voltage generator. Thus, the analogue heart muscle consists of four generators. To simulate the coordination between the contractions of the ventricles and the atria the voltage generators consist of a fourfold generator and four power amplifiers. The fourfold pulse generator simulates the activation of the heart, producing pulses with the required time relation. The analogue heart has been constructed in such a way that the important parameters can be varied within the normal physiological range. Moreover, pathological conditions can be simulated so that their effects can be studied.

The measuring methods used and the results of characteristic measurements on the analogue are treated in Chapter 6. These measurements can be divided into three groups:

1. Measurements of the properties of the vascular system,
2. Records of analogue haemodynamical quantities, and
3. Measurements and records of pathological conditions.

A large number of experiments can be performed on the analogue. For example, the result of a surgical intervention on the heart of large vessels can be predicted. The relevance of these results, i.e., the accuracy of the simulation
of the actual system by the analogue, should appear from comparing the results of the analogue with their counterparts of measurements in vivo. Unfortunately, measurements in vivo are scarce, but the results published until now are in agreement with the results of the analogue. Therefore, we are of the opinion that the analogue described is a useful research tool giving a good simulation of the actual system, both under normal and pathological conditions.
SAMENVATTING

De bloedsomloop van de mens leent zich niet zonder meer voor een direct onderzoek. Om toch een beter inzicht te krijgen in de fysische aspecten ervan, met name ook in verband met de analyse van pathologische afwijkingen, hebben we de bloedsomloop gesimuleerd door een elektrisch analogon. De fysische basis, het ontwerp en de constructie van het analogon en aan het analogon verrichte metingen worden in dit proefschrift behandeld.

De bloedsomloop is te splitsen in twee delen, een voornamelijk passief deel, het vaatstelsel en een voornamelijk actief deel, het hart. Van beide delen wordt een kort overzicht gegeven in Hoofdstuk 1.

Om na te gaan welk elektrisch circuit analoog is met het vaatstelsel wordt in Hoofdstuk 2 het verband afgeleid tussen de druk en de volumestroom (flow) in een bloedvat. Dit verband blijkt weergegeven te kunnen worden door twee differentiaalvergelijkingen.

Voor de afleiding van deze vergelijkingen wordt de beweging van het bloed in een bloedvat onderzocht voor een harmonische drukvariatie, waarbij de volgende restricties in acht worden genomen:
1. Het bloed gedraagt zich als een vloeistof volgens Newton.
2. De stroming is laminair.
3. Het bloedvat is rotatie-symmetrisch.
4. De voortplantingssnelheid van de polsgolf is veel groter dan de axiale materiële snelheid.
5. De axiale snelheid is veel groter dan de radiale snelheid; d.w.z. de golf-lengten die corresponderen met de bij de bloedsomloop voorkomende frequenties zijn veel groter dan de inwendige straal van het bloedvat.
6. Het wandmateriaal is homogeen, elastisch, isotroop en voldoet aan de wet van Hooke; de wanddikte is klein ten opzichte van de straal van het bloedvat,
radiale uitwijkingen zijn klein en longitudinale bewegingen zijn niet moge-
lijk; ten gevolge van de grote elasticiteitsmodulus van het wandmateriaal is
de massa van de wand te verwaarlozen.

Door de invoering van de eerste twee restricties kan de beweging van het
bloed beschreven worden door de algemene hydrodynamische vergelijkingen
van Navier-Stokes. Deze vergelijkingen, die op zich zelf niet-lineair zijn, worden
met behulp van de restricties 3, 4 en 5 omgezet tot twee lineaire vergelij-
kingen. Het is voldoende om de harmonische oplossingen van deze vergelijkin-
gen te onderzoeken, daar iedere beweging uit harmonische componenten kan
worden samengesteld. De randvoorwaarden volgen uit de beweging van de wand
en de eis dat aan de wand de snelheid van de wand en het bloed gelijk zijn, ten-
gevolge van de viscositeit van het bloed.

De oplossing van de vergelijkingen levert een uitdrukking voor de axiale
snelheid van het bloed. Integratie van deze snelheid over de doorsnede van het
vat leidt tot een relatie tussen de drukgradient en de flow, in de vorm van een
differentaalvergelijking. Een tweede relatie tussen de drukgradient en de flow
volgt uit de integratie van de continuïteitsvergelijking. Deze twee lineaire dif-
ferentaalvergelijkingen vormen het uitgangspunt voor het ontwerp van het elec-
trisch analogon van het vaatstelsel.

De invloed van fouten, die ontstaan door de bij bovengenoemde afleiding
ingevoerde vereenvoudigende veronderstellingen, wordt onderzocht aan de hand
van gegevens uit de literatuur. Het blijkt dat de veronderstellingen volledig ge-
oorloofd zijn; zij veroorzaken slechts geringe afwijkingen.

De vergelijkingen die het verband tussen de druk en de flow in een bloed-
vat beschrijven zijn, blijkens de in Hoofdstuk 3 gegeven afleiding, analoog aan
de vergelijkingen die het verband tussen de spanning en de stroom in een elec-
trisch transmissielijn weergeven.

Uit de analogie van de vergelijkingen voor druk en flow en die voor span-
nings en stroom worden de voorwaarden afgeleid waaraan de transmissielijn
moet voldoen. Daarbij blijken dan nog verschillende analogieën mogelijk te zijn.
Bij de gekozen analogie wordt een druk geregeneertr door een spanning, een
flow door een stroom, een mechanische weerstand door een elektrische weer-
stand, een trage massa door een zelfinductie en een rekbaarheid door een ca-
paciteit.

De aldus berekende transmissielijn heeft continu verdeelde parameters,
die frequentie-afhankelijk zijn ten gevolge van het frequentie-afhankelijke snel-
heidsprofiel in het bloedvat.

Daar een dergelijke trans-

De elementen van de n-fi-

Bij de simulatie van het

In het elektrische systeem van
capaciteit in serie met een spa-
staat derhalve uit vier spannings
radiale uitwijkingen zijn klein en longitudinale bewegingen zijn niet mogelijk; ten gevolge van de grote elasticiteitsmodulus van het wandmateriaal is de massa van de wand te verwaarlozen.

Door de invoering van de eerste twee restricties kan de beweging van het bloed beschreven worden door de algemene hydrodynamische vergelijkingen van Navier-Stokes. Deze vergelijkingen, die op zich zelf niet-lineair zijn, worden met behulp van de restricties 3, 4 en 5 omgewerkt tot twee lineaire vergelijkingen. Het is voldoende om de harmonische oplossingen van deze vergelijkingen te onderzoeken, waar iedere beweging uit harmonische componenten kan worden samengesteld. De randvoorwaarden volgen uit de beweging van de wand en de die dat aan de wand de snelheid van de wand en het bloed gelijk zijn, ten gevolge van de viscositeit van het bloed.

De oplossing van de vergelijkingen lever een uitdrukking voor de axiale snelheid van het bloed. Integratie van deze snelheid over de doorsnede van het vat leidt tot een relatie tussen de drukgradient en de flow, in de vorm van een differentiaalvergelijking. Een tweede relatie tussen de drukgradient en de flow volgt uit de integratie van de continuïteitsvergelijking. Deze twee lineaire differentiaalvergelijkingen vormen het uitgangspunt voor het ontwerp van het elektrisch analogon van het vaatstelsel.

De oplossing van de vergelijkingen lever een uitdrukking voor de axiale snelheid van het bloed. Integratie van deze snelheid over de doorsnede van het vat leidt tot een relatie tussen de drukgradient en de flow, in de vorm van een differentiaalvergelijking. Een tweede relatie tussen de drukgradient en de flow volgt uit de integratie van de continuïteitsvergelijking. Deze twee lineaire differentiaalvergelijkingen vormen het uitgangspunt voor het ontwerp van het elektrisch analogon van het vaatstelsel.

De invloed van fouten, die ontstaan door de bij bovengenoemde afleiding ingevoerde vereenvoudigende veronderstellingen, wordt onderzocht aan de hand van gegevens uit de literatuur. Het blijkt dat de veronderstellingen volledig geoorlooid zijn; zij veroorzaken slechts geringe afwijkingen.

De vergelijkingen die het verband tussen de druk en de flow in een bloedvat beschrijven zijn, blijkens de in Hoofdstuk 3 gegeven afleiding, analoog aan de vergelijkingen die het verband tussen de spanning en de stroom in een elektrische transmissielijn weergeven.

Uit de analogie van de vergelijkingen voor druk en flow die voor spanning en stroom worden de voorwaarden afgeleid waaraan de transmissielijn moet voldoen. Daarbij blijken dan nog verschillende analogiën mogelijk te zijn. Bij de gekozen analogie wordt een druk gerealiseerd door een spanning, een flow door een stroom, een mechanische weerstand door een elektrische weerstand, een trage massa door een zelfinductie en een rekbaarheid door een capacitie.

Bij de simulatie van het haemodynamische systeem zijn niet nagebootst, maar wordt een ruimte vervangen door een zuiver elastisch omgeven door een zuiver elastisch uitgeoefend die het gevolg is van de

In het elektrische systeem is capaciteit in serie met een spanningsverhouding
Daar een dergelijke transmissielijn niet praktisch te realiseren is, wordt deze benaderd door een serieschakeling van π-filters met constante elementen. Uit berekeningen blijkt, dat een stukje bloedvat bij goede benadering vervangen kan worden door een π-filter als de lengte van het stukje niet groter is dan 1/8 golflengte voor de hoogste frequentie die nog van belang is. Deze frequentie is voor de bloedsomloop op 10 Hz gesteld, d.w.z. de tiende harmonische van een normale hartfrequentie van 60 slagen/min. De bijdrage van deze harmonische tot de druk en de flow is relatief klein. De lengte die overeenkomt met 1/8 golflengte voor 10 Hz bedraagt ongeveer 6 cm.

Daar verschillende bloedvaten langer zijn dan 6 cm worden de fouten berekend die te verwachten zijn wanneer lange bloedvaten met verschillende stralen worden weergegeven door een aantal π-filters in serie. Uit deze berekeningen kan geconcludeerd worden dat het vaatstelsel goed te simuleren is door een electrisch analogon.

De elementen van de π-filters kunnen berekend worden uit de geometrie van de bloedvaten, en de fysische eigenschappen van het bloed en het wandmateriaal. Om praktische waarden te krijgen voor de zelfinducties en capacititeiten wordt een tijdstransformatie toegepast. Alle verschijnselen ontstaan in het analogon duizendmaal sneller dan in werkelijkheid.

Vanwege het grote aantal bloedvaten en de schaarste van gegevens zijn bij de constructie van het analogon van het vaatstelsel, Hoofdstuk 4, vereenvoudigingen toegepast. Van het vaatstelsel van de grote circulatie zijn de grote en middelgrote vaten afzonderlijk geregistreerd, terwijl de kleine perifere vaten in groepen samengenomen zijn. Het vaatstelsel van de longcirculatie is op soortgelijke wijze geregistreerd. De gegevens voor de berekening van de elementen der π-filters zijn ontleend aan de literatuur. Bij de constructie zijn de verschillende onderdelen variabel uitgevoerd, zodat verschillende veranderingen in het vaatstelsel kunnen worden gesimuleerd.

Bij de simulatie van het hart, Hoofdstuk 5, is de nadruk gelegd op de simulatie van de haemodynamische verschijnselen. De eigenschappen van de hartspier zijn niet nagebootst, maar wel het effect van de contractie ervan. Hiertoe is een hartruimte vervangen door een functioneel model, bestaande uit een holte omgeven door een zuiver elastische wand, waarop een uitwendige druk wordt uitgeoefend die het gevolg is van de contractie van de wandmusculatuur.

In het electrische systeem wordt een hartruimte dan weergegeven door een capaciteit in serie met een spanningsgenerator. Het analogon van het hart bestaat derhalve uit vier spanningsgeneratoren. Om de coordinatie tussen de con-
tracties van de atria en de ventrikels te simuleren zijn deze spanningsgeneratoren samengesteld uit een viervoudige pulsgenerator en vier vermogensversterkers. De viervoudige pulsgenerator simuleert de activatie van het hart en levert pulsen die de vereiste tijdsrelatie hebben. De constructie van het analoge hart is zo uitgevoerd, dat de normale fysiologische variabiliteit kan worden nagebootst. Bovendien is het mogelijk pathologische afwijkingen te simuleren en het effect ervan na te gaan.

De gebruikte meetmethoden en de resultaten van een aantal karakteristieke metingen aan het analogon worden behandeld in Hoofdstuk 6. Deze metingen kunnen ingedeeld worden in drie groepen:

1. Metingen van de eigenschappen van het vaatstelsel,
2. Registratie van analoge haemodynamische grootheden, en
3. Meting en registratie van pathologische afwijkingen.

Met het analogon kan men naar willekeur experimenteren over de bloedsomloop. Zo kan men b.v. voorspellen wat het effect zal zijn van voorgenomen chirurgische ingrepen aan het hart of de grote vaten. Of deze resultaten zin hebben, d.w.z. of het analogon de werkelijkheid met voldoende nauwkeurigheid reproduceert, moet blijken uit de vergelijking van deze resultaten met die van metingen in vivo aan de mens. In vivo metingen zijn blijkbaar zeer schaar, maar de resultaten van tot nu toe gepubliceerde metingen blijken goed overeen te stemmen met overeenkomstige resultaten van het analogon. Derhalve menen wij te mogen concluderen dat het beschreven analogon een goede simulatie van de werkelijk optredende verschijnselen levert, zowel onder normale als onder pathologische omstandigheden.
