Conduction velocity in human muscle
van der Hoeven, Johannes H.

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1995

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
SURFACE EMG AND MUSCLE FIBER CONDUCTION DURING ATTACKS OF HYPOKALAEMIC PERIODIC PARALYSIS

T.P. Links, J.H. van der Hoeven, M.J. Zwarts

(J Neurol Neurosurg Psychiatry 1994;57:632-634)

ABSTRACT

Surface EMG, muscle fiber conduction velocity (MFCV), muscle force and biochemical variables were investigated in a 13-year-old boy with familial hypokalaemic periodic paralysis (HOPP) during and after three attacks of paralysis. After normalisation of the serum potassium values, strength rapidly returned to interictal values, but the integrated EMG and to a lesser extent the MFCV recovered more slowly. These findings suggest that a complete electrophysiological recovery is not necessary for a restoration of muscle force and that the pathogenetic defect is localised in the muscle membrane.
INTRODUCTION

Hypokalaemic periodic paralysis (HOPP) is characterized by episodes of paralytic attacks combined with hypokalemia. During attacks muscle excitability after nerve stimulation is severely reduced or absent and concentric needle electromyography (EMG) shows complete electrical silence (Engel et al. 1965). Troni et al. (1983) found a reduced muscle fiber conduction velocity (MFCV) by an invasive method. Surface EMG recording showed also a reduced MFCV in these patients (Zwarts et al. 1988). The cause of paralysis is supposed to be a depolarisation block of the muscle fiber membrane. During an attack, a partial membrane depolarisation has been found (Hofmann and Smith, 1970). The time course of recovery is not known. Troni et al. (1983) only mentioned 'a long period of recovery'. We report surface EMG and MFCV measurements and muscle force in a patient with HOPP, during and after three episodes of paralysis.

METHODS

The methods for the surface and invasive EMG measurements have been previously described (van der Hoeven et al. 1993). Muscle strength was measured by a hand-held dynamometer according to a standardised procedure.

PATIENT HISTORY

A 13-year-old boy with a family history of HOPP had had attacks of muscle weakness since he was 11 years old (Links et al. 1990). During the first described attack he had woken up with complete paralysis at about 05.00. No drugs were used. At 11.00 he was admitted to our hospital with a total flaccid paralysis of his limbs. Serum potassium was 2.3 mmol.l\(^{-1}\) and he was treated with intravenous potassium. After 3 hours strength returned to his arms, and slight movements were possible in his legs (table). After 6 hours strength returned to his legs. After 12 hours he was able to walk without help and potassium infusion was stopped. Totally 75 mmol potassium had been infused. The next morning MFCV measurements were made while his strength was normal.

During the second attack the serum potassium was 2.6 mmol.l\(^{-1}\) on admission. The same therapeutic regime was started and the muscle strength recovered to normal in about 4 hours. Serum potassium was 4.4 mmol.l\(^{-1}\). Surface EMG measurements were obtained 4 hours after complete recovery. The serum potassium during the third attack was 2.4 mmol.l\(^{-1}\). Strength returned to normal within 3 hours and surface EMG was performed 5 hours later, when serum potassium was 4.9 mmol.l\(^{-1}\).
TABLE. Muscle strength, laboratory measurements and EMG values in the recovery phase during the first attack of hypokalaemic periodic paralysis.

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>11.00</th>
<th>14.00</th>
<th>17.00</th>
<th>22.00</th>
<th>09.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shoulder abduction</td>
<td>220</td>
<td>0</td>
<td>0</td>
<td>160</td>
<td>220</td>
</tr>
<tr>
<td>elbow flexion</td>
<td>>250</td>
<td>0</td>
<td>95</td>
<td>>250</td>
<td>>250</td>
</tr>
<tr>
<td>elbow extension</td>
<td>230</td>
<td>0</td>
<td>70</td>
<td>220</td>
<td>230</td>
</tr>
<tr>
<td>3 point grip</td>
<td>140</td>
<td>0</td>
<td>40</td>
<td>125</td>
<td>140</td>
</tr>
<tr>
<td>hip flexion</td>
<td>240</td>
<td>0</td>
<td>0</td>
<td>220</td>
<td>240</td>
</tr>
<tr>
<td>hip abduction</td>
<td>240</td>
<td>0</td>
<td>0</td>
<td>220</td>
<td>240</td>
</tr>
<tr>
<td>knee extension</td>
<td>>200</td>
<td>0</td>
<td>0</td>
<td>>200</td>
<td>>200</td>
</tr>
<tr>
<td>Laboratory values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K⁺ (3.6-4.8 mmol.l⁻¹)</td>
<td>2.3</td>
<td>3.3</td>
<td>4.6</td>
<td>4.6</td>
<td>4.7</td>
</tr>
<tr>
<td>CK (0-50 u.l⁻¹)</td>
<td>114</td>
<td>87</td>
<td>82</td>
<td>85</td>
<td>82</td>
</tr>
<tr>
<td>Myoglobin (0-80 µg.l⁻¹)</td>
<td>30</td>
<td>36</td>
<td>62</td>
<td>46</td>
<td>72</td>
</tr>
<tr>
<td>Total urine K⁺ excretion (mmol)</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Surface EMG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean S-MFCV (m.s⁻¹)</td>
<td>3.31 (0.20)</td>
<td></td>
<td></td>
<td>2.68 (0.50)</td>
<td></td>
</tr>
<tr>
<td>mean Fmed (Hz)</td>
<td>81.3 (12.6)</td>
<td></td>
<td></td>
<td>55.6 (8.0)</td>
<td></td>
</tr>
<tr>
<td>IEMG (µV)</td>
<td>672</td>
<td></td>
<td></td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>Invasive MFCV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean I-MFCV (m.s⁻¹)</td>
<td>2.07</td>
<td></td>
<td></td>
<td>2.53</td>
<td></td>
</tr>
<tr>
<td>fastest I-MFCV (m.s⁻¹)</td>
<td>3.06</td>
<td></td>
<td></td>
<td>3.31</td>
<td></td>
</tr>
<tr>
<td>slowest I-MFCV (m.s⁻¹)</td>
<td>0.93</td>
<td></td>
<td></td>
<td>1.30</td>
<td></td>
</tr>
</tbody>
</table>

Measurements were performed interictally (second column) and successively during the first attack. Force was measured with a hand-held dynamometer (mean values of both sides). Laboratory values were obtained during recovery the next day. S-MFCV= Mean Muscle Fiber Conduction Velocity, surface method; Fmed= Mean Median Frequency; IEMG= Integrated value of EMG at maximal voluntary contraction; mean I-MFCV= Mean Muscle Fiber Conduction Velocity, invasive method; fastest I-MFCV= fastest I-MFCV result; slowest I-MFCV= slowest I-MFCV result.
RESULTS

EMG findings
During the early recovery after the first attack, the surface EMG showed very low voltages, which prevented a reliable estimation of MFCV. After complete recovery of the muscle force the next day, the integrated value of the EMG (IEMG) at maximal voluntary contraction, the MFCV, and median frequency had not yet returned to interictal values. After the second and third attacks only the IEMG was low (379 and 231 \(\mu \text{V} \), respectively) when muscle strength was normal. The interictal measurements were performed after an attack-free interval of 3 weeks (figure).

Invasive measurements were made during the first attack. In the paralysis phase a severely reduced MFCV was found. During late recovery the MFCV was clearly increased. The changes between the fastest and slowest measured fibers were roughly equal (table).

Other measurements
The table shows the changes in muscle force and some laboratory values during the first attack. Serum glutamic pyruvic transaminase, serum glutamic oxaloacetic transaminase, and lactate dehydrogenase remained unchanged during the attacks.

DISCUSSION

We measured muscle force, MFCV and surface EMG during early and late recovery in a patient after a severe attack of HOPP, and repeated the measurements after two less severe attacks. During the recovery stage of all three attacks the IEMG was low, despite a normalisation of the muscle force. Invasive measurement during the paretic phase showed very low MFCV values, which had partially recovered by the next day. It showed the possibility of depolarisation of at least a part of the muscle fibers, despite the serious paresis. This indicates a selective depolarisation or 'post-synaptic' block, a mechanism that has already been suggested in a single fiber study, by means of a fiber density decrease during an attack (De Grandis et al. 1978). Also, the roughly equal decrease of the fastest and slowest MFCV results, suggests that both type I and type II muscle fibers are affected (and possibly blocked) to the same degree (table).

A puzzling phenomenon is the discrepancy between the IEMG and the muscle force during recovery, which are usually linearly related. Model studies indicate that low values of the IEMG are a direct consequence of a reduced MFCV (Stegeman and Linssen, 1992). Nevertheless, this does not explain the discrepancy, because after restoration of the MFCV the IEMG values were still low.

Several reasons can be suggested for this temporary discrepancy: (1) A partial depolarisation of the muscle membrane results in action potentials of lower amplitude (Trontelj et al. 1987), thus disturbing the normal relation between force and IEMG. (2) The frequency change of the signal could also alter this relation. Because the surface electrodes act as a high-pass filter depending on the electrode separation (Zipp, 1978) the change of the signal to lower frequencies will result in the transfer of less energy.
In vitro investigations of muscle fibers of patients have shown a slight depolarisation of the muscle cell membrane interictally to -75mV (normal -87 mV) increasing to -50 mV during paralysis (Hofmann and Smith, 1970). A partial depolarization is accompanied by a slowing down in conduction velocity (Gruener et al. 1979), as was found in this study during the severest attack. To account for the discrepancy between the functional and electrophysiological recovery we suggest the following hypothesis. During paralysis potassium moves to the intracellular space. Although muscle strength recovers quickly after intravenous potassium treatment, the ratio between the intracellular and extracellular ion concentrations and the membrane potential is not restored with the same rapidity. Nevertheless, the action potential is sufficient to initiate calcium release, which is necessary for normal force generation. The return of the membrane potential to interictal values occurs only after complete recovery of the external and internal ion concentrations. This is supported by the time course of potassium excretion, which is also a long lasting process (table).

By contrast with earlier reports (Wiggers and Norregaard-Hansen, 1985), no rise in serum myoglobin concentration and creatinekinase was found in our patient after recovery. Interictally serum myoglobin concentration and creatinekinase are raised to varying degrees (Links et al. 1990; Wiggers and Norregaard-Hansen, 1985), which suggests a fluctuating, and during the attacks, temporarily increased membrane leakage.

Force recovered quickly during potassium infusion (table). The initial recovery was in the arms during all three attacks. Recovery of the legs took longer. There are possible explanations for this difference. Vacuolar myopathy is most pronounced in the leg and pelvic girdle muscles (Links

Figure. Relation between muscle force (%) and IEMG (µV). Squares: interictal situation, triangles: recovery after the third attack, circles: recovery after the first attack. The exerted forces were equal.
et al. 1990) and this suggests a more pronounced membrane disturbance in the legs, possibly because of the local, relatively larger muscle fiber diameters. This could result in a longer recovery time for the membrane potential in terms of transport capacity, between membrane surface and intracellular volume, and maybe enhanced local membrane damage. Another explanation could be that in a lying position the arms are used more than the legs; this could result in a less severe membrane disturbance as slight movements result in a faster recovery (Campa and Sanders, 1974), or even prevent an attack.

REFERENCES

- Zipp P: Effect of electrode parameters on the bandwidth of the surface e.m.g. power density spectrum. Med Biol Eng Comput 1978;16:537-541.