Hydrogenation of cyclohexene with LaNi$_{5-x}$Al$_x$H$_n$ metal hydrides suspended in cyclohexane or ethanol
Snijder, E.D.; Versteeg, Geert; Swaaij, W.P.M. van

Published in: Chemical Engineering Science

DOI: 10.1016/0009-2509(93)81064-3

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1993

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
HYDROGENATION OF CYCLOHEXENE WITH LaNi₅₋ₓAlₓHₓMETAL HYDRIDES SUSPENDED IN CYCLOHEXANE OR ETHANOL

E. D. SNIJDER, G. F. VERSTEEG† and W. P. M. VAN SWAAIJ
Twente University of Technology, Department of Chemical Engineering, PO Box 217, 7500 AE Enschede, The Netherlands

(First received 14 August 1992; accepted in revised form 8 January 1993)

Abstract—The hydrogenation of cyclohexene on the metal hydride forming alloys LaNi₅₋ₓAlₓ, LaNi₅₋₅Al, and LaNi₅, all suspended in cyclohexane and LaNi₅ suspended in ethanol, has been investigated. Two sources for hydrogen are recognized: hydrogen supplied by the gas phase and hydrogen which is available inside the metal hydride particles. For hydrogen which is supplied by the gas phase, the kinetics can be described with a two-site Langmuir-Hinshelwood relation, assuming a fast dissociative adsorption of hydrogen. The values of the rate constant, k, and adsorption coefficient for cyclohexene, KcycHₓ, are lower if the hydrogenation is carried out on the metal (α) phase of the metal alloys instead of on the hydride (β) phase. Also, increasing the aluminum content results in a decrease of k and KcycHₓ. In ethanol, a higher reaction rate constant and a lower adsorption coefficient were observed. The hydrogenation of cyclohexene with hydrogen provided by the metal hydride particles has been described with a combination of the rate equation for the hydrogenation and the relation for the hydrogen desorption from the hydride. It was found that the reaction rate decreases during the cyclohexene conversion, because the nature of hydride particles changes from the β into the α phase as the reaction proceeds. Initially, the hydrogenation is partly limited by the transport of hydrogen from the centre of the particle to the surface.

1. INTRODUCTION

Several metal alloys (e.g. FeTi, ZrNi, Mg₂Ni, LaNi₅) are able to form metal hydrides upon reaction with hydrogen. This reaction is reversible and proceeds mainly if the hydrogen pressure is above the equilibrium pressure Pₑ of the metal alloy. The value of Pₑ is characteristic for each alloy and depends on the composition of the alloy and on the temperature. Generally, the equilibrium pressure for hydrogen desorption from the metal hydride is lower than that for absorption in the metal. The amount of hydrogen absorbed by the metal is usually expressed with the storage capacity F, which is defined as the number of hydrogen atoms per atom of hydride-forming metal, e.g. La in LaNi₅. The maximum value of F for LaNi₅₋ₓAlₓ alloys depends on the aluminum content and varies in a slurry roughly between 5.5 for LaNi₅ and 5.0 for LaNi₅₋₅Al₀.₂

Many applications based on the reversible hydrogen absorption capacity of these materials have been explored. Well-known examples exist in the use in hydrogen storage equipment (Reilly, 1977), hydrogen recovery units (Holstvoogd et al., 1989) or in heat pumps (van Mal and Miedema, 1978). For more information on specific properties and applications of metal hydrides, the reader is referred to these articles.

Due to the active nickel component, application of these metal hydrides as catalysts also seems feasible. Soga et al. (1979) have reported on the hydrogenation of ethylene; more examples of gas-phase reactions are the synthesis of methanol (Baglin et al., 1981), am-

†Author to whom correspondence should be addressed.
hydrogenation of adsorbed cyclohexene, two different sources for hydrogen can be recognized:

— hydrogen entering from the gas phase into the liquid, where it adsorbs on the catalyst; in this case the hydride acts merely as a conventional catalyst;
— hydrogen provided by the metal hydride: the hydride is now both catalyst and hydrogen source.

In the latter case, there is no need for additional hydrogen supply as long as the amount of hydrogen in the metal hydride is still sufficient. Figure 2 shows concentration profiles of dissolved hydrogen and cyclohexene in the slurry for the situation in which hydrogen is supplied by both the gas phase and the hydride. A part of the metal hydride has already been converted into the metal. The concentrations \(C_{\text{eq},s} \) and \(C_{\text{eq},d} \) denote hydrogen concentrations in the liquid corresponding to the equilibrium pressures of the metal hydride during absorption, \(P_{\text{eq},s} \), or desorption, \(P_{\text{eq},d} \). The hydrogenation process consists of several mass transfer and reaction steps:

1. Mass transfer of hydrogen from gas to liquid, \(J_{H_2,a} \);
2. Mass transfer of hydrogen from liquid bulk to the hydride particles (equal to \(J_{H_2,u} \) when \(C_{\text{H}_2,l} \) is constant);
3. Adsorption of hydrogen on the surface of the hydride particles;
4. Dissociation of hydrogen molecules;
5. Mass transfer of cyclohexene from liquid bulk to the hydride particles;
6. Adsorption of cyclohexene on the surface of the hydride particles;
7. Transport of hydrogen atoms from the bulk to

\[
\begin{align*}
H_2(g) & \rightarrow H_2(l) \rightarrow H_2(s) \quad \text{dissolution in the solvent} \quad \text{(} J_{H_2} \}\quad \\
& \quad \downarrow \quad \text{adsorption} \\
& \quad \quad \quad \quad \text{MH}_n \quad \rightarrow \quad \text{MH}_n \cdot H_2^* \\
& \quad \quad \quad \quad \downarrow \quad \text{dissociation} \\
& \quad \quad \quad \quad \quad \quad \text{MH}_n \cdot 2H^* \quad \leftrightarrow \quad \text{MH}_n+2 \quad \text{absorption in metal hydride} \\
C_6H_{10}(l) & \rightarrow C_6H_{10}(s) \quad \quad \quad \text{R}_{C_6H_{10}} \\
& \quad \quad \quad \downarrow \quad \text{adsorption} \\
& \quad \quad \quad \quad \quad \quad \text{C}_6H_{10}^* \quad \quad \quad \text{R}_{C_6H_{12}} \\
& \quad \text{MH}_n \quad \rightarrow \quad \text{MH}_n \cdot 2H^* \quad \quad \quad \text{adsorption} \\
H_2^*, H^*, C_6H_{10}^* \text{ and } C_6H_{12}^* \text{: adsorbed species}
\end{align*}
\]

Fig. 1. Reaction scheme for cyclohexene hydrogenation.

Fig. 2. Film model representation for cyclohexene hydrogenation in a slurry.
the surface of the metal hydride particles, \(R_{\text{des}} \):

\(R_{\text{cat}} = J_{\text{H}_2}a + R_{\text{des}}. \)

(1)

Since hydrogen can be provided by the metal hydride or by the gas phase, the hydrogenation rate, \(R_{\text{cat}} \), is equal to the sum of the hydrogen dissolution rate in the slurry, \(J_{\text{H}_2}a \), and the rate of hydrogen desorption from the metal hydride, \(R_{\text{des}} \):

\(R_{\text{cat}} = J_{\text{H}_2}a + R_{\text{des}}. \)

(1)

However, since all processes act simultaneously, it is rather difficult to distinguish between the rates of different steps. In order to determine the mechanism of cyclohexene hydrogenation on a metal hydride, all steps have to be measured separately. The mass transfer rates for hydrogen (steps 1 and 2) and a rate equation for the desorption applying to the same experimental conditions (e.g. pressure, temperature and stirrer speed) as used in the present study have been described elsewhere (Snijder et al., 1992). The molar flows of the two components through the gas–liquid and liquid–solid interfaces follow the equations

\[
J_{\text{H}_2}a = k_a(C_{\text{H}_2,1} - C_{\text{H}_2,1}) \tag{2}
\]

\[
J_{\text{C}_{\text{6}}\text{H}_{10}} = k_a(C_{\text{C}_{\text{6}}\text{H}_{10},1} - C_{\text{C}_{\text{6}}\text{H}_{10},1}) - R_{\text{cat}}. \tag{3}
\]

Desorption can be described with a shrinking-core relation (Snijder et al., 1992)

\[
1 - (1 - X)^{1/3} = k_a \ln \left(\frac{C_{\text{eq},a}}{C_{\text{H}_2,1}} \right) t. \tag{5}
\]

Here it has been assumed that the particles are spherical. The fraction reacted, \(X \), is a function of the hydride capacity \(F \) according to

\[
X = 1 - \frac{F}{F_0}. \tag{6}
\]

The desorption rate \(R_{\text{des}} \) is related to \(dF/dt \) and, consequently, depends on \(k_a \) and \(\ln(C_{\text{eq},a}/C_{\text{H}_2,1}) \). This will be discussed in more detail in Section 4.

In order to investigate the mechanism of the hydrogenation of cyclohexene, experiments were performed at two extreme conditions:

- hydrogen is supplied entirely by the gas phase: the metal hydride acts as a conventional catalyst;
- (almost) all hydrogen is supplied by the metal hydride; the metal hydride is both catalyst and hydrogen supplier.

The first set of experiments provides the actual information on the kinetics and the mechanism of the reaction on a hydride-forming metal alloy. Desorption of hydrogen from the metal hydride has to be prevented in this case as will be elucidated in Section 2.3. The second set of experiments was carried out in order to investigate the contribution of the hydrogen desorption rate from the metal hydride to the overall hydrogenation rate.

2.2. Experimental set-ups and slurry preparation

Two parallel, almost identical, experimental set-ups have been used for the experiments. Figure 3 gives a schematic flow-sheet of the most comprehensive version (set-up I). Snijder et al. (1992) have described the hydrogen handling and reactor part; the set-ups as

\[
\text{P}_1 \quad \text{UFR} \quad \text{PC} \quad \text{V}_1 \quad \text{storage vessel} \quad \text{purge} \quad \text{vacuum pump} \quad \text{level} \quad \text{hot oil} \quad \text{membrane pump}
\]

Fig. 3. Experimental set-up: PI = pressure indicator; GC = gas chromatograph; dPR = differential pressure recorder; PC = pressure controller.
used in the present study are extended with cyclohexene injection and sampling equipment. The pretreatment of cyclohexene is similar to that of the other solvents (storage on mol sieves, degassing with oxygen-free nitrogen), but it is first passed through a column filled with active carbon and then, after the degassing, distilled in a 2 m long packed column under nitrogen atmosphere to remove small traces of stabilizer added by the supplier.

Cyclohexene injection is carried out with a pneumatic injector (set-up I) or with the help of a measuring tube (set-up II). The major difference between the two set-ups is the way of sampling. Set-up I contains a sample loop: the slurry is circulated with a membrane pump (Lewa EKM1-V) along a filter back into the reactor. A small stream of clean liquid flows through the filter, passes the sampling valve (1 µl internal sample loop) of a gas chromatograph (Varian 3400) and then flows back again into the main stream. Automatic sampling is performed by switching the valve. The time for a sample to flow from the reactor to the sampling valve was determined with residence time distribution experiments and was of negligible duration (about 3 s) in comparison with the reaction times (several hundred seconds). Samples from the reactor of the second set-up are taken through a capillary tube with a small filter at the end. The samples were injected by hand into the gas chromatograph.

The properties of the slurries, the suppliers of the chemicals and metal alloys and the activation method of the metal alloys have been given in detail by Snijder et al. (1992). Some characteristic properties of the metal hydrides (molar mass, surface area, density and average particle diameter, again based on spherical particles) are given in Table 1; Table 2 lists the experimental conditions applied.

2.3. Experimental procedure

First the experimental procedure is described for the determination of the hydrogenation kinetics of the reaction with hydrogen provided by the gas phase.

The nature of the metal depends on the hydrogen pressure applied. At pressures above the absorption equilibrium pressure, \(P_{\text{eq},a} \), the metal alloy is saturated with hydrogen and the solid material is in the hydride (\(\beta \)) phase. Hydrogen desorption will occur if the concentration close to the metal surface, \(C_{H_2,s} \), falls below the desorption equilibrium concentration, \(C_{\text{eq},d} \). Consequently, experiments above the equilibrium pressure have to be carried out at a high stirring speed (high mass transfer rates) and constant hydrogen pressure in order to keep the liquid saturated at concentrations above \(C_{\text{eq},d} \). If the applied hydrogen pressure is below the desorption equilibrium pressure, \(P_{\text{eq},d} \), the metal alloy contains only a small amount of absorbed hydrogen and it is in the metal (\(a \)) phase. No hydrogen desorption from the hydride can take place at such hydrogen pressures.

The hydrogenation is carried out as a batch experiment. After injection of a well-defined volume of cyclohexene, the pressure in the reactor is kept constant within about 0.02 bar by adding the consumed amount of hydrogen from a storage vessel, \(V_s \), via a pressure reduce valve. The reactor temperature and the pressure in the storage vessel are recorded and samples are taken from the slurry. The hydrogen consumption rate can be calculated according to

\[
J_{H_2,a} = -\frac{V_s}{z_\tau R T_s} \frac{dP_s}{dt}.
\]

Since, for quasi steady-state conditions, both molar flows as given by eqs (2) and (3) are equal to \(J_{H_2,a} \) (\(C_{H_2,l} \) is then constant), \(C_{H_2,l} \) can be eliminated. Assuming that the gas and liquid phases are in equilibrium at the interface, \(C_{H_2,l} \) can be obtained with Henry's law. The gas-phase hydrogen concentration \(C_{H_2,g} \) is calculated according to the gas law; the vapour pressure of cyclohexane has been taken into account:

\[
C_{H_2,l} = m_{H_2} C_{H_2,g} \quad \text{with} \quad C_{H_2,g} = \frac{P_s - P_{\text{eq},g}}{z_\tau R T_s}.
\]

<table>
<thead>
<tr>
<th>Material</th>
<th>(M_{\text{hydr}}) (kg/mol)</th>
<th>(A_{\text{hydr}}) (m²/kg)</th>
<th>(\rho_{\text{hydr}}) (kg/m³)</th>
<th>(d_p \times 10^6) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaNi₄.₈Al₀.₂</td>
<td>0.4261</td>
<td>360</td>
<td>8110</td>
<td>6</td>
</tr>
<tr>
<td>LaNi₄.₉Al₀.₁</td>
<td>0.4293</td>
<td>300</td>
<td>8200</td>
<td>9</td>
</tr>
<tr>
<td>LaNi₄</td>
<td>0.4325</td>
<td>310</td>
<td>8290</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume (m³)</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_s)</td>
<td>(T_s) 293–333 K</td>
</tr>
<tr>
<td>(P_s)</td>
<td>(P_r) 3–25 bar</td>
</tr>
<tr>
<td>(V_s)</td>
<td>(n) set-up I: high: 2000 rpm</td>
</tr>
<tr>
<td>(V_s)</td>
<td>low: 900 rpm</td>
</tr>
<tr>
<td>(V_s)</td>
<td>set-up II: 1000 rpm</td>
</tr>
</tbody>
</table>
Hydrogenation of cyclohexene with LaNi$_5$...Al,H$_x$ metal hydrides

Substitution of C_{H_2} into eq. (8) into eq. (2) then gives an expression for C_{H_2}:

$$C_{H_2,s} = \frac{m_{H_2} P_{H_2}}{\varepsilon_s R T_r} - J_{H_2} a \left(\frac{1}{k_a} + \frac{1}{k_{a,s}} \right).$$ \hspace{1cm} (9)

The experimental procedure for the determination of the mass transfer coefficients, k_a and $k_{a,s}$, and the results of these experiments have been presented by Snijder et al. (1992). Liquid samples which were taken during a hydrogenation experiment provide the cyclohexene concentrations. The hydrogenation rate can be derived from

$$R_{C_6H_{10}} = \frac{dC_{C_6H_{10}}}{dt}.$$ \hspace{1cm} (10)

In the situation in which hydrogen is provided by the hydride, the metal particles are first completely saturated with hydrogen. Experiments were carried out at lower stirrer speeds. Shortly before the cyclohexene injection, the hydrogen pressure was reduced to the absorption equilibrium pressure of the metal hydride at reaction temperature. No additional hydrogen was supplied to the reactor. In this situation the hydrogen flow into the liquid is very small, due to the small driving force for absorption and the low mass transfer coefficient. The reactor pressure and temperature were recorded; during the reaction, liquid samples were taken.

3. RESULTS

3.1. Introduction

Cyclohexene hydrogenation was investigated with several metal hydrides and solvents. The first experiments concern the reaction with LaNi$_5$H$_x$ ($n = 4.5-5.5$ for values of $P_{H_2} > P_{eq,a}$ and $n \approx 0$ when $P_{H_2} < P_{eq,a}$) in order to obtain the mechanism and kinetics of the reaction. Next, cyclohexene has been hydrogenated with hydrogen provided by the LaNi$_5$ hydride. Furthermore, the effect of nickel substitution by aluminum has been studied. Experiments were carried out with LaNi$_5$.Al$_{0.2}$ and LaNi$_5$.Al$_{0.1}$.

These alloys have lower equilibrium pressures than the original LaNi$_5$. Finally, cyclohexene was hydrogenated with LaNi$_5$ suspended in ethanol in order to investigate the effect of the solvent.

3.2. Hydrogenation of cyclohexene with LaNi$_5$H$_x$ suspended in cyclohexane

3.2.1. Hydrogen provided by the gas phase. As elucidated in Section 2.3, these experiments were carried out at high stirrer speeds and a constant hydrogen pressure. The cyclohexene concentration during the reaction can be calculated from the injected amount of cyclohexene and corrected for the amount of hydrogen consumed. Figure 4 gives an example at 313 K and 16 bar. A comparison between the calculated concentrations and the concentration of cyclohexene in the samples that were taken (included in Fig. 4 as well) shows that the concentrations in the samples are just somewhat below the calculated values. The slopes of both the curves are identical; consequently, it can be concluded that after a short induction period, hydrogen is provided by the gas phase. Initially, a small amount of cyclohexene was apparently converted, with hydrogen provided by the metal hydride. The hydrogenation rate of cyclohexene (slope of the curve) is constant at high cyclohexene concentrations and decreases at an increasing conversion. Similar behaviour was observed for other temperatures and pressures; the reaction order for cyclohexene obviously increases from zero initially to higher values at decreasing cyclohexene concentrations.

In order to obtain the reaction order in hydrogen, the hydrogen pressure was varied between 3 and 25 bar at various temperatures. The reaction rate of cyclohexene, $R_{C_6H_{10}}$, is for these experimental conditions equal to the hydrogen consumption rate, $J_{H_2} a$. In the region with a zero reaction order in cyclohexene $J_{H_2} a$ can be calculated with eq. (7), as demonstrated with the initial slope of the line in Fig. 4. The hydrogen concentration close to the surface, $C_{H_2,s}$, was determined by using eq. (9); Fig. 5 shows the results at 333 K. Between 32 and 39 mol/m3 there is a sharp discontinuity in the curve; these concentrations correspond to the equilibrium concentration for desorption and absorption, respectively, at 333 K ($P_{eq,a} = 6.6$ bar, $P_{eq,a} = 8.1$ bar), which are included in Fig. 5 as well. Due to the high mass transfer coefficient $k_{a,s}$, the value of $C_{H_2,s}$ appeared to be almost identical to the hydrogen concentration in the bulk of the liquid. However, for convenience, it was then assumed that the cyclohexene concentration close to the metal surface could also be considered equal to the bulk concentration $C_{H_2,o}$.

An explanation for the discontinuity in the reaction rate is the change in the nature of the alloy, which is dependent on the hydrogen pressure applied. As long as $C_{H_2,s} > C_{eq,a}$ (high-pressure experiments), the alloy remains in the β phase and cyclohexene is hydrogenated on the hydride surface, whereas at surface...
concentrations below $C_{eq,d}$ (low-pressure experiments) cyclohexene is hydrogenated on the metal. It also appeared that, although the reaction order for cyclohexene is initially zero both on the hydride and on the metal surface, the change in reaction order takes place at a lower cyclohexene conversion on the metal than on the hydride.

The reaction order for hydrogen can be obtained by plotting $\ln \left(\frac{R_{C_6H_{10}}}{mol/(m^2 s)} \right)$ against $\ln \left(C_{H_2,s} \right)$ mol/m3. The slope of the curve is approximately 1/2, indicating a reaction order in hydrogen of one-half. Figure 6 shows the half order dependence for temperatures between 303 and 333 K. Since the equilibrium pressures of LaNi$_5$ become too low at low temperatures, the hydrogenation on the metal phase could be investigated at several pressures only at 333 K. The reaction order appeared to be one-half as well. The slopes of the lines in Fig. 6 yield the reaction rate constants for the metal hydride. For the metal the rate constants have been obtained by dividing the rate $R_{C_6H_{10}}$ by $\sqrt{C_{H_2,s}}$. The rate constants k_r are formally taken per unit of external surface area and then multiplied by the specific liquid-solid interfacial area a_s in order to obtain a reaction rate per volume slurry. The equation which describes the hydrogenation at high cyclohexene concentrations reads

$$R_{C_6H_{10}} = k_r a_s \sqrt{C_{H_2,s}}.$$ \hspace{1cm} (11)

Figure 7 shows the temperature dependence of the rate constants divided by e_s, giving the following Arrhenius relations:

Reaction on metal surface:

$$\frac{k_r a_s}{e_s} = 3.69 \times 10^6 \exp \left(\frac{-34.9 \times 10^3}{RT} \right).$$

Reaction on hydride surface:

$$\frac{k_r a_s}{e_s} = 21.1 \times 10^6 \exp \left(\frac{-35.5 \times 10^3}{RT} \right).$$

It seems that the activation energies for the hydrogenation of cyclohexene on the hydride and on the metal phase of LaNi$_5$ are equal within the range of experimental accuracy.

3.2.2. Hydrogen provided by the metal hydride. At 333 K cyclohexene was hydrogenated with hydrogen which was provided by the metal hydride, the reactor pressure was initially 8.1 bar. The cyclohexene concentration as a function of the reaction time for such an experiment is illustrated in Fig. 8(a). During the reaction, the reactor pressure decreased as shown in Fig. 8(b). The corresponding amount of hydrogen which is provided by the gas phase is about 6% of the total amount required for the cyclohexene conversion. This means that almost all hydrogen is provided by the LaNi$_5$H$_x$. The change in the hydrogen absorption
Hydrogenation of cyclohexene with LaNi$_{3-x}$Al$_x$H$_4$ metal hydrides

Fig. 8. (a) Concentration of cyclohexene vs time when hydrogen is provided by the metal hydride, $T_r = 333$ K, $n = 900$ rpm. (b) Hydrogen storage capacity F and the reactor pressure vs time.

capacity F of the metal hydride can be derived from

$$F(t) = F_0 - \frac{2}{n_{\text{hydr}}} \left[(C_{C_6H_{10}} - C_{C_6H_{10}}(t))(1 - \xi_r)V_{rl} - \frac{[P_r,0 - P_r(t)]V_{rl}}{z_rRT_r} \right].$$

(12)

The result of these calculations is also depicted in Fig. 8(b). In contrast to the experiments where hydrogen is provided by the gas phase (Fig. 4), there appears to be no region where the reaction rate is constant; in fact, it decreases continuously as the reaction proceeds. This will be discussed in more detail in section 4.

3.3. Influence of aluminum in LaNi$_{3-x}$Al$_x$

The nickel in LaNi$_3$ can be substituted by aluminum up to a maximum of LaNi$_{3.5}$Al$_{1.5}$. This leads to a decrease of both the equilibrium pressures and the maximum absorption capacity. However, the stability of the material against disproportionation and subsequent loss of absorption capacity reduces if aluminum is present in the alloy (Goodell, 1984).

Hydrogenation experiments with LaNi$_{4.8}$Al$_{0.2}$ and LaNi$_{4.9}$Al$_{0.1}$ at hydrogen pressures above the absorption equilibrium pressure have produced comparable results as obtained with LaNi$_5$. The reaction order in cyclohexene was again initially zero and increases at decreasing cyclohexene concentration; however, the change in reaction order occurs at lower cyclohexene conversions. For hydrogen the reaction order was again one-half. There appeared to be a considerable difference in activities among the three alloys; Fig. 9 gives the results. The following Arrhenius relations have been derived for the reaction rate constants:

Reaction on LaNi$_{4.8}$Al$_{0.2}$:

$$\frac{k_r a_s}{\xi_s} = 18.4 \times 10^6 \exp \left(\frac{-39.0 \times 10^3}{RT} \right)$$

Reaction on LaNi$_{4.9}$Al$_{0.1}$:

$$\frac{k_r a_s}{\xi_s} = 3.69 \times 10^6 \exp \left(\frac{-31.9 \times 10^3}{RT} \right).$$
The differences between the activation energies for the hydrogenation of cyclohexene on the \(\beta \) phase of the alloys are only small: 39.0, 31.9 and 35.5 kJ/mol for \(\text{LaNi}_{4.8}\text{Al}_{0.2} \), \(\text{LaNi}_{5.0}\text{Al}_{0.1} \) and \(\text{LaNi}_5 \), respectively.

Since the equilibrium pressures of the aluminum-containing alloys are much lower, it was only possible to carry out the experiments at pressures below \(P_{eq} \) at 323 and 333 K and 3 bar. The results indicated again that the activity is strongly reduced when cyclohexene is hydrogenated on the metal phase of the alloys instead of on the hydride phase; however, there are too few datapoints to derive Arrhenius relations for the rate constants.

3.4. Influence of the solvent

With \(\text{LaNi}_5 \), several experiments were carried out in ethanol as solvent. After every reaction, the solvent and the reaction product were flushed out of the reactor and the reactor was refilled with ethanol; the metal alloy remained in the reactor. The reaction orders in hydrogen and cyclohexene are identical to those in cyclohexane as solvent. A comparison between the activity of \(\text{LaNi}_5 \) in cyclohexane and ethanol is included in Fig. 9, the activity in ethanol appeared to be higher than in cyclohexane. The rate constant was found to obey:

Reaction on \(\text{LaNi}_5 \) in ethanol:

\[
\frac{k_{\text{act}}}{n_s} = 15.1 \times 10^6 \exp \left(\frac{-33.4 \times 10^3}{RT} \right)
\]

Snijder et al. (1992) have reported that for hydrogen absorption in \(\text{LaNi}_5 \) suspended in the same solvents, the highest reaction rate constant was also obtained in ethanol. The influence of the solvent is obviously the same for both hydrogen absorption and cyclohexene hydrogenation. The activation energy is once again almost identical to the values obtained for the hydrogenation in the other slurries.

4. DISCUSSION

The results showed that the reaction order for cyclohexene increases from zero to higher values at decreasing cyclohexene concentration; this was also influenced by the aluminum content and the state of the alloy (\(\alpha \) or \(\beta \) phase). The reaction order for hydrogen is one-half in the zero-order region of cyclohexene for all metal alloys and both solvents at every applied temperature.

A mechanism which can describe these phenomena is based on the reaction scheme for the hydrogenation of an olefin, which was originally proposed by Polanyi and Horiuti. They assumed that the hydrogenation of a certain olefin (A) consists of four steps, where \(* \) denotes a free-surface site:

Step 1: \(\text{A} + 2* \rightarrow \text{A}^* \)

Step 2: \(\text{H}_2 + 2* \rightarrow 2\text{H}^* \)

Step 3: \(\text{A}^* + \text{H}^* \rightarrow \text{AH}^* + 2* \)

Step 4: \(\text{AH}^* + \text{H}^* \rightarrow \text{AH}_2 + 2* \).

Boudart and co-workers presented a series of studies on the hydrogenation of cyclohexene, both for gas- and liquid-phase reactions, on supported Pd and Pt catalysts (Segal et al., 1978; Madon et al., 1978; Gonz and Boudart, 1978). They evaluated several rate equations with a different rate-limiting step in this mechanism and concluded that at high pressure and temperature step 4 is rate-limiting and the first three steps are in equilibrium, resulting in a reaction order for hydrogen of one-half. Surface coverages of cyclohexene and hydrogen in the present study have been estimated by assuming Langmuir-type adsorption isotherms. If hydrogen adsorbs dissociatively on metal hydrides as well, two general rate equations can be derived, depending upon whether hydrogen and cyclohexene are thought to adsorb on the same type of active site or on two different sites:
Hydrogenation of cyclohexene with LaNi$_5$ - Al$_x$H$_y$ metal hydrides

One-site model:

$$R_{C_6H_{10}} = k_4a_2 \frac{K_{H_2} \sqrt{C_{H_2}} K_{C_6H_{10}} C_{C_6H_{10}}}{(1 + K_{H_2} \sqrt{C_{H_2}} + K_{C_6H_{10}} C_{C_6H_{10}})^2}$$ \(\text{(13)}\)

Two-site model:

$$R_{C_6H_{10}} = k_4a_2 \frac{K_{H_2} \sqrt{C_{H_2}} K_{C_6H_{10}} C_{C_6H_{10}}}{(1 + K_{H_2} \sqrt{C_{H_2}})(1 + K_{C_6H_{10}} C_{C_6H_{10}})}.$$ \(\text{(14)}\)

Based on the experimentally found change in reaction order for cyclohexene, it can be concluded that two different active sites are present on the surface, since a single-site model [eq. (13)] would predict a negative reaction order at high cyclohexene concentrations. Soga et al. (1979) have examined the hydrogenation of ethylene on LaNi$_5$ and also concluded that two different sites had to be present. The existence of two surfaces regions has been proposed, among others, by Wallace et al. (1979), who have found that on the surface of LaNi$_5$, after oxidation followed by reduction with hydrogen, La$_2$O$_3$ [or La(OH)$_3$] and Ni precipitates are formed. Hydrogen is thought to adsorb on the nickel sites, whereas cyclohexene may adsorb on the La$_2$O$_3$ sites.

The experimentally observed reaction orders can be obtained assuming that $K_{H_2} \sqrt{C_{H_2}} \ll 1$ (weakly bonded hydrogen). Consequently, the equation which describes the hydrogenation of cyclohexene on LaNi$_5$ - Al$_x$H$_y$ metal hydrides in either cyclohexene or ethanol reads

$$R_{C_6H_{10}} = k_4a_2 K_{H_2} \sqrt{C_{H_2}} \frac{K_{C_6H_{10}} C_{C_6H_{10}}}{1 + K_{C_6H_{10}} C_{C_6H_{10}}}.$$ \(\text{(15)}\)

At high cyclohexene concentrations, zero reaction order in cyclohexene can be observed and the apparent rate constant k in eq. (11) appears to be equal to $k_4K_{H_2}$. Competitive adsorption of the solvents on either of the two or on both types of surfaces will lead to a reduction of the reaction rate. Since the lowest rates were measured in cyclohexene, it is to be expected that cyclohexene is bonded more strongly on the surface. Some authors (e.g. Martin and Imelik, 1974; Chesters et al., 1986) suggest that, due to C-H: : M interactions, the bond between hydrocarbons and a metal surface (Ni, Cu, Pd) is indeed relatively strong.

With the experimentally determined dependency of the reaction rate ($R_{C_6H_{10}}$, exp.) and cyclohexene concentration, the adsorption coefficient for cyclohexene $K_{K_{C_6H_{10}}}$ and the reaction rate constant k_4a_2 can be fitted by minimization of $\chi^2 = (R_{C_6H_{10}}$, exp. $- R_{C_6H_{10}}$, fit$)^2$. $R_{C_6H_{10}}$, fit is calculated according to eq. (15). As elucidated previously, the reaction rate $R_{C_6H_{10}}$ is equal to the hydrogen consumption rate J_{H_2}, which can be determined with eq. (7). At the highest cyclohexene concentrations, the reaction rates as determined according to Fig. 4 have been used. For this two-parameter, one-dimensional fit problem, the method of Nealder Mead was applied (Press et al., 1986). The competitive adsorption of solvent molecules on the surface was not taken into account in these calculations.

A comparison between the experimentally determined dependence of $R_{C_6H_{10}}$ and $C_{C_6H_{10}}$ and the rates which have been calculated according to eq. (15) and the fitted k_4a_2 and $K_{C_6H_{10}}$ is shown in Fig. 10. The correspondence, especially at low concentrations, is very good. The deviation between the fitted and the experimentally determined curves at the highest concentrations is due to the fact that the reaction rates were approximated with a zero reaction order dependency on cyclohexene, which appears to be, according to Fig. 10, not completely correct. Using this method, the adsorption coefficient for cyclohexene can be determined for all the temperatures studied. The adsorption coefficients on LaNi$_{4.9}$Al$_{0.1}$ and LaNi$_5$ suspended in cyclohexane or ethanol were fitted at a pressure of 12 bar. Since for LaNi$_{4.9}$Al$_{0.2}$ most of the experiments were carried out at 8 bar, these data have been used. The results are presented in Fig. 11(a). Figure 11(b) shows the influence of the aluminum content and solvent. Average values for the fitted k_4a_2 and $K_{C_6H_{10}}$ are listed in Table 3. The adsorption coefficient for cyclohexene is influenced by the nature of the surface and the type of solvent. A higher aluminum content in the metal alloys leads to a decrease of the adsorption coefficient. Moreover, a reduction of the adsorption coefficient on LaNi$_5$ has been observed if this material changes into the α phase. Finally, ethanol instead of cyclohexane as solvent resulted in a lower adsorption coefficient.

The slope of the curves in Fig. 11 is according to e.g. Bond (1962) equal to $-\Delta H_\text{ads}/R$, with ΔH_ads the heat of adsorption. The calculated values for the $-\Delta H_\text{ads}$ (5-6 kJ/mol) were almost identical for all hydrides. The magnitude of $-\Delta H_\text{ads}$ is low in comparison with values obtained for adsorption of several comparable components out of the gas phase on a nickel surface.

![Fig. 10. Experimental and fitted reaction rates of cyclohexene hydrogenation on LaNi$_5$ at 323 K and 12 bar.](image-url)
Svoboda et al. (1970) reported values for $-\Delta H_a$ between 43 and 64 kJ/mol for adsorption of benzene on several types of Raney nickel. Barbérics and Tétényi (1972) have carried out investigations on benzene and cyclohexane adsorption on nickel and nickel oxide surfaces and concluded that the $-\Delta H_a$ was almost equal for both compounds. Their values for $-\Delta H_a$ vary between 18 and 28 kJ/mol, depending upon temperature and coverage. The difference between the $-\Delta H_a$ values as obtained in the present study and in the
other investigations may be attributed to the fact that in the present study the cyclohexene is in the liquid phase and surrounded by solvent molecules. The difference between the two free energy values should then be about equal to the heat of solvation of gaseous cyclohexene into cyclohexene or ethanol. This heat of solvation is related to the heat of condensation of cyclohexene (≈ -33 kJ/mol); the agreement is apparently fairly good.

From the results, it can be concluded that the hydrogenation includes adsorption of hydrogen and cyclohexene on two different surface sites, which are assumed to be Ni and La₂O₃ [for La(OH)₃] regions. This implies that the reaction can take place only on the boundary between these regions. As elucidated above, the rate-limiting step in the reaction is the addition of the second hydrogen atom to the half-hydrogenated cyclohexene molecule. Since it was observed that the activation energy was almost independent of the aluminum content in the hydride, type of solvent or state of the alloy (α or β phase), it can be concluded that the nature of the surface regions where the reaction takes place is unaffected by these parameters. The lower reaction rates on the aluminum-containing alloys can then be explained by assuming that Al₂O₃ is present on the boundary between the reactive La₂O₃ and Ni sites. The reaction area is consequently smaller and the hydrogenation rate decreases. When the alloy is in the β phase, more nickel sites might be in an activated state, resulting in a higher reaction rate. Finally, the presence of these Al₂O₃ regions results in a lower adsorption coefficient for cyclohexene on the surface. The lower adsorption coefficient of cyclohexene in ethanol as solvent indicates that the binding strength between cyclohexene and LaNi₅ is weaker in ethanol than in cyclohexane. This may be the reason for the higher reaction rate in ethanol.

The hydrogenation of cyclohexene with hydrogen provided by the LaNi₅ proceeds according to a different mechanism. The reaction rate of cyclohexene, which, according to eq. (10), is equal to the slope of the curve in Fig. 8(a), decreases continuously. In order to describe this process, the rate equation for the hydrogenation as derived above and the relation for the desorption of hydrogen form the hyride particles have been combined. Equations (5) and (6) give the relation between F and Cₜₜ, Cₑq,d, kₖ and t. Differentiation of eq. (5), followed by rearranging, yields an expression for the desorption rate Rₜₜ:

\[Rₜₜ = \frac{\epsilonₚP_{hydr}}{2M_{hydr}} \frac{dF}{dt} = \frac{\epsilonₚP_{hydr}}{2M_{hydr}} 3kₖ \ln \left(\frac{Cₑq,d}{Cₜₜ} \right)F \frac{1}{3}F \frac{2}{3}. \]

The desorption rate is equal to Rₕₕ - Jₕₕ [eq. (1)], whereas Jₕₕ is in this case related to the pressure drop in the reactor according to

\[Jₕₕ = - \frac{Vₕₕ}{zₕRTVₕₜ} \frac{dPₕₕ}{dt}. \]

Since Rₕₕ = Jₕₕ and F [eq. (12), shown in Fig. 8(b)] can be obtained from experimental data, the surface concentration Cₑq,d is the only unknown parameter. Further rearranging of eq. (16) provides a relation for Cₑq,d:

\[Cₑq,d/Cₜₜ = \exp \left[\frac{2M_{hydr}(Rₕₕ - Jₕₕ)}{\epsilonₚP_{hydr}3kₖF \frac{1}{3}F \frac{2}{3}} \right]. \]

With the experimental datapoints as depicted in Figs 8(a) and (b) and eqs (17) and (18), the surface concentration has been obtained, as shown in Fig. 12. The largest difference between Cₑq,d and Cₑq,d is found at the start of an experiment. Here the hydrogenation rate is somewhat limited by the transport of hydrogen from the centre of the hydride particles to the surface. At increasing cyclohexene conversion, the difference becomes relatively small and almost constant. The hydrogenation rate is now almost completely limited by the reaction between the adsorbed cyclohexene and hydrogen.

The values for Cₑq,d and the cyclohexene concentrations can also be substituted in eq. (15). For the hydrogenation on the α and on the β phase of LaNi₅, the fitted values (kₖ, dₕ, and kₕₕ) as listed in Table 3 have been used. The derived theoretical reaction rates can be compared with the experimentally observed rates as demonstrated in Fig. 13. It is clear that the experimental reaction rate varies between the two theoretical rates. Since the LaNi₅ is initially (high cyclohexene concentration) completely in β phase, it is to be expected that the experimental rate is in good agreement with the theoretical rate for the hydrogenation on the β phase of the LaNi₅. Since the liquid is saturated at the absorption equilibrium pressure, the initial hydrogen concentration in the solvent is higher than that calculated according to eq. (18). This explains the somewhat higher hydrogenation rate at the start of the experiment. During the reaction hydrogen is consumed and the hydride particles are gradually

Fig. 12. Calculated hydrogen concentration close to the surface according to eq. (18).
4.1 \[\text{the surface, but at higher cyclohexene conversions the rate is limited by the surface reaction.} \]

Acknowledgements—These investigations were supported by the Foundation for Chemical Research in the Netherlands (S.O.N.) and DSM. We also acknowledge H. J. Bakker, J. W. Dijkstra, Y. S. R. van Es, W. de Jong and T. D. Nauta for their contribution to the experimental work, and K. van Bree, S. Kuipers, A. H. Pleiter, A. Schanssema and H. J. Vunderink for their technical support.

Fig. 13. Comparison between the measured and the calculated hydrogenation rates when hydrogen is provided by \(\text{LaNi}_5\).

converted into the \(\alpha \) phase of \(\text{LaNi}_5\). The reaction proceeds on these particles according to the lower curve in Fig. 13. The change in the nature of the particle surface from the \(\beta \) to the \(\alpha \) phase during the hydrogenation of cyclohexene is apparently the reason for the continuous decrease of the reaction rate.

5. **CONCLUSIONS**

The mechanism and kinetics of cyclohexene hydrogenation on \(\text{LaNi}_{5-x}\text{Al}_x\text{H}_4 \), with \(x = 0, 0.1 \) and 0.2, have been investigated in a slurry reactor. Hydrogenation experiments were carried out with hydrogen supplied by the gas phase or by the metal hydride. The mechanism could be described with a Langmuir-Hinshelwood type of kinetic equation, assuming a fast dissociative adsorption of hydrogen and adsorption of cyclohexene on two different sites:

\[
R_{\text{C}_6\text{H}_{10}} = k_{\text{a}} a \sqrt{C_{\text{H}_2}} \frac{K_{\text{C}_6\text{H}_{10}} C_{\text{C}_6\text{H}_{10}}}{1 + K_{\text{C}_6\text{H}_{10}} C_{\text{C}_6\text{H}_{10}}}.
\]

Both the reaction rate constant and the adsorption coefficient for cyclohexene decrease at increasing aluminum content in the alloy. Also, a reduction of the reaction rate and adsorption coefficient was found when the material changes from the \(\beta \) phase into the \(\alpha \)-phase. Using ethanol as solvent results in a higher reaction rate constant than in cyclohexane, but the adsorption coefficient is lower.

The hydrogenation of cyclohexene with hydrogen provided by the \(\text{LaNi}_5\) hydride can be described according to a mechanism which combines the rate equation for the hydrogenation and the relation for desorption of hydrogen from the metal hydride particles. As the reaction proceeds, the surface of the particles changes from the \(\beta \) into the \(\alpha \) phase; consequently, the reaction rate decreases continuously. Initially, the hydrogenation rate is partly limited by the transport of hydrogen from the bulk of the particles to the surface, but at higher cyclohexene conversions the rate is limited by the surface reaction.

NOTATION

- \(\alpha \) specific interfacial area, \(m^2/m^3 \text{slurry} \)
- \(A_{\text{hydr}} \) surface area of the metal particles, \(m^2/kg \)
- \(C \) concentration, \(mol/m^3 \)
- \(d_p \) particle diameter, \(m \)
- \(F \) hydrogen absorption capacity, number of \(\text{H atoms/La atom} \)
- \(\Delta H_\text{a} \) heat of adsorption, \(\text{kJ/mol} \)
- \(J \) molar flux, \(mol/(m^2 s) \)
- \(k_d \) reaction rate constant for desorption, \(1/s \)
- \(k_r \) reaction rate constant based on surface area, \(\text{mol}^{0.5}/(m^{0.5}s) \)
- \(k_a \) reaction rate constant based on surface area, \(\text{mol}/(m^2 s) \)
- \(k_1 \) gas–liquid mass transfer coefficient (hydrogen), \(m/s \)
- \(k_s \) liquid–solid mass transfer coefficient (hydrogen), \(m/s \)
- \(k'_s \) liquid–solid mass transfer coefficient (cyclohexene), \(m/s \)
- \(K \) adsorption coefficient, \(m^3/mol \) or \(m^{1.2}/\text{mol}^{0.5} \)
- \(m \) solubility coefficient \((= C_{\text{H}_2}/C_{\text{H}_2,\text{eq}}) \), dimensionless
- \(M \) molecular mass, \(\text{kg/mol} \)
- \(n \) number of moles, \(\text{mol} \)
- \(n \) stirrer speed, \(\text{rpm} \)
- \(P \) pressure, \(\text{bar} \)
- \(R \) reaction rate, \(\text{mol}/(m^3\text{slurry s}) \)
- \(R \) gas constant, 8.3143 \(\text{J/(mol K)} \)
- \(t \) time, \(s \)
- \(T \) temperature, \(K \)
- \(V \) volume, \(m^3 \)
- \(X \) fraction reacted, dimensionless
- \(\varepsilon \) compressibility factor, dimensionless
- \(\rho \) density, \(\text{kg/m}^3 \)
- \(\chi \) minimization function, \(\text{mol}/(m^3 s) \)

Greek letters

- \(\epsilon \) volume fraction, dimensionless
- \(\rho \) density, \(\text{kg/m}^3 \)
- \(\chi \) minimization function, \(\text{mol}/(m^3 s) \)

Subscripts/superscripts

- \(a \) absorption
- \(d, \text{des} \) desorption
- \(e, \text{eq} \) equilibrium
- \(g \) gas
- \(\text{hydr} \) hydride
- \(i \) at the interface
- \(l \) liquid
- \(r \) reactor
- \(s \) solid
Hydrogenation of cyclohexene with $\text{LaNi}_5 - \text{AlH}_x$ metal hydrides

sl slurry
vap vapour
0 at $t = 0$

REFERENCES

Madon, R. J., O'Connel, J. P. and Boudart, M., 1978, Catalytic hydrogenation of cyclohexene II. Liquid phase reaction on supported platinum in a gradient less slurry reactor. A.I.Ch.E. J. 24, 904–911.

