Different aspects of hyperthermic isolated limb perfusion
Ginkel, Robert Johannes van

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2002

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
FDG-PET to evaluate response to hyperthermic isolated limb perfusion for locally advanced soft-tissue sarcoma

Robert J. van Ginkel¹
Harald J. Hoekstra¹
Jan Pruim²
Omgo E. Nieweg¹,³
Willemina M. Molenaar⁴
Anne M.J. Paans²
Anton T.M. Willemsen²
Wim Vaalburg²
Heimen Schraffordt Koops¹

Department of Surgical Oncology¹, PET Center² and Department of Pathology⁴, University Hospital Groningen, The Netherlands and Department of Surgery³, The Netherlands Cancer Institute, Amsterdam, The Netherlands.

Abstract

We investigated FDG-PET in patients undergoing hyperthermic isolated limb perfusion (HILP) with TNF, IFN and melphalan for locally advanced soft-tissue sarcoma of the extremities. Twenty patients (11 women, 9 men; aged 18-80 yrs, mean age 49 yrs) were studied. FDG-PET studies were performed before, 2 and 8 weeks after HILP. After the final PET study, the tumor was resected and pathologically graded. Patients with a pathologically complete response (pCR) showed no viable tumor after treatment. Those with a pathologically partial response (pPR) showed various amounts of viable tumor in the resected tumor specimens. Seven patients showed a pCR (35%) and 12 patients showed a pPR (60%). In one patient, pathological examination was not performed (5%). The pre-perfusion glucose consumption in the pCR group was significantly higher than in the pPR group (p<0.05). Visual analysis of the PET images after perfusion showed a rim of increased FDG uptake around a core of absent FDG uptake in 12 patients. The rim signal contained a fibrous pseudocapsule with inflammatory tissue in the pCR group, but viable tumor tissue was seen in the pPR group. The glucose consumption in the pCR group at 2 and 8 weeks after perfusion had decreased significantly (p<0.05) compared with the glucose consumption in the pPR group. Based on the pretreatment glucose consumption in soft-tissue sarcomas, one could predict the probability of a patient achieving a complete pathologically response after TNF HILP. FDG-PET indicated the pathologic tumor response to HILP, although the lack of specificity of FDG, in terms of differentiation between an inflammatory response and viable tumor tissue, hampered the discrimination between pCR and pPR.

Introduction

Malignant soft-tissue sarcomas are a heterogeneous group of lesions that all arise from tissue of mesenchymal origin and are characterized by aggressive local growth and hematogenic metastases. They account for 1% of all malignant tumors and have an incidence rate of 2 per 100,000. About 60% of these tumors occur in the extremities and are often quite large at diagnosis.¹ Limb-saving treatment of extremity soft-tissue sarcomas is a multidisciplinary matter, with surgery and radiotherapy as the usual treatment protocol.²,³ This combination therapy has avoided ablative surgical procedures in the majority of patients.

The majority of locally advanced extremity soft-tissue sarcomas are treated by amputation. Intra-arterial chemotherapy with adriamycin, combined with preoperative radiotherapy, surgery and postoperative radiotherapy is effective in the treatment of locally advanced soft-tissue sarcoma, but significant morbidity does occur.⁴ Recently Eilber et al. reported a complete response rate of 49% and a limb-saving rate of 98%
FDG-PET to evaluate response to TNF perfusion

with neo-adjuvant chemotherapy and radiation for high-grade extremity soft-tissue sarcoma with low treatment morbidity. Hyperthermic isolated limb perfusion (HILP) also proved to be of value in the treatment for locally advanced extremity soft-tissue sarcoma. With HILP, chemotherapeutic tissue concentrations may be up to 20 times higher than can be attained with systemic administration. The introduction of recombinant tumor necrosis factor-alpha (TNF), interferon-gamma (IFN) and melphalan in regional perfusion represents a promising new development. With this perfusion regimen, a complete response rate of 55% and a partial response rate of 40% can be reached in the treatment of locally advanced soft-tissue sarcoma of the extremities with a limb-saving rate of 90%. Since 1991, this perfusion strategy has been used at our institution for these types of soft-tissue sarcomas.

PET enables visualization and quantification of metabolic processes in vivo. Fluorine-18-2-fluoro-2-deoxy-D-glucose (FDG) has proven to be of value in the visualization of various types of tumors. The use of FDG is based on Warburg’s observation of increased glycolysis in cancer cells. The citric acid cycle, which is more efficient in adenosine tri-phosphate generation, is suppressed. As a result, cancer cells accumulate the glucose analog FDG which is trapped intracellularly as FDG phosphate. FDG-PET can visualize soft-tissue sarcomas, indicate the malignancy grade and detect locally recurrent disease. Various clinical reports suggest the feasibility of FDG-PET to assess tumor response to radiotherapy and chemotherapy. This particular application of PET as a noninvasive technique to evaluate the outcome of such often aggravating and expensive therapy may have a significant effect on patient management. Ineffective treatment could be adjusted or discontinued in an early stage and effective treatment could be continued with confidence.

The perfusion protocol provides us with histology before and after regional chemotherapy. The tumor responses to this regional drug treatment are variable. This clinical setting creates an opportunity to investigate the value of a noninvasive diagnostic technique in the determination of tumor response to chemotherapy. The aim of the present study was to investigate FDG-PET in patients undergoing HILP for locally advanced soft-tissue sarcoma and to correlate PET findings with histology before and after treatment.

Materials and methods

Patients

Twenty (11 women, 9 men, aged 18-80 yrs, mean age 49 yrs) patients with biopsy-proven soft-tissue sarcomas were entered in the study. Informed consent was obtained from each patient. The diagnosis of the tumors was determined in a standard fashion and graded according to Coindre. Thirteen patients presented with a newly
diagnosed soft-tissue sarcoma (65%) and seven patients with a local recurrence (35%),
that had been previously treated with surgery alone. Nineteen tumors were located in
the lower limb (95%), and one patient (5%) had a sarcoma located in the right elbow.
All tumors were considered primarily irresectable because of size, their multicentricity
in the limb or fixation to the neurovascular bundle or bone. Median tumor size was
8.5 cm (range 2-30 cm). To render the tumors resectable for limb salvage, patients
were treated with HILP.

Treatment protocol
HILP is based on the technique developed by Creech and Krementz.23 Briefly, after
ligation of all collateral vessels and heparinization of the patient with 3.3 mg heparin/
kg bodyweight (Thromboliquine, Organon BV, Oss, the Netherlands), the axillary,
iliac, femoral or popliteal vessels were cannulated and connected to an extracorporeal
circuit. The perfused limb was wrapped in a thermal blanket to reduce heat loss and
a tourniquet was applied at the root of the extremity to minimize leakage of the
perfusate into the systemic circulation. Perfusion was performed during 90 min under
mild hyperthermia (39-40°C) and physiologically optimal conditions.24 At the start
of perfusion, 3 mg (upper extremity) or 4 mg (lower extremity) TNF (Boehringer,
Ingelheim, Germany) were injected as a bolus into the arterial line. Melphalan
(Burroughs Wellcome, London, England) was administered 30 min later, 10 mg/L
extremity volume (leg) or 13 mg/L extremity volume (arm).25 Since all perfusions
were performed in a Phase II clinical trial, the initial 13 patients in the PET study
also received a dose of 0.2 mg INF (Boehringer, Ingelheim, Germany) subcutaneously
1 and 2 days before perfusion, followed by 0.2 mg INF injected into the arterial line
at the start of perfusion. The final seven patients in the PET study did not receive the
INF. This alteration in treatment schedule was due to the decision of the trial
commission to investigate the additional effect of INF in the perfusion regiment
while the PET study was still in progress.
All perfusions were performed with a bubble oxygenator roller pump and heat
exchanger. The perfusate was oxygenated by a mixture of O₂ and CO₂ and consisted
of 350 ml 5% dextran 40 in glucose 5% (Isodex, Pharmacia AB, Uppsala, Sweden),
500 ml blood (250 ml red blood cells, 250 ml plasma), 30 ml 8.4% NaHCO₃, 0.5 ml
5000 IU/ml heparin. After 90 min of perfusion, the limb was flushed with 2 liters
dextran 40 in glucose 5% (Isodex, Pharmacia AB, Uppsala, Sweden) and 500 ml
blood (250 ml red blood cells, 250 ml plasma), catheters were removed, the circulation
restored and the heparin antagonized with protamine chloride (Hoffman La Roche,
Mijdrecht, the Netherlands). A lateral fasciotomy of the anterior compartment of the
lower leg or arm was performed to prevent a compartment syndrome.26 Approximately
8 weeks after perfusion (median 61 days, range 43-106 days) the residual tumor masses were excised and pathologically examined.

Pathological examination

The tumor was measured in three dimensions and the percentage of necrosis estimated. Representative tumor sections were taken, encompassing macroscopically different tumor areas, including necrosis. Generally, one section per centimeter largest diameter with a minimum of three was taken. Based on an integration of gross and microscopic findings, a final estimate of the percentages of viable and necrotic or regressive tumor was made. If possible, macroscopic examination and tissue sampling were performed based on the latest PET images. The results were classified as either pathologically complete response (pCR) or pathologically partial response (pPR), when remaining viable tumor was observed.

PET imaging

Patients were scheduled for three PET studies: shortly before perfusion (median 14 days, range 1-30 days), two weeks after perfusion (median 13 days, range 7-27 days) and shortly before resection of residual tumor tissue (median 55 days, range 42-77 days after perfusion). FDG was routinely produced by a robotic system following the procedure as described by Hamacher with a radiochemical purity of more than 98%. PET sessions were performed using a Siemens ECAT 951/31 PET-camera (Siemens/CTI, Knoxville, USA).

All patients fasted for at least 6 hours before the investigation. Serum glucose levels were measured before each PET session and were found to be normal. A 20-gauge needle was inserted into the radial artery under local anesthesia. In the contralateral arm, an intravenous canula was inserted in the cephalic vein for the injection of the FDG. The patients were positioned supine in the camera, with the tumor in the field of view based on physical examination.

After attenuation scanning using 68Ge/68Ga source, 370 MBq (10mCi) FDG were administered intravenously over 1 min. Dynamic images were acquired from the time of injection after a dynamic protocol (five 1-min, five 2-min, five 3-min, two 5-min, two 10-min, for a total duration of 60 min). Simultaneously, 2-ml blood samples were taken from the arterial canula (time points 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 10, 15, 25, 35, 45 and 55 min post-injection). The blood samples were centrifuged and plasma activity was assessed using a well counter that was cross-calibrated with the positron camera. Whole-body images were obtained after dynamic scanning. Total time for the imaging procedure was approximately 2.5 hours.
Chapter 6

Data analysis
Images were displayed in coronal, sagittal and transaxial projections on a computer display applying standard ECAT software (Siemens/CTI, Knoxville, USA) and interpreted independently by two experienced physicians. Before perfusion, the tumor location was first defined in all relevant tomographic planes of the study. Each tumor was outlined automatically with a threshold technique that defines its contours at a manually chosen percentage of the maximum number of counts per pixel. The level of the threshold was chosen with the purpose to match the size of the region of interest with the tumor size as outlined by MRI or CT. For each patient, a fixed percentage (median 40, range 30-60) was used in all planes. All pixels above the threshold were used for the calculation. An average time-activity curve as well as the total volume of the lesion was obtained. Combining the averaged time-activity data with the plasma input data, the average metabolic rate of glucose consumption (MR$_{\text{glc}}$) in µmol/100g tumor tissue /min was calculated using Patlak analysis, assuming a lumped constant of 0.42.28,29 After perfusion, this threshold technique could not be used since large areas of the tumors became inactive. The MR$_{\text{glc}}$ after perfusion was therefore calculated by placing multiple regions of interest (ROI) over the original tumor in all relevant planes of the study. Consequently, the necrotic parts of the tumor that originated after perfusion were incorporated in this calculation. The MR$_{\text{glc}}$ in the active parts of the tumor after perfusion was calculated separately with the ROI technique. The change in MR$_{\text{glc}}$ after perfusion was related to the pre-perfusional value and expressed as a percentage of basal value.

Visual evaluation of the PET studies was performed by quantifying the degree of viable (active areas on the PET studies) and necrotic tumor (inactive areas) as a percentage before and after perfusion.

Statistical analysis
Statistical procedures included a two-factor experiment with repeated measures on one factor to compare glucose consumption between measures and groups. Analyses were performed on datasets corrected for missing data according to Winer.30 Posthoc comparison was made with Student t-tests. A p-value < 0.05 was considered significant. SPSS/PC$^+$ statistical software was used.

Results
The tumor characteristics, PET results and pathological response for each patient are summarized in Tables 1 and 2. Pathological examination of the residual tumor mass showed no viable tumor in seven patients (pCR 35%). In twelve patients, variable amounts of viable tumor were found (pPR 60%). The pPR group also included one
Table 1. Tumor characteristics for each patient.

<table>
<thead>
<tr>
<th>Pat. Nr.</th>
<th>Histology</th>
<th>Grade</th>
<th>Number of lesions (MRI)</th>
<th>Lesion diameter (cm)</th>
<th>Perfusion agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rhabdomyosarcoma</td>
<td>Primary</td>
<td>3</td>
<td>10</td>
<td>TNF, IFN, Melphalan</td>
</tr>
<tr>
<td>2</td>
<td>Dedifferentiated myxoid liposarcoma</td>
<td>Recurrent</td>
<td>3</td>
<td>20</td>
<td>TNF, IFN, Melphalan</td>
</tr>
<tr>
<td>3</td>
<td>Myxoid liposarcoma</td>
<td>Recurrent</td>
<td>1</td>
<td>15</td>
<td>TNF, IFN, Melphalan</td>
</tr>
<tr>
<td>4</td>
<td>Peripheral neuroectodermal tumor</td>
<td>Primary</td>
<td>3</td>
<td>8</td>
<td>TNF, IFN, Melphalan</td>
</tr>
<tr>
<td>5</td>
<td>Malignant fibrous histiocytoma</td>
<td>Primary</td>
<td>1</td>
<td>5</td>
<td>TNF, IFN, Melphalan</td>
</tr>
<tr>
<td>6</td>
<td>Malignant fibrous histiocytoma</td>
<td>Recurrent</td>
<td>1</td>
<td>4</td>
<td>TNF, IFN, Melphalan</td>
</tr>
<tr>
<td>7</td>
<td>Synoviosarcoma</td>
<td>Primary</td>
<td>1</td>
<td>8</td>
<td>TNF, IFN, Melphalan</td>
</tr>
<tr>
<td>8</td>
<td>Myxoid chondrosarcoma</td>
<td>Primary</td>
<td>3</td>
<td>8</td>
<td>TNF, IFN, Melphalan</td>
</tr>
<tr>
<td>9</td>
<td>Malignant fibrous histiocytoma</td>
<td>Primary</td>
<td>2</td>
<td>19</td>
<td>TNF, IFN, Melphalan</td>
</tr>
<tr>
<td>10</td>
<td>Malignant fibrous histiocytoma</td>
<td>Recurrent</td>
<td>1</td>
<td>24</td>
<td>TNF, IFN, Melphalan</td>
</tr>
<tr>
<td>11</td>
<td>Malignant schwannoma</td>
<td>Recurrent</td>
<td>1</td>
<td>7</td>
<td>TNF, IFN, Melphalan</td>
</tr>
<tr>
<td>12</td>
<td>Malignant fibrous histiocytoma</td>
<td>Primary</td>
<td>1</td>
<td>9</td>
<td>TNF, IFN, Melphalan</td>
</tr>
<tr>
<td>13</td>
<td>Myxoid liposarcoma</td>
<td>Primary</td>
<td>3</td>
<td>2</td>
<td>TNF, IFN, Melphalan</td>
</tr>
<tr>
<td>14</td>
<td>Dedifferentiated liposarcoma</td>
<td>Primary</td>
<td>1</td>
<td>17</td>
<td>TNF, IFN, Melphalan</td>
</tr>
<tr>
<td>15</td>
<td>Leiomyosarcoma</td>
<td>Primary</td>
<td>3</td>
<td>12</td>
<td>TNF, IFN, Melphalan</td>
</tr>
<tr>
<td>16</td>
<td>Angiosarcoma</td>
<td>Primary</td>
<td>3</td>
<td>30</td>
<td>TNF, IFN, Melphalan</td>
</tr>
<tr>
<td>17</td>
<td>Malignant schwannoma</td>
<td>Recurrent</td>
<td>1</td>
<td>8</td>
<td>TNF, IFN, Melphalan</td>
</tr>
<tr>
<td>18</td>
<td>Well differentiated liposarcoma</td>
<td>Primary</td>
<td>1</td>
<td>29</td>
<td>TNF, IFN, Melphalan</td>
</tr>
<tr>
<td>19</td>
<td>Malignant fibrous histiocytoma</td>
<td>Primary</td>
<td>4</td>
<td>5</td>
<td>TNF, IFN, Melphalan</td>
</tr>
</tbody>
</table>

* Multiple small lesions of the lower leg (0.5 - 2 cm); TNF = tumor necrosis factor; IFN = interferon
Table 2 PET results and pathological response for each patient

<table>
<thead>
<tr>
<th>Visual evaluation of the PET studies</th>
<th>Metabolic rate of glucose (µmol/100g/min)</th>
<th>Pathological evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pat. no.</td>
<td>Before HILP</td>
<td>After HILP</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>100%</td>
<td><10%</td>
</tr>
<tr>
<td>2</td>
<td>100%</td>
<td><10%</td>
</tr>
<tr>
<td>3</td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>4</td>
<td>100%</td>
<td><10%</td>
</tr>
<tr>
<td>5</td>
<td>100%</td>
<td><10%</td>
</tr>
<tr>
<td>6</td>
<td>100%</td>
<td><10%</td>
</tr>
<tr>
<td>7</td>
<td>100%</td>
<td><10%</td>
</tr>
<tr>
<td>8</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>9</td>
<td>100%</td>
<td><10%</td>
</tr>
<tr>
<td>10</td>
<td>100%</td>
<td><10%</td>
</tr>
<tr>
<td>11</td>
<td>100%</td>
<td><10%</td>
</tr>
<tr>
<td>12</td>
<td>100%</td>
<td><10%</td>
</tr>
<tr>
<td>13</td>
<td>100%</td>
<td><10%</td>
</tr>
<tr>
<td>14</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>15</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>16</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>17</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>18</td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>19</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>20</td>
<td>80%</td>
<td><20%</td>
</tr>
</tbody>
</table>

* = percentage of tumor volume active on PET study; pCR = pathologically complete response; pPR = pathologically partial response; n.p. = not performed; n.q. = no quantification
FDG-PET to evaluate response to TNF perfusion

Forty-nine of the scheduled 60 PET studies were completed (82%). Seven PET studies were not performed due to patient-related problems. Technical problems prevented quantification of PET data in four studies. Before perfusion, all tumors were easily visualized on the baseline FDG-PET images. Twelve patients showed a homogeneous active tumor on the preperfusion PET study, whereas eight patients also showed inactive parts in the tumors before perfusion. Visual analysis of the PET images at 2 and 8 weeks after perfusion showed a rim of increased FDG uptake around a core of absent FDG uptake in 12 patients (5 of 7 pCR, 7 of 12 pPR). The active rim corresponded in the pCR patients with a fibrotic vascular pseudocapsule with reactive inflammatory tissue, surrounding a core of absent FDG uptake representing necrosis (Fig. 1). In patients with pPR, the active rim was found to contain both viable tumor and an inflammatory response. Thus, the rim signal could correspond with either viable tumor or a pseudocapsule with an inflammatory reaction. In seven patients the tumor was visualized after perfusion as a homogeneous mass without the rim-core configuration (2 of 7 pCR, 5 of 12 pPR). After perfusion, the amount of active parts in the tumor declined significantly in 11 patients, corresponding with no or less

Fig 1 Transversal image of a malignant fibrous histiocytoma of the lower leg in Patient 5. Before perfusion (A) the tumor is clearly depicted as a homogeneous mass with a glucose uptake of 36.3 µmol/100g tissue/min. Two (B) and 8 weeks after perfusion (C), the glucose uptake in the tumor decreased to 5.0 and 4.3, respectively. The center of the tumor became inactive surrounded by an active rim. Pathological examination revealed complete response. The rim signal corresponded with a fibrotic vascular pseudocapsule with inflammatory tissue surrounding a core of necrosis.
than 20% viable tumor tissue in the pathological specimens in each of these patients. In two patients (Patients 3, 8) who also showed a good pathological response, the PET study did not confirm this result. On histological examination, regressive tumor tissue with an inflammatory reaction was found in Patient 3 and areas of viable tumor accompanied by inflammatory tissue were found in Patient 8. The PET studies correctly indicated moderate pathological outcome in six patients. Overall, 17 of 19 responses were correctly indicated by FDG-PET (89%), but the discrimination between no and small amounts of viable tumor could not be made.

Pre-perfusion glucose consumption in the patients who ultimately had pCR was significantly higher (p<0.05) than the pPR group (Fig. 2). At 2 and 8 weeks postperfusion the MRglc in the pCR group had decreased significantly (p<0.05) in contrast to the MRglc in the pPR group (Fig. 2). The most substantial decrease in MRglc occurred within 2 weeks after perfusion. Figure 3 shows the percentage of basal value of the tumor after perfusion. Patients in the pCR group showed a trend towards a more reduced percentage of basal values than the pPR patients. Three different histopathological groups could be distinguished after perfusion: necrotic tissue, represented by the core MRglc of the pCR and pPR group, viable tumor in combination with an inflammatory response, represented by the rim MRglc of the pPR group and inflammatory with pseudocapsular tissue, represented by the rim MRglc of the pCR group. The average MRglc in necrotic tissue was significantly lower (p<0.05) than the values in tumor and inflammatory tissue, which were in the same range (Fig. 4).

Fig. 2 MRglc of the tumor with S.D. before, 2 and 8 weeks after perfusion. Before perfusion, the MRglc in the pCR group was significantly higher than in the pPR group (p<0.05). Two and 8 weeks after perfusion, the MRglc in the pCR group decreased significantly (p < 0.05) in contrast to the pPR group. HILP = hyperthermic isolated limb perfusion.
FDG-PET to evaluate response to TNF perfusion

Discussion
PET has made it possible to study biochemical changes of cancer tissue and to study the effect of treatment on metabolism in vivo. The present study demonstrates substantial decrements in the glucose metabolism of soft-tissue sarcomas with a pathologically complete response after perfusion with TNF. These changes were already evident within 2 weeks. In patients with a pPR, this decrease was less pronounced. An active rim with an inactive core was seen in 13 out of 20 patients after perfusion. Pathological examination showed that areas of absent intratumoral FDG uptake were consistent with necrotic tissue. The rim signal represented either viable tumor or a fibrous pseudocapsule with inflammatory tissue. Unfortunately, FDG-PET could not discriminate a complete response from a partial response due to the overlap in glucose metabolism between viable tumor and inflammatory tissue. An explanation for the observed rim-core pattern can be found in the working mechanism of TNF. Briefly; TNF exposure invokes an altered endothelial cell phenotype, anticoagulant mechanisms are suppressed and tissue factor is produced, which leads to fibrin accumulation at the endothelial cell surface and thrombus
formation in the tumor vessels, causing circulatory stasis and ischemia inside the tumor followed by necrosis of the tumor cells adjacent to the occluded vessels.31 Necrotic tissue is unable to accumulate FDG and represents the core on the PET image. The central necrosis elicits an inflammatory response with the formation of a fibrous pseudocapsule. This is reflected by the rim on the PET image in the pCR group. On the other hand, peripheral tumor cells may obtain enough nutrients from the surrounding environment to survive. This is reflected by the rim signal in patients with pPR. Jones et al. also found an active rim with FDG-PET after neo-adjuvant chemotherapy of soft-tissue sarcomas. In their patients, the rim signal did not signify viable tumor but only a fibrous pseudocapsule.32 FDG accumulation in active inflammatory lesions is in concordance with the observation of Tahara et al. who found an increased glucose uptake in abdominal abscesses.33 Kubota et al. also found a high accumulation in macrophages and granulation tissue in a microautoradiographic study.34 They state that one should consider not only the tumor cells as FDG uptake source, but also the non-neoplastic cellular elements, that may accompany tumor growth or necrosis. These phenomena will occur particularly in tumors subjected to treatment. The fact that both viable tumor and inflammatory tissue accumulate FDG is one of the major limitations of FDG as the radiopharmaceutical for cancer treatment evaluation.

One pCR patient showed an elevated MR$_{\text{glc}}$ 8 weeks after perfusion, in another pCR patient, the MR$_{\text{glc}}$ did not decrease 2 weeks after perfusion. These observations could be explained by the inflammatory cell invasion in the tumor. Beside the early vascular phenomenon, a subsequent immune effect with polymorphonuclear cell binding to the activated endothelium is another mechanism contributing to the anti-tumor effect of TNF.35-37 This homing of inflammatory cells in the tumor may be responsible for a high MR$_{\text{glc}}$ after perfusion in these two patients. This is in concordance with the observation that FDG uptake was diffusely increased in the remainder of the perfused leg. This phenomenon is thought to be caused by the diffuse inflammatory reaction that follows perfusion.

Quantitative analysis demonstrated that the pre-perfusion MR$_{\text{glc}}$ in the pCR group was significantly higher than in the pPR group. Thus, high MR$_{\text{glc}}$ appears to predict a good response to TNF perfusion. Since glucose uptake in soft-tissue sarcoma correlates well with the malignancy grade of the tumor, high grade tumors could be more susceptible to TNF perfusion.16,17 In 17 of 19 (89\%) patients the visual evaluation of the PET studies corresponded well with the pathological response. In two patients with a good pathological response, the PET study did not confirm this. In both patients areas of inflammatory tissue were found on histological examination corresponding with active areas on the PET scan and therefore resulted in an overestimation of
active tumor on the PET scans. Although visual evaluation gave a good indication of
the pathological outcome, the use of FDG-PET in routine clinical monitoring of
response of soft-tissue sarcomas to isolated limb perfusion is hampered by this overlap
between malignant tumor and inflammatory tissue.
Several other investigators have studied whether FDG-PET can be used to monitor
treatment for cancer. FDG uptake was found to decrease as early as 5 days after the
start of systemic therapy for breast cancer. 20,38 A change in FDG uptake was found to
better predict the ultimate outcome than change in tumor size. Decrease in FDG
uptake was more prominent in patients who responded favorably to radiotherapy or
chemotherapy for head and neck cancer compared to non-responding patients.18,39
Similar findings have been reported in other types of tumors and using a variety of
therapeutic schedules.19,40-43 These studies have in common that post-treatment PET
data were correlated with findings of physical examination, radiographic studies or,
at best, fine needle aspiration of the tumor mass, following generally accepted
guidelines.44 In none of these studies have the PET findings been verified by rigorous
microscopic examination of the whole tumor as the gold standard as we have done in
the present study. Our approach appears worthwhile, since change in tumor volume
and viability are not very well correlated. A palpable mass that remains after treatment
may consist of necrosis and fibrosis without viable tumor. On the other hand, viable
tumor may still remain when a palpable tumor that is visible on radiographic images
disappears after treatment. If one wants to investigate whether PET signifies an
improvement over radiographic techniques in the evaluation of treatment, it seems
less appropriate to use those same radiographic techniques as the reference standard.
Our results should be interpreted with caution. Our patient population was limited in
that it was a heterogeneous group of soft-tissue sarcomas and only large tumors were
included (median 8.5 cm). Additional data are needed on FDG-PET in more patients
with other tumor types treated with other drugs. Other PET tracers, such as labeled
aminoacids and 11C-thymidine, may be more suitable to distinguish between tumor
and inflammatory response.

Conclusion
The present study demonstrated that FDG-PET indicates the pathologic tumor
response to chemotherapy in an investigational setting used with isolated limb
perfusion for locally advanced soft-tissue sarcomas. The discrimination between viable
tumor and inflammatory tissue after perfusion treatment, however was hampered by
the limited specificity of FDG. A search for more specific tracers to monitor pathologic
tumor response is needed.
References

FDG-PET to evaluate response to TNF perfusion

