Electrical resistivity and stoichiometry of K_xC_60, Rb_xC_60, and Cs_xC_60 films

T.T.M. Palstra, G.P. Kochanski

AT&T Bell Laboratories, Murray Hill, NJ 07974-0636, USA

Received 19 November 1993

Abstract

Electrical resistance measurements as a function of stoichiometry have been carried out on K_xC_60, Rb_xC_60 and Cs_xC_60 thin films for 0 < x < 6. The annealed films show global resistance minima at K_3C_60, \(\rho_{\text{min}} = 4 \times 10^{-3} \) cm (60°C), Rb_3C_60, \(\rho_{\text{min}} = 4 \times 10^{-3} \) cm, and Cs_3C_60, \(\rho_{\text{min}} = 7 \times 10^{-2} \) cm. All of the annealed films show additional features in the vicinity of x = 4, but the manifestation of the A_xC_60 phase (A=K, Rb, Cs), in transport studies is dependent on the metal and the annealing conditions. The A_xC_60 phase is apparent for all of the metals studied and shows a relatively high resistivity. The activation energies of the conduction process show well defined stationary points at K_3C_60 (not activated), Rb_3C_60 (not activated), Cs_3C_60 (minimum), Cs_4C_60 (maximum), with less distinct features between 4 < x < 6 in all cases.

1. Introduction

C_60 undergoes doping with alkali metals and these compositions include insulators, conductors and superconductors [1–6]. In this Letter, we present resistivity measurements of K_xC_60, Rb_xC_60, and Cs_xC_60 films, as a function of temperature, stoichiometry and annealing conditions for 0 < x < 6. There have been a number of reports of transport studies on these systems, including two studies of conductivity as a function of composition (x) [7,8].

It is known that K_3C_60 and Rb_3C_60 are superconductors and the transport properties of these compositions have been studied in the form of granular thin films [9,10], crystalline thin films [11] and doped single crystals [12,13]. These phases are readily identified in transport studies as they give rise to resistivity minima and show a positive temperature coefficient of resistivity. The A_xC_60 compositions (A=K, Rb), are formed from the pristine solid by occupancy of the interstitial sites of the fcc lattice of crystalline C_60 and lead to a half-filling of the t_{1u} LUMO of C_60 [6]. The other compositions do not have the characteristic signature of these phases and have received less attention although photoemission experiments can clearly identify A_xC_60 in which the t_{1u} level is fully occupied and the material rendered insulating [14–16]. In the present work we focus on the doping profile of these films in the range 0 < x < 6, in an effort to further the understanding of the doping process in granular thin films and in order to assess the reproducibility and degree of control which can be routinely achieved in vacuum doping experiments.

2. Experimental

We followed the procedure adopted in our previous studies of Ca_xC_60, Sr_xC_60, and Ba_xC_60 films in
UHV [17,18]. The UHV chamber used in this work is equipped with a Radak I CsO source so that the C₆₀ films were grown in situ on substrates held at room temperature and were not exposed to oxygen prior to doping. The C₆₀ films were grown from material produced in the spark erosion process [18] and purified by liquid chromatography [20]. Films produced in this way consist of random polycrystalline grains of dimension ≈60 Å [21]. The alkali metals were deposited by thermal evaporation from an SAES getter source. The UHV chamber also contains a quartz crystal microbalance (QCM) so that we could directly monitor the amount of CsO and metal which were deposited. The system was baked prior to deposition and our experiments were conducted at pressures between 10⁻⁸ and 2×10⁻⁹ Torr.

We used thin C₆₀ films (≈200 Å), deposited on sapphire, quartz or pyrex glass substrates. The electrical measurements were carried out using substrates with evaporated aluminum and silver multilayers for contact pads. The quartz crystal microbalance was calibrated for the determination of the C₆₀ film thickness by RBS measurements on a C₆₀ film grown on clean hydrogen-terminated Si. Ex situ RBS analysis of the alkali-metal peak in the doped C₆₀ films when combined with the measurements obtained from the microbalance during the experiment allowed us to obtain the film composition. We experienced some difficulties with the RBS metal determinations on sapphire due to peak asymmetry. For this reason we also investigated other substrates, and most of our experiments were carried out on glass. Apart from the difficulties with the RBS determinations on sapphire due to peak asymmetry. For this reason we also investigated other substrates, and most of our experiments were carried out on glass. Apart from the difficulties with the RBS determinations, however, the sapphire, quartz and pyrex glass substrates gave identical doping profiles within the errors of our experiment (based on the QCM measurements taken for each point). We estimate the uncertainty in our derived values of x at ±0.5, mainly due to the error in the RBS measurements on the thin metal/C₆₀ films.

In the Ca and Sr doping study a one-minute anneal at 180°C after each addition of metal to the film was necessary to equilibrate the system and obtain meaningful resistivities [16], whereas in the experiments on BaₓC₆₀ films we annealed for 1 min at temperatures of 180°C, 200°C, and 220°C without fully equilibrating the film composition at doping levels beyond x=3 [17]. In the present study we report two sets of resistivity measurements; the first were determined on films held at room temperature (32°C in our UHV chamber) throughout the experiment (Fig. 1), while the second set (Fig. 2), were obtained with films which were subjected to the 180°C one-minute anneals used in the previous work on alkaline earths (hereafter we refer to these as room temperature and annealed film experiments). After each addition of metal we measured the resistivity of the room temperature films at 5 min intervals in order to follow the equilibration of the metal throughout the C₆₀ film. We considered the film to be equilibrated when successive readings agreed to within 10%. Based on other experiments it seems that in the case of granular thin films, annealing temperatures in excess of 100°C are adequate for the equilibration of KₓC₆₀, RbₓC₆₀, and CsₓC₆₀ films, although these conditions do not produce well-ordered films. The resistivity values reported herein were determined at either 32°C (Fig. 1), or 60°C (Fig. 2), and the activation energies were obtained from resistivity data measured in the range 60°C<T<160°C (Fig. 3). During the course of our studies we carried out many experiments and as far as possible we report representative results, but there remains a degree of variability in the doping profiles which we are unable to entirely eliminate. The more obvious variations are discussed below.

3. Results

3.1. KₓC₆₀ films

The resistivity as a function of doping of a KₓC₆₀ room temperature film is shown in fig. 1. The resistivity shows a well-defined minimum at x=3.1 where \(\rho_{\text{min}} = 3.1 \times 10^{-3} \Omega \text{ cm} \) (32°C) and the last point on Fig. 1 is taken at x=6.0 with \(\rho = 88 \Omega \text{ cm} \). The increase in resistivity beyond x=5.5 is pronounced.

The resistivity of a KₓC₆₀ annealed film as a function of doping is shown in Fig. 2. The resistivity shows a well-defined minimum at x=2.8 where \(\rho_{\text{min}} = 4.6 \times 10^{-3} \Omega \text{ cm} \) (60°C) and the last point on Fig. 2 is taken at x=6.3 with \(\rho = 51 \Omega \text{ cm} \). The shoulder in the resistivity curve occurs at x≈3.8 where \(\rho = 6 \times 10^{-2} \Omega \text{ cm} \) (60°C). The shape of the KₓC₆₀ minimum was observed to vary from the sharp dip seen in Fig. 1a to the more rounded feature of Fig.
2a. The shoulder near \(x = 4 \) was less pronounced in other experiments.

The conductivity shows activated behavior (Fig. 3), except for the compositions \(x = 2.5 \) and 2.8, where the temperature coefficient of the resistivity is positive. Under the conditions of our experiment the \(K_xC_{60} \) annealed films showed metallic behavior somewhere in the range \(2.5 < x < 3.5 \), typically over a spread in \(x \) values of 0.5. There is a maximum at \(x = 4 \) and a minimum at \(x = 5 \) in the activation energies with values of 0.12 and 0.08 eV, respectively. In general these maxima and minima were observed at \(x \) values of 3.8–4.4 and 4.8–5.6, respectively.

3.2. \(Rb_xC_{60} \) films

The resistivity as a function of doping of a \(Rb_xC_{60} \) room temperature film is shown in Fig. 1. The resistivity shows a broad minimum at \(x = 3.1 \) where \(\rho_{\text{min}} = 1.0 \times 10^{-2} \Omega \text{cm} \) (32°C) and the last point on Fig. 1 is taken at \(x = 5.9 \) with \(\rho = 0.7 \Omega \text{cm} \).

The resistivity of a \(Rb_xC_{60} \) annealed film as a function of doping is shown in Fig. 2. The resistivity shows a minimum between \(x = 2.8 \) and \(x = 3.0 \) where \(\rho_{\text{min}} = 3.8 \times 10^{-2} \Omega \text{cm} \) (60°C) and the last point on Fig. 2 is taken at \(x = 6.0 \) with \(\rho = 6 \Omega \text{cm} \). The shape of the minimum shown in Fig. 2b is typical, with a clear asymmetry on either side of \(x = 3 \). The approach to the minimum is gradual for \(x < 3 \), but quite sharp for \(x > 3 \). \(K_xC_{60} \) annealed films exhibited slightly sharper minima than \(Rb_xC_{60} \) annealed films.

The conductivity shows activated behavior (Fig. 3), except for compositions between \(x = 2.5 \) and 3.4. In this range (Fig. 2b) there are seven points with a positive temperature coefficient of resistivity. Under the conditions of our experiment \(Rb_xC_{60} \) annealed films showed metallic behavior somewhere in the range \(2.5 < x < 3.5 \), over a spread in \(x \) values slightly greater than observed for \(K_xC_{60} \) annealed films. There is a maximum at \(x = 4.9 \) and a minimum at \(x = 5.6 \) in the activation energies with values of 0.12 and 0.09 eV, respectively. In general these maxima and min-
ima were observed at x values of 4.5–5.0 and 5.5–5.9, respectively. The minimum in the activation energy at $x=1.0$ was not present in all experiments.

3.3. Cs_xC_{60} Films

The resistivity as a function of doping of a Cs_xC_{60} room temperature film is shown in Fig. 1. The resistivity shows a broad minimum at $x \approx 1.4$ where $\rho_{min} = 1.1 \times 10^{-1} \ \Omega \ \text{cm} \ (32^\circ \text{C})$ and the last point on Fig. 1 is taken at $x=6.1$ with $\rho=44 \ \Omega \ \text{cm}$. In general the position of the minimum occurred between $1.0 < x < 1.6$.

The resistivity of a Cs_xC_{60} annealed film as a function of doping is shown in Fig. 2. The first minimum in the resistivity occurs at $x=1.0$ where $\rho_{min1} = 7.0 \times 10^{-2} \ \Omega \ \text{cm} \ (60^\circ \text{C})$. There is then a resistivity maximum at $x=3.6$ where $\rho_{max} = 1.1 \ \Omega \ \text{cm}$ followed by a second minimum at $x=4.5$ where $\rho_{min2} = 0.7 \ \Omega \ \text{cm}$. The last point on Fig. 2 is taken at $x=5.8$ with $\rho=68 \ \Omega \ \text{cm}$. The double minimum shown in Fig. 2 is typical, and in some room temperature runs a suggestion of the second feature is also apparent. In general the position of the first minimum occurred between $1.0 < x < 1.4$. Within the accuracy of our experiment the point of inflection between the maximum and minimum associated with the second feature occurs at $x \approx 4$.

The Cs_xC_{60} films never show metallic behavior (Fig. 3). The Cs_xC_{60} annealed film shows minima at $x=1.0$ and $x=5.7$ in the activation energies with values of 0.08 and 0.14 eV, respectively. There is a well-defined maximum in the activation energy of the conductivity at $x=4.1$ with a value of 0.2 eV. In general the second feature gave rise to maxima and minima at x values of 4.0–4.4 and 5.5–5.9, respectively.

4. Discussion

Since the report of conductivity in alkali-metal-doped C_{60} and C_{70} films the chemistry and physics of
these materials has shown remarkable development. In the case of A = K and Rb, A_xC_{60} [22], A_3C_{60} [23], A_4C_{60} [24], and A_5C_{60} [25] bulk phases have been definitely identified [26,27]. The first two phases are formed by population of the interstitial sites of the face centered cubic lattice of C_{60} [22,23,28], whereas the latter two are body centered tetragonal [24] and body centered cubic [25] structures, respectively. With the exception of Cs_3C_{60}, the same phases have been characterized for Cs. Similar compositions have been observed in doped films by stoichiometric resistivity measurements [7,8] photoemission studies [14–16] and Raman spectroscopy [29–32].

Our results for K- and Rb-doped C_{60} films are in good agreement with two previous studies of the electrical resistivity as a function of stoichiometry [7,8]. The minimum in resistivity for K and Rb doping was found to occur at x = 3, where the films showed metallic behavior. For K_xC_{60}, the resistivities were \(\rho_{\text{min}} = 5.5 \times 10^{-3} \, \Omega \, \text{cm} \) (46°C, 400 Å thick film) [7] and \(\rho_{\text{min}} = 3.1 \times 10^{-3} \, \Omega \, \text{cm} \) (27°C, 500–4000 Å film) [8], which may be compared with the value of \(\rho_{\text{min}} = 5.6 \times 10^{-3} \, \Omega \, \text{cm} \) (60°C, 200 Å film) found in the present study. For Rb_xC_{60}, \(\rho_{\text{min}} = 2.8 \times 10^{-3} \, \Omega \, \text{cm} \) (27°C, 500–4000 Å film) was reported [8], compared with the value of \(\rho_{\text{min}} = 3.8 \times 10^{-3} \, \Omega \, \text{cm} \) (60°C, 200 Å film) found in the present study. Rather similar values have been reported for doped single crystal, granular and crystalline film K_3C_{60} and Rb_3C_{60} [9–13].

The resistivity of the K_xC_{60} film exhibits the least variation with annealing procedure, and it is apparent that potassium readily diffuses through the C_{60} film. The value of \(\rho_{\text{min}} = 3 \times 10^{-3} \) found in the room temperature experiment is in agreement with the result from the annealed film and with the previous determination of \(\rho_{\text{min}} = 2 \times 10^{-3} \, \Omega \, \text{cm} \) [1]. The room temperature resistivities of \(\rho_{\text{min}} = 1 \times 10^{-2} \) found for Rb_xC_{60} and \(\rho_{\text{min}} = 1 \times 10^{-1} \, \Omega \, \text{cm} \) found for Cs_3C_{60} are significantly higher than those determined for the annealed films, but are in reasonable agreement with the previous minimum resistivity measurements [1]
of 1×10^{-2} and $2.5 \times 10^{-1} \, \Omega \, \text{cm}$, respectively.

The resistivity values observed for annealed films of K$_2$C$_{60}$ and Rb$_2$C$_{60}$ are comparable to those found for the second minimum in the resistivity of annealed alkaline-earth-doped C$_{60}$ films: $\rho_{\text{min}} = 5 \times 10^{-3}$ (Ca$_2$C$_{60}$), 10×10^{-3} (Sr$_2$C$_{60}$) and $3 \times 10^{-3} \, \Omega \, \text{cm}$ (Ba$_2$C$_{60}$) [17,18]. In this case the conductivity is associated with population of the t_{1u} band of C$_{60}$ [17,18,33–36] and some of these compositions are superconductors [35,36].

In our experience the other features in the resistivity data exhibit some sample dependence. Although the rise in resistivity in the vicinity of $x = 6$ is seen by all workers, its magnitude is quite variable, perhaps because of residual and uncontrolled disorder in the films under the conditions of these experiments. In general we find for A$_2$C$_{60}$ films (A=K, Rb, Cs), $\rho_{\text{max}} \approx 1 \, \Omega \, \text{cm}$ for room temperature films and $\rho_{\text{max}} \approx 100 \, \Omega \, \text{cm}$ for annealed films. The resistivities of some annealed A$_2$C$_{60}$ films have shown $\rho_{\text{max}} > 1000 \, \Omega \, \text{cm}$. In bulk studies it has been shown that the bcc A$_4$C$_{60}$ phase is not a line compound and therefore may form as a substoichiometric composition with alkali-metal vacancies [27]. The very rapid rise in resistivity for $5.5 < x$ therefore can be interpreted as a band filling effect which occurs as the composition of this phase becomes stoichiometric.

We find the global resistivity minimum for Cs doping at Cs$_2$C$_{60}$ (Fig. 2c, although some films indicate a minimum slightly beyond this point), whereas a previous study found the resistivity minimum at Cs$_3$C$_{60}$ [8]. The shoulder in the resistivity data shown in Fig. 2b, provides an indication of the presence of Rb$_2$C$_{60}$ [8].

The A$_4$C$_{60}$ composition seems to be present in all of the doping experiments, but the signature of this phase is less than characteristic in our work. In our previous experiments on Ca$_2$C$_{60}$, Sr$_2$C$_{60}$ and Ba$_2$C$_{60}$ films the activation energies of the conductivity provided a useful indicator of the underlying phases [16,17]. The same holds true here for Rb$_2$C$_{60}$ (weak minimum), Cs$_2$C$_{60}$ (minimum), K$_2$C$_{60}$ (not activated), Rb$_2$C$_{60}$ (not activated), K$_4$C$_{60}$ (weak maximum), and Cs$_4$C$_{60}$ (maximum). The maximum for the Rb$_2$C$_{60}$ films is closer to $x = 5$. However the second minimum in the activation energies between $x = 5.0$ and 5.9 which is seen for all metals is difficult to explain unless the A$_4$C$_{60}$ phase is taken to be insulating. The activation energies do not change very much for $4 < x < 6$, and the sharp changes in conductivity apparently reflect the population of vacancies in substoichiometric A$_4$C$_{60}$.

5. Conclusions

Our results show that it is possible to dope C$_{60}$ films to sharp minima which are associated with Cs$_2$C$_{60}$, K$_2$C$_{60}$ and Rb$_2$C$_{60}$. Thus in addition to K$_2$C$_{60}$ and Rb$_2$C$_{60}$, which have been extensively studied, it is possible to prepare Cs$_2$C$_{60}$ by monitoring the resistivity as a function of doping. In contrast to potassium, however, cesium and rubidium doping require annealing of the A$_2$C$_{60}$ films in order to obtain equilibrated compositions with optimum transport properties.

The activation energies of the conductivity of the A$_4$C$_{60}$ films strongly support the insulating nature of the A$_4$C$_{60}$ phase. In the case of Cs$_4$C$_{60}$ this phase exhibits an activation energy of $\approx 0.2 \, \text{eV}$, which is higher than that shown for any of the doped C$_{60}$ films with incompletely filled bands, and is even higher than that seen for the (Ae)$_3$C$_{60}$ films (where Ae=Ca, Sr and Ba), which have nominally filled t_{1u} bands [17,18,33,34]. The energy gap in the A$_4$C$_{60}$ phase cannot be explained within a simple one-electron band picture [6,16,37] and the electronic structure of this composition remains unresolved.

6. Acknowledgement

We are grateful to P.H. Citrin for the use of UHV equipment.

7. References

