Kinetic mechanism of vanillyl-alcohol oxidase with short-chain 4-alkylphenols
Fraaije, Marco; Heuvel, Robert H.H. van den; Roelofs, Jules C.A.A.; Berkel, Willem J.H. van

Published in:
European Journal of Biochemistry

DOI:
10.1046/j.1432-1327.1998.2530712.x

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1998

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Kinetic mechanism of vanillyl-alcohol oxidase with short-chain 4-alkylphenols

Marco W. FRAAIJE, Robert H. H. VAN DEN HEUVEL, Jules C. A. A. ROELOFS and Willem J. H. VAN BERKEL
Department of Biochemistry, Wageningen Agricultural University, The Netherlands

(Received 29 January 1998) — EJB 98 0141/4

The kinetic mechanism of vanillyl-alcohol oxidase with 4-methylphenol, 4-ethylphenol, 4-propylphenol and their Ca-deuterated analogs has been studied at pH 7.5 and 25°C. Conversion of 4-methylphenol is extremely slow (0.005 s⁻¹) while the enzyme is largely in the reduced form during turnover. 4-Ethylphenol and 4-propylphenol are readily converted while the enzyme is mainly in the oxidized form during turnover. The deuterium kinetic isotope effect for overall catalysis ranges between 7–10 whereas the intrinsic deuterium kinetic isotope effect for flavin reduction ranges over 9–10. With all three 4-alkylphenols, flavin reduction appeared to be a reversible process with the rate of reduction being in the same range as the rate for the reverse reaction. During the reductive half-reaction of vanillyl-alcohol oxidase with 4-ethylphenol and 4-propylphenol, a transient intermediate is formed with an absorbance maximum at 330 nm. This intermediate has been tentatively identified as the p-quinone methide of the aromatic substrate in complex with reduced enzyme. It is concluded that vanillyl-alcohol oxidase catalysis with 4-ethylphenol and 4-propylphenol favors an ordered sequential binding mechanism in which the rate of flavin reduction determines the turnover rate while the reduced enzyme−p-quinone methide binary complex rapidly reacts with dioxygen. During the reaction of vanillyl-alcohol oxidase with 4-methylphenol, a fluorescent enzyme species is stabilized. Based on its spectral characteristics and crystallographic data [Mattevi, A., Fraaije, M. W., Mozzarelli, A., Olivi, L., Coda, A. & van Berkel, W. J. H. (1997) Structure 5, 907–920], it is proposed that this species represents a covalent 5-(4'-hydroxybenzyl)-FAD adduct. With 4-ethylphenol and 4-propylphenol, similar N5 flavin adducts may be formed but their rate of formation is too slow to be of catalytic relevance.

Keywords: alkylphenol; flavoprotein; p-quinone methide; kinetic isotope effect; vanillyl-alcohol oxidase.

Vanillyl-alcohol oxidase is a covalent flavoprotein isolated from *Penicillium simplicissimum*, a filamentous fungus capable of growing on a wide variety of aromatic compounds [1, 2]. The enzyme is a rather stable homooctamer with each 65-kDa subunit containing an 8z-(N'-histidyl)-FAD molecule [3, 4]. Vanillyl-alcohol oxidase is active with a wide range of *para*-substituted phenolic compounds [5], but the physiological function of the enzyme is not fully understood. Based on induction experiments, 4-(methoxymethyl)phenol has been proposed to represent the physiological substrate [2]. A detailed kinetic study with this phenolic methylether has pointed to a ternary complex mechanism in which flavin reduction is the rate-limiting step in catalysis [6]. The reaction of vanillyl-alcohol oxidase with 4-(methoxymethyl)phenol involves the initial formation of a binary complex of reduced enzyme and the p-quinone methide of 4-(methoxymethyl)phenol. This complex then reacts with molecular oxygen, reoxidizing the flavin, and after water addition of the p-quinone methide, the products 4-hydroxybenzaldehyde and methanol are formed (Eqn 1).

![Reaction mechanism of vanillyl-alcohol oxidase](image)

The reaction mechanism of vanillyl-alcohol oxidase has properties in common with that of *p*-cresol methylhydroxylase [7]. This bacterial flavocytochrome converts a wide range of 4-alkylphenols first into 4-hydroxybenzyl alcohols and subsequently into 4-hydroxybenzaldehydes. In contrast to vanillyl-alcohol oxidase, flavin reoxidation in *p*-cresol methylhydroxylase involves the transfer of electrons to a tightly bound cytochrome subunit [8].

The crystal structure of vanillyl-alcohol oxidase has recently been solved at 2.5 Å resolution [9]. Each vanillyl-alcohol oxidase monomer consists of two domains: one creates a binding site for the ADP moiety of the FAD molecule, while the other domain covers the active center which is located between the two domains. The structure shows that the isoalloxazine ring of the flavin makes a covalent bond with His422. Furthermore, the active site is located in the interior of the protein and contains an anion-binding pocket facilitating the deprotonation of phenolic substrates. Based on the structures of several vanillyl-alcohol oxidase−inhibitor complexes, it could be determined that the distance between the Ca atom of aromatic substrates and the reactive N5 of the isoalloxazine ring is about 3.5 Å. Equally close to the Ca atom of the inhibitors is the side chain of Asp170 the function of which is not yet clear. The structure of the vanillyl-alcohol oxidase monomer is very similar to that of the
flavoprotein subunit of p-cresol methylhydroxylase [10, 11]. Most active-site residues are conserved but, intriguingly, Asp170 of vanillyl-alcohol oxidase is replaced by Ser in p-cresol methylhydroxylase [12].

The parent substrate of p-cresol methylhydroxylase, 4-methylnaphthal, is a very poor substrate for vanillyl-alcohol oxidase [13]. The crystallographic analysis of vanillyl-alcohol oxidase suggested that this might be related to the formation of a covalent adduct between the Co atom of 4-methylnaphthal and flavin N5 [9]. In view of this, it was of interest to address the kinetic mechanism of vanillyl-alcohol oxidase with short-chain 4-alkylphenols. In this study, 4-methylnaphthal, 4-ethylphenol and 4-propylphenol were used as model substrates and the deuterium kinetic isotope effects for the overall and reductive half-reactions were determined. For this purpose, an improved method for the synthesis of Co-deuterated 4-alkylphenols was developed.

MATERIALS AND METHODS

General. 4-Methylnaphthal, 4-ethylphenol, 4-propylphenol, methyl-4-hydroxynaphtale, 4-hydroxyacetophenone, 4-hydroxypropiophenone, LiAlD₄, t-butyldimethylsilyl chloride, imidazole, D₂O and AlCl₃, were from Aldrich. Glucose oxidase (grade II) was from Boehringer. Vanillyl-alcohol oxidase from P. simplicissimum (ATTC 90172) was purified as described before [3, 5]. Enzyme concentrations were calculated from the molar absorption coefficient of the oxidized flavin (ε₅₅₀ = 12.5 mM⁻¹ cm⁻¹) [3].

Analytical methods. HPLC experiments were performed with a Lichrospher RP8 (4.6×150 mm) reverse-phase column, connected to an Applied Biosystems 400 pump and a Waters 996 diode-array detector. Products were eluted with methanol/water/acetic acid (33:66:1) at 1 ml min⁻¹. GC/MS analysis was performed on Hewlett-Packard 5973 MSD and HP 6090 GC equipped with a HP-5 column. The initial temperature was 80°C. After injection, the temperature was raised at 7°C min⁻¹ up to 240°C. ¹H-NMR spectra were recorded on a Bruker (δ, 3H, -CH₃), 5. MA TERIALS AND METHODS

General. 4-Methylnaphthal, 4-ethylphenol, 4-propylphenol, methyl-4-hydroxynaphtale, 4-hydroxyacetophenone, 4-hydroxypropiophenone, LiAlD₄, t-butyldimethylsilyl chloride, imidazole, D₂O and AlCl₃, were from Aldrich. Glucose oxidase (grade II) was from Boehringer. Vanillyl-alcohol oxidase from P. simplicissimum (ATTC 90172) was purified as described before [3, 5]. Enzyme concentrations were calculated from the molar absorption coefficient of the oxidized flavin (ε₅₅₀ = 12.5 mM⁻¹ cm⁻¹) [3].

Analytical methods. HPLC experiments were performed with a Lichrospher RP8 (4.6×150 mm) reverse-phase column, connected to an Applied Biosystems 400 pump and a Waters 996 diode-array detector. Products were eluted with methanol/water/acetic acid (33:66:1) at 1 ml min⁻¹. GC/MS analysis was performed on Hewlett-Packard 5973 MSD and HP 6090 GC equipped with a HP-5 column. The initial temperature was 80°C. After injection, the temperature was raised at 7°C min⁻¹ up to 240°C. ¹H-NMR spectra were recorded on a Bruker (δ, 3H, -CH₃), 5. MA TERIALS AND METHODS

General. 4-Methylnaphthal, 4-ethylphenol, 4-propylphenol, methyl-4-hydroxynaphtale, 4-hydroxyacetophenone, 4-hydroxypropiophenone, LiAlD₄, t-butyldimethylsilyl chloride, imidazole, D₂O and AlCl₃, were from Aldrich. Glucose oxidase (grade II) was from Boehringer. Vanillyl-alcohol oxidase from P. simplicissimum (ATTC 90172) was purified as described before [3, 5]. Enzyme concentrations were calculated from the molar absorption coefficient of the oxidized flavin (ε₅₅₀ = 12.5 mM⁻¹ cm⁻¹) [3].

Analytical methods. HPLC experiments were performed with a Lichrospher RP8 (4.6×150 mm) reverse-phase column, connected to an Applied Biosystems 400 pump and a Waters 996 diode-array detector. Products were eluted with methanol/water/acetic acid (33:66:1) at 1 ml min⁻¹. GC/MS analysis was performed on Hewlett-Packard 5973 MSD and HP 6090 GC equipped with a HP-5 column. The initial temperature was 80°C. After injection, the temperature was raised at 7°C min⁻¹ up to 240°C. ¹H-NMR spectra were recorded on a Bruker (δ, 3H, -CH₃), 5. MA TERIALS AND METHODS

General. 4-Methylnaphthal, 4-ethylphenol, 4-propylphenol, methyl-4-hydroxynaphtale, 4-hydroxyacetophenone, 4-hydroxypropiophenone, LiAlD₄, t-butyldimethylsilyl chloride, imidazole, D₂O and AlCl₃, were from Aldrich. Glucose oxidase (grade II) was from Boehringer. Vanillyl-alcohol oxidase from P. simplicissimum (ATTC 90172) was purified as described before [3, 5]. Enzyme concentrations were calculated from the molar absorption coefficient of the oxidized flavin (ε₅₅₀ = 12.5 mM⁻¹ cm⁻¹) [3].

Analytical methods. HPLC experiments were performed with a Lichrospher RP8 (4.6×150 mm) reverse-phase column, connected to an Applied Biosystems 400 pump and a Waters 996 diode-array detector. Products were eluted with methanol/water/acetic acid (33:66:1) at 1 ml min⁻¹. GC/MS analysis was performed on Hewlett-Packard 5973 MSD and HP 6090 GC equipped with a HP-5 column. The initial temperature was 80°C. After injection, the temperature was raised at 7°C min⁻¹ up to 240°C. ¹H-NMR spectra were recorded on a Bruker (δ, 3H, -CH₃), 5. MA TERIALS AND METHODS

General. 4-Methylnaphthal, 4-ethylphenol, 4-propylphenol, methyl-4-hydroxynaphtale, 4-hydroxyacetophenone, 4-hydroxypropiophenone, LiAlD₄, t-butyldimethylsilyl chloride, imidazole, D₂O and AlCl₃, were from Aldrich. Glucose oxidase (grade II) was from Boehringer. Vanillyl-alcohol oxidase from P. simplicissimum (ATTC 90172) was purified as described before [3, 5]. Enzyme concentrations were calculated from the molar absorption coefficient of the oxidized flavin (ε₅₅₀ = 12.5 mM⁻¹ cm⁻¹) [3].

Analytical methods. HPLC experiments were performed with a Lichrospher RP8 (4.6×150 mm) reverse-phase column, connected to an Applied Biosystems 400 pump and a Waters 996 diode-array detector. Products were eluted with methanol/water/acetic acid (33:66:1) at 1 ml min⁻¹. GC/MS analysis was performed on Hewlett-Packard 5973 MSD and HP 6090 GC equipped with a HP-5 column. The initial temperature was 80°C. After injection, the temperature was raised at 7°C min⁻¹ up to 240°C. ¹H-NMR spectra were recorded on a Bruker (δ, 3H, -CH₃), 5.
4-ethylphenol and 4-propylphenol, a step involving flavin reduction is limiting the rate of overall catalysis.

Vanillyl-alcohol oxidase converts both 4-ethylphenol and 4-propylphenol to a mixture of the corresponding benzylic alcohol and alkenylic phenol in a ratio of approximately 4:1 [15]. HPLC product analysis revealed that deuteriation of Ca has no effect on the ratio of aromatic products. When the reaction with 4-ethylphenol was performed in D₂O, no significant effect was seen on the ratio of aromatic products as well. However, using equimolar amounts of H₂O and D₂O, a 15% increase of the rate of turnover was observed.

Conversion of 4-methylphenol by vanillyl-alcohol oxidase leads to formation of 4-hydroxybenzaldehyde as final aromatic product [13]. Analogously to p-cresol methylhydroxylase catalysis [16], this reaction involves two consecutive substrate-oxidation steps. However, as can be seen from Table 1, vanillyl-alcohol oxidase converts 4-methylphenol at an exceptionally low rate. Therefore, the enzyme was mixed with 4-methylphenol under aerobic conditions, and the redox state of the flavin was monitored spectrophotometrically. It was found that the enzyme is mainly (58%) in the reduced state during turnover (Fig. 1, spectrum 2) while product is continuously formed as evidenced by the increase in absorbance at 330 nm (Fig. 1, spectrum 3). Moreover, in separate experiments, oxygen consumption could be detected over a long time, confirming continuous turnover. The apparent reduction of the flavin during turnover was even more pronounced at higher pH values and, at pH 9.4, vanillyl-alcohol oxidase became almost fully reduced (Fig. 1, spectrum 4). The absorption spectrum of the 4-methylphenol-reduced enzyme species was strikingly different from free reduced enzyme [6] and showed a typical absorbance maximum at 352 nm with obtained using the procedure of Strickland et al. [9]. Therefore, the apparent reduction of the flavin may reflect formation of this adduct and its slow decay might limit the turnover rate (see also below). As the enzyme is mainly in a reduced state during catalysis at pH 7.5, the relatively large isotope effect on kcat (Table 1) is difficult to interpret. Apparently, a reaction step leading to oxidized enzyme is rate limiting and its velocity is influenced by deuterium replacement of the Ca hydrogens of 4-methylphenol. When vanillyl-alcohol oxidase was mixed with deuterated 4-methylphenol, an increase of oxidized enzyme was observed (77% in the oxidized state), suggesting that the rate of enzyme reduction is partially limiting the rate of overall catalysis.

Reducive half-reaction. The reductive half-reaction of vanillyl-alcohol oxidase can be described by the following equation:

\[
E_{\text{ox}} + S \xrightleftharpoons[k_1]{k_2} E_{\text{ox}} - S \xrightarrow[k_2]{k_1} E_{\text{red}} - Q \xrightarrow[k_2]{k_1} E_{\text{red}} - P
\]

where \(E_{\text{ox}}\) represents oxidized enzyme, \(E_{\text{cat}}\) represents reduced enzyme, \(S\) represents substrate, \(Q\) represents intermediate product, and \(P\) represents the final product.

When vanillyl-alcohol oxidase and 4-ethylphenol were mixed in the stopped-flow spectrophotometer under anaerobic conditions, a fast decrease of absorbance at 439 nm indicative for flavin reduction was observed. The reaction traces could satisfactorily be fitted assuming a biphasic process with rate constants at saturating substrate concentrations \(k_{\text{cat}} = 3.6 \text{ s}^{-1}\) and \(k_{\text{slow}} = 0.3 \text{ s}^{-1}\), respectively. Furthermore, the slow component \(k_{\text{slow}}\) was not dependent on the substrate concentration while the other component \(k_{\text{cat}}\) reached a finite value at the lowest substrate concentrations measured (Fig. 2). The secondary process was too slow to account for the turnover rate \(2.5 \text{ s}^{-1}\) and therefore is probably of no catalytic importance. When the kinetic data for \(k_{\text{cat}}\) were analyzed, a best fit was obtained using the procedure of Strickland et al. [17] which includes an apparent initial reduction rate at infinite low substrate concentrations indicating that reduction is a reversible process \(k_{\text{2}} > 0\), (Eqn 2). By this approach a reduction rate of \(2.5 \text{ s}^{-1}\) \((k_{\text{cat}})\) was determined while the reversible step occurs at a rate of \(1.1 \text{ s}^{-1}\) \((k_{\text{2}})\) (Fig. 2, Table 2). The subsequent slow process reflects the decay of the formed binary complex of \(E_{\text{cat}} - Q\) \((k_3\), in Eqn 2).

With 4-[α-H]ethylphenol, again a biphasic reduction was observed with markedly decreased rates for both steps \(k_{\text{cat}} = 1.3 \text{ s}^{-1}\) and \(k_{\text{slow}} = 0.05 \text{ s}^{-1}\) at a substrate concentration of 0.5 mM). However, accurate determination of the rate of the fast phase was hampered by the fact that the absorbance decrease, and therefore the extent of reduction in the first phase, was sig-

Table 1. Steady-state kinetic parameters for the reaction of vanillyl-alcohol oxidase with short-chain 4-alkylphenols and 4-[α-H]alkylphenols.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>(k_{\text{cat}}) (\text{s}^{-1})</th>
<th>(K_m) (\mu\text{M})</th>
<th>(k_{\text{cat}}/K_m) (\text{mM}^{-1}\text{s}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Methylphenol</td>
<td>0.0050</td>
<td>31</td>
<td>0.16</td>
</tr>
<tr>
<td>[α-(\text{H})]Methylphenol</td>
<td>0.0007</td>
<td>n.d.</td>
<td>(7)</td>
</tr>
<tr>
<td>Ethylphenol</td>
<td>2.5</td>
<td>9.0</td>
<td>300</td>
</tr>
<tr>
<td>[α-(\text{H})]Ethylphenol</td>
<td>0.24</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>Propylphenol</td>
<td>4.2</td>
<td>3.7</td>
<td>1100</td>
</tr>
<tr>
<td>[α-(\text{H})]Propylphenol</td>
<td>0.56</td>
<td>3.0</td>
<td>190</td>
</tr>
<tr>
<td>(7.5)</td>
<td>(1.2)</td>
<td>(6.2)</td>
<td></td>
</tr>
</tbody>
</table>

Values in parentheses are the isotope effect (\([\text{H}/\text{D}]\)).
Table 2. Kinetic parameters for the reductive half-reaction of vanillyl-alcohol oxidase with short–chain 4-alkylphenols. All experiments were performed at pH 7.5, 25°C. Rates for deuterated substrates were determined from the ratio of $[E]_\text{ox} /[E]_\text{red} (= k_{\text{obs}}(k_2 + k_{\text{s}}))$, with $k_{\text{obs}} = k_1 + k_{\text{s}}$, at the end of the first reductive process. Values in parenthesis are the isotope effect (2H/3H).

<table>
<thead>
<tr>
<th>Substrate</th>
<th>k_1</th>
<th>k_{s}</th>
<th>$K_\text{a} (= k_{\text{obs}}/k_1)$</th>
<th>k_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylphenol</td>
<td>0.076 ± 0.015</td>
<td>0.086 ± 0.013</td>
<td>42 ± 15</td>
<td></td>
</tr>
<tr>
<td>[α-3H]Methylphenol</td>
<td>0.008 ± 0.002</td>
<td>0.04 ± 0.01</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>Ethylphenol</td>
<td>2.5 ± 0.3</td>
<td>1.1 ± 0.2</td>
<td>10 ± 2</td>
<td>0.3</td>
</tr>
<tr>
<td>[α-3H]Ethylphenol</td>
<td>0.3 ± 0.1</td>
<td>1.0 ± 0.1</td>
<td>n.d.</td>
<td>0.05</td>
</tr>
<tr>
<td>Propylphenol</td>
<td>4.4 ± 0.4</td>
<td>1.6 ± 0.3</td>
<td>0.8 ± 0.2</td>
<td>1</td>
</tr>
<tr>
<td>[α-3H]Propylphenol</td>
<td>0.5 ± 0.1</td>
<td>1.6 ± 0.2</td>
<td>n.d.</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Fig. 2. Observed reduction rates (k_{obs}) of vanillyl-alcohol oxidase with varying concentrations of 4-ethylphenol. The anaerobic reduction experiments were performed at 25°C and pH 7.5. Flavin reduction was monitored at 439 nm. Each determined reduction rate ($k_{\text{obs}} = k_{\text{real}}$) is an average of 15 analyzed traces. The arrow indicates the value found for the reverse reduction rate. In the inset the double-reciprocal plot of the kinetic data (corrected for k_{s}) is shown.

Significantly decreased. Furthermore, both rate constants appeared to be independent of the substrate concentration. This again is in line with a model in which the first step represents a reversible reduction of the flavin. With 4-[α-3H]ethylphenol, the slow rate of reduction results in an equilibrium in which most of the enzyme is in the oxidized state as $k_2 < k_{\text{s}}$ and hence a small decrease in absorbance during the first phase is observed. Using the fraction of oxidized enzyme present at the end of the first reduction step (corresponding to $k_2(k_2 + k_{\text{s}})$), both k_2 and k_{s} can be determined. For this, we determined the apparent reduction rate ($k_{\text{real}} = k_1 + k_{\text{s}}$) and the redox state of the enzyme at the end of the reduction, at saturating conditions. Using this method, we could calculate the reduction rate ($k_1 = 0.3$ s$^{-1}$) and the rate of the reverse step ($k_{\text{s}} = 1.0$ s$^{-1}$), the latter being similar to the rate found with 4-ethylphenol (Table 2). Except for the intrinsic isotope effect on the reduction rate k_1, a relatively large isotope effect on k_2 was also found. A similar sequence of reactions and corresponding isotope effects have been observed during the reductive half-reaction of D-amino acid oxidase from yeast [18]. In that case, it was proposed that the second process represents a step involving substrate conversion or product dissociation or results from coincidence of kinetic rates.

To verify the reversibility of reduction of vanillyl-alcohol oxidase by 4-ethylphenol and to monitor spectral changes during the reductive half-reaction, diode-array detection was used. Fig. 3A shows the spectral course of the anaerobic reduction of vanillyl-alcohol oxidase by 4-ethylphenol. Analysis of these data clearly revealed that an initial fast reductive process is followed by a relatively slow secondary process (Fig. 3B). Except for the decrease of absorbance at 439 nm, indicative for flavin reduction, also a marked increase in absorbance around 330 nm was observed during the first process (spectrum 2; Fig. 3B). Based on studies with 4-(methoxymethyl)phenol [6], this intermediate spectrum ($ε_{330} = 25$ mM$^{-1}$ cm$^{-1}$) is ascribed to the formation of a binary complex between reduced enzyme and the p-quinone methide of 4-ethylphenol. This is substantiated by data of Bolton et al. [19] who have synthesized a p-quinone methide of a 4-ethylphenol analogue which exhibits an absorbance maximum at 322 nm. Using the fraction of oxidized enzyme formed after the first process (spectrum 2 in Fig. 3B), the rate of reduction (k_2) and of the reverse reaction (k_{s}) could be determined (assuming that spectrum 3 in Fig. 3B represents a fully reduced enzyme species). Using the absorbance values at 439 nm (Fig. 3A), k_2 and k_{s} were 2.6 s$^{-1}$ and 0.8 s$^{-1}$, respectively. These values agree well with the data obtained using the single-wavelength acquisition mode. In the second slow process the absorbance at 330 nm decreased (spectrum 3, Fig. 3B) and a spectrum was formed which shows some resemblance with the 4-methylphenol-generated reduced enzyme species (spectrum 4, Fig. 1).

Similar results as observed for the reductive half-reaction with 4-ethylphenol were obtained when vanillyl-alcohol oxidase was anaerobically mixed with 4-propylphenol. Again, the kinetic data were consistent with a model which includes reversible reduction ($k_{\text{s}} > 0$). For 4-propylphenol, a relatively low value for the dissociation constant of the Michaelis complex (k_2/k_1) was found while all other kinetic parameters, including the isotope effects on k_2 and k_{s}, were in the same range as found for 4-ethylphenol (Table 2). The transient intermediate formed with 4-propylphenol had an absorbance maximum around 330 nm and from the kinetic analysis a molar absorption coefficient, $ε_{330} = 22$ mM$^{-1}$ cm$^{-1}$ could be calculated. This, and the fact that the p-quinone methide of a 4-propylphenol analogue exhibits an absorbance maximum at 326 nm [20], supports the idea that this intermediate represents the initial formation of the p-quinone methide of 4-propylphenol.
The rate of reduction (\(k_{\text{red}}\)) was determined while the reversible step occurs at a maximal rate of 0.076 s\(^{-1}\) for the two observed reductive phases. Upon anaerobic reduction of vanillyl-alcohol oxidase by 4-ethylphenol, the rate of reduction (\(k_{\text{red}}\)) significantly decreased (Fig. 4). A maximal reduction rate of 0.076 s\(^{-1}\) (\(k_{\text{red}}\)) was determined while the reversible step occurs at a maximal rate of 0.086 s\(^{-1}\) (\(k_{\text{rev}}\)) (Table 2). With 4-[\(\alpha\)-H\(_2\)]methylphenol the rate of reduction (\(k_{\text{red}}\)) significantly decreased (Fig. 4). Furthermore, the extent of reduction also decreased indicating that the rate of reduction (\(k_{\text{red}}\)) decreased to a greater extent than the rate of the reversible reduction (\(k_{\text{rev}}\)). Because of the small changes in absorbance and \(k_{\text{red}}\) upon changing the substrate concentration, the dissociation constant for the Michaelis complex (\(k_{\text{a}}/k_{\text{d}}\)) could not be determined accurately. However, it is expected that this parameter will be in the same range as for the non-deuterated substrate. Again, using the fraction of oxidized enzyme formed as a result of reduction by deuterated 4-methylphenol [corresponding to the ratio of \(k_{\text{a}}/(k_{\text{d}} + k_{\text{a}})\) at 250 \(\mu\)M], \(k_{\text{a}}\) could be calculated. Assuming that the dissociation constant for the Michaelis complex is not significantly affected by deuteration, the rate of reduction could be calculated (Table 2). A relatively large isotope effect was seen on the rate of reduction (\(k_{\text{red}}\)) while the rate of the reverse reaction was only slightly affected.

Fluorescence studies. The results presented above (cf. Fig. 1) lend strong support to our earlier proposal from X-ray diffraction studies that vanillyl-alcohol oxidase forms an air-stable covalent adduct with 4-methylphenol [9]. The absorption spectrum of the species generated upon reaction of vanillyl-alcohol oxidase with 4-methylphenol at pH 9.4 resembles that of N5 flavin adducts identified in other flavoprotein oxidases [21–23]. Because N5 flavin adducts are fluorescent [21], the nature of the complex between vanillyl-alcohol oxidase and 4-methylphenol was studied in further detail by fluorescence spectroscopy. As can be seen from Fig. 5 (trace 2), the 4-methylphenol-complexed enzyme displayed an intense fluorescence with a broad emission maximum around 475 nm. In contrast, almost no fluorescence was observed with the free oxidized enzyme (Fig. 5, trace 1) or with the enzyme reduced by vanillyl alcohol (not shown).

Anaerobic reduction of vanillyl-alcohol oxidase by 4-ethylphenol forms an air-stable covalent adduct with 4-methylphenol [9]. The absorption spectrum of the species generated upon reaction of vanillyl-alcohol oxidase with 4-methylphenol at pH 9.4 resembles that of N5 flavin adducts identified in other flavoprotein oxidases [21–23]. Because N5 flavin adducts are fluorescent [21], the nature of the complex between vanillyl-alcohol oxidase and 4-methylphenol was studied in further detail by fluorescence spectroscopy. As can be seen from Fig. 5 (trace 2), the 4-methylphenol-complexed enzyme displayed an intense fluorescence with a broad emission maximum around 475 nm. In contrast, almost no fluorescence was observed with the free oxidized enzyme (Fig. 5, trace 1) or with the enzyme reduced by vanillyl alcohol (not shown).
DISCUSSION

In this study we have described the kinetic mechanism of vanillyl-alcohol oxidase with short-chain 4-alkylphenols. For the reactions with 4-ethylphenol and 4-propylphenol, it was clearly shown that flavin reduction is rate limiting in overall catalysis. The flavin reduction rates for the non-deuterated and deuterated forms of these substrates are similar to the corresponding k_{cat} values and the enzyme is predominantly in the oxidized state during turnover. During the reductive half-reaction, a transient intermediate is formed which is ascribed to the binary complex between reduced enzyme and the p-quinone methide of the alkylphenols. Addition of water to these quinoid species preferentially occurs after flavin reoxidation, followed by product release which completes the catalytic cycle. The kinetic mechanism of vanillyl-alcohol oxidase with 4-ethylphenol and 4-propylphenol is slightly different from that with 4-(methoxymethyl)phenol [6]. With the latter substrate, the p-quinone methide intermediate is considerably stabilized in the active site of the reduced enzyme, resulting in a true ternary complex mechanism. With 4-ethylphenol and 4-propylphenol, a more rapid decomposition of the reduced-enzyme-p-quinone-methide complex is observed resembling to some extent the sequence of events observed with vanillyl alcohol [6].

The crystal structure of vanillyl-alcohol oxidase has revealed that the active site is located in the interior of the protein and is shielded from solvent [9]. This corresponds to the observed enantioselective hydroxylation of 4-alkylphenols [15], which is indicative for an enzyme-mediated nucleophilic attack of water at the methide carbon. From the crystallographic data we have suggested that charge balancing between the side chain of Arg504 and the anionic reduced flavin might favor the stabilization of the neutral substrate quinone. Upon flavin reoxidation, this charge balancing is lost, facilitating water attack. However, in the enzymatic reactions with 4-ethylphenol and 4-propylphenol, addition of water to the quinone intermediate is less efficient than with 4-(methoxymethyl)phenol and significant amounts of vinylic phenols are formed [15]. It is not clear whether this competing rearrangement of the 4-alkylphenol p-quinone methide intermediates is related to the water accessibility of the active site. In this respect it is interesting to note that, in the reaction of vanillyl-alcohol oxidase with 2-methoxy-4-propylphenol, hardly any vinylic product is formed [15].

Reduction of vanillyl-alcohol oxidase by short-chain 4-alkylphenols is not very efficient as the reverse reaction can also proceed at a considerable rate. A similar reversible reduction was recently reported for yeast α-amino acid oxidase [18]. In contrast, with the natural substrate 4-(methoxymethyl)phenol, no significant reverse reduction of vanillyl-alcohol oxidase occurs [6]. For the related enzyme p-cresol methylhydroxylase, a reversible reduction of the flavin was also observed upon reaction with 4-ethylphenol, but the rate of reduction was several orders of magnitude higher [24]. With vanillyl-alcohol oxidase and similar to p-cresol methylhydroxylase, almost no kinetic deuterium isotope effect on k_{cat} was observed. Apparently, the hydrogen or deuterium abstracted from Cu of the substrate during reduction of the flavin is not necessarily involved in the reverse reaction. Possibly, there is an alternative source of hydrogen or the transferred hydrogen may be quickly exchanged. A possible residue involved in this may be Asp170, the side chain of which is located close to the Ca atom of the substrate and the $N5$ atom of the isoalloxazine ring [9].

In the reaction of vanillyl-alcohol oxidase with 4-methylphenol a rather slow reduction of the flavin was observed which was, however, too fast to account for the rate of overall catalysis. Moreover, with this substrate the enzyme is mainly in the reduced state during turnover, particularly at high pH. During the aerobic conversion of 4-methylenephon at pH 9.4, a fluorescent reduced enzyme species was stabilized with spectral features similar to that of 4-methylphenol-soaked vanillyl-alcohol oxidase crystals [9]. From this, and the fact that the spectral properties of the complex between vanillyl-alcohol oxidase and 4-methylenephon compare well with the recently identified FAD adduct in nitroalkane oxidase [23] and flavin adducts observed in lactate oxidase [21, 22], it is proposed that the stabilisation of the reduced form of the enzyme is due to the formation of an air-stable 4-methylenephon-$N5$-flavin adduct. A possible mechanism which accounts for this adduct formation is presented in Scheme 1. The first step of the proposed mechanism involves the transfer of a hydride from the Ca atom of the substrate to the $N5$ of the isoalloxazine ring. As a result, a binary complex between reduced enzyme and the p-quinone methide of 4-methylenephon is formed. In the second step, Asp170 acts as a base by abstracting a proton from flavin $N5$ thereby activating the cofactor for nucleophilic attack of the p-quinone methide intermediate.

Taken together, the results of this study indicate that, during the reaction of 4-methylenephon with vanillyl-alcohol oxidase, an $N5$ flavin adduct is formed which decomposes only slowly to form a product and hence limits turnover. Crystallographic data have suggested that for more bulky 4-alkylphenols, flavin adduct formation may be prevented by steric constraints [9]. However, the results presented here indicate that with both 4-ethylphenol and 4-propylphenol, an $N5$ flavin adduct is formed under anaerobic conditions. From this, it is reasonable to assume that $E_{ox} \rightarrow P$ in Eqn (2) represents this adduct. A similar mechanism as shown in Scheme 1 for 4-methylenephon may be operative for flavin adduct formation with 4-ethylphenol and 4-propylphenol. However, with the latter substrates, adduct formation is relatively slow in comparison with flavin reduction. Moreover, during turnover the enzyme is predominantly in the oxidized form. This indicates that, similar to the reaction with 4-(methoxymethyl)phenol [6], dioxygen reacts rapidly with $E_{cat} \rightarrow Q$. From the above

Fig. 5. Fluorescence properties of vanillyl-alcohol oxidase. The fluorescence emission spectra were recorded at 25°C. (1) 10 µM oxidized vanillyl-alcohol oxidase (pH 7.5), (2) 10 µM vanillyl-alcohol oxidase. After mixing with 0.5 mM 4-methylphenol (50 mM glycine/NaOH, pH 9.4) and (3) 10 µM vanillyl-alcohol oxidase, after mixing with 1.0 mM 4-ethylphenol under anaerobic conditions (pH 7.5). The excitation wavelength was 360 nm.
considerations it is concluded that in the reaction of vanillyl-alcohol oxidase with 4-ethylphenol and 4-propylphenol, flavin adduct formation is not of catalytic relevance.

Finally, from the results presented in this paper it is clear that vanillyl-alcohol oxidase and p-cresol methylhydroxylase differ significantly in their kinetic properties with short-chain 4-alkylphenols. Moreover, both covalent flavoenzymes use different electron acceptors for flavin reoxidation. In vanillyl-alcohol oxidase, the 8α-(N-histidyl)-FAD is reoxidized by molecular oxygen while in p-cresol methylhydroxylase, reoxidation of the 8α-O-tyrosyl-FAD is accomplished by a fast intramolecular electron transfer to the heme. It has been proposed that this latter process is facilitated by the 8α-O-tyrosyl-FAD phenolic ether bond [11]. Unlike p-cresol methylhydroxylase [16] and the related flavocytochrome 4-ethylphenol methane hydroxylase [25], vanillyl-alcohol oxidase is not involved in the biodegradation of 4-alkylphenols but instead is operative in the metabolism of 4-alkylphenols via the transient stabilization of their corresponding p-quinone methides. With the availability of the vanillyl-alcohol oxidase structure [9] and vaoA gene [12], it will be stimulating to unravel the molecular aspects of the substrate specificity and oxygen reactivity of this unusual flavoenzyme in further detail.

We are indebted to Maurice Franssen and Hugo Jongejans (Wageningen Agricultural University) for their help during the synthesis of deuterated substrates. We also thank Marleen Verheul (NIZO, Ede, The Netherlands) and Andrea Mattevi (University of Pavia, Italy) for fruitful discussions.

REFERENCES

Scheme 1.

