CHAPTER III

Impact of the Mg$^{2+}$-citrate transporter CitM on heavy metal toxicity in Bacillus subtilis

Bastiaan P. Krom, Henry Huttinga, Jessica B. Warner and Juke S. Lolkema

This chapter has been submitted for publication.
Abstract

Bacillus subtilis possesses a secondary transporter CitM that is specific for the complex of citrate and Mg\(^{2+}\) but is also capable of transporting citrate in complex with the heavy metal ions Zn\(^{2+}\), Ni\(^{2+}\) and Co\(^{2+}\). We report on the impact of CitM activity on the toxicity of the heavy metals Zn\(^{2+}\), Ni\(^{2+}\) and Co\(^{2+}\) in *B. subtilis*. In a CitM deletion mutant or under conditions when CitM is not expressed, the toxic effects of the metals were reduced by the presence of citrate in the medium. In contrast, the presence of citrate dramatically enhanced toxicity when the Mg\(^{2+}\)-citrate transporter was present in the membrane. It is demonstrated that the complex of Ni\(^{2+}\) and citrate is transported into the cell and that the uptake is responsible for the enhanced toxicity. At toxic concentrations of the metal ions, the cultures adapted by developing resistance against these ions. Resistant cells isolated by exposure to one of the metal ions remained resistant after growth in the absence of toxic metal ions, and were cross-resistant against the other two toxic ions. Resistant strains were shown to contain point mutations in the *citM* gene, which resulted in premature termination of translation.
Introduction

A limited number of bacteria of the genera *Pseudomonas*, *Citrobacter*, *Bacillus* and *Klebsiella* have been described that transport metal-citrate complexes across the cytoplasmic membrane into the cell (1, 3, 5, 10). The Mg\(^2+\)-citrate transporter CitM of *Bacillus subtilis* is the best studied example and accepts the toxic heavy metal ions Zn\(^{2+}\), Ni\(^{2+}\) and Co\(^{2+}\) instead of Mg\(^{2+}\) in the metal-citrate complex (7). Bacteria capable of taking up and metabolizing heavy metal ions complexed to citrate have been implicated in preventing the mobilization of toxic metals from waste dumps (5). Alternatively, these organisms may play a role in bioremediation of heavy metal polluted sites by active accumulation of the toxic ions after heterotrophic leaching with citrate (14, 18).

Transport of citrate across the cytoplasmic membrane is an active process mediated by a designated transporter protein. All known bacterial citrate transporters are secondary transporters that use the energy stored in electrochemical gradients of protons or sodium ions to drive uptake. Most citrate transporters recognize free citrate, but it has long been known that in *B. subtilis* citrate transport is dependent on the presence of divalent cations (1). Two transporters, members of a distinct transporter family (2) mediate transport of Me\(^{2+}\)-citrate into the cell. The transporters, CitM and CitH, have complementary metal ion specificity; CitM transports complexes of citrate with Mg\(^{2+}\), Mn\(^{2+}\), Zn\(^{2+}\), Ni\(^{2+}\), and Co\(^{2+}\) while CitH transports complexes of citrate with Ca\(^{2+}\), Sr\(^{2+}\) and Ba\(^{2+}\) (7). CitM is the transporter responsible for growth of *B. subtilis* on citrate as the carbon and energy source. Expression of CitM is under strict control of the medium composition (17). The transporter is induced by citrate via a two component system (19) and repressed by rapidly metabolized substrates like the sugars glucose, glycerol, and inositol, but also by succinate/glutamate. Disruption of the *ccpA* gene, coding for a central component of the carbon catabolite repression system (CCR), was shown to relieve the repression. The physiological function of CitH is not known.

B. subtilis expressing CitM is potentially useful in the removal of Zn\(^{2+}\), Ni\(^{2+}\), and Co\(^{2+}\) from wastewater e.g. obtained after heterotrophic leaching. Potential drawback is increased toxicity of the heavy metal ions when the transporter is active. Moreover, increased toxicity may induce resistance mechanisms that may compromise the application. In this paper we evaluate the impact of CitM activity on metal ion toxicity and the development of resistance in *B. subtilis* when Zn\(^{2+}\), Ni\(^{2+}\), and Co\(^{2+}\) are present in the growth medium. It is demonstrated that CitM dramatically enhances the toxicity of the metal ions in the presence of citrate, but the cells rapidly adapt to the hostile environment by inactivation of the CitM transporter.
Materials and Methods

Bacterial strains, media and growth conditions

The *B. subtilis* strains 168 (*trpC2*), CM010 (*trpC2 ccpA::Tn917 spc amyE::PcitM-lacZ*; (17) and CITMd (*trpC2 ΔcitM ery*; Prof. Sekiguchi, Shinshu University, Japan) were routinely grown at 37ºC while shaking vigorously in flasks containing Luria Bertani broth (LB) or LB supplemented with 10 mM citrate. When appropriate, erythromycin, chloramphenicol and spectinomycin were added at a final concentration of 0.3 µg/ml, 5 µg/ml and 100 µg/ml, respectively. Metals were added as MeCl₂ dissolved in Milli-Q and autoclaved. Citrate was added from a 1 M stock solution of tri-sodium citrate pH 6.5, dissolved in Milli-Q that was autoclaved separately. Cultures were inoculated with overnight cultures grown in LB at a dilution of 1:100. Zn²⁺, Ni²⁺, and Co²⁺-resistant strains (MeR strains; see below) were isolated as follows. LB medium supplemented with 10 mM citrate and 0.6 mM ZnCl₂, 1 mM NiCl₂, or 0.4 mM CoCl₂, respectively, was inoculated with a single colony from an LB plate containing strain CM010. After growth for 24 h, the cells were plated on LB and single colonies were selected for further experiments. Growth was monitored by measuring the optical density at 660 nm (OD₆₆₀) using a Hitachi U-1100 spectrophotometer. The growth rate was inferred from the exponential part of the growth curve.

Uptake in whole cells

[1,5-¹⁴C]citrate (114 mCi/mmol) or ⁶³NiCl₂ (1 mCi/mg) (Amersham Pharmacia Biotech) uptake were performed according to the rapid-filtration method as described previously with minor modifications (8). Briefly, cells were harvested by centrifugation and washed once with ice-cold 50 mM PIPES pH 6.5 after which they were resuspended to an OD₆₆₀ of 10. Cells were diluted 10-fold in 50 mM PIPES pH 6.5 and 100 µl samples were incubated 8 min at 30°C while stirring magnetically. At time zero, [1,5-¹⁴C]citrate or ⁶³NiCl₂ were added yielding a final concentration of 4.4 µM and 12.5 µM, respectively. Uptake was stopped by the addition of 2 ml ice-cold 0.1 M LiCl solution, immediately followed by filtering through a 0.45 µm pore-size nitrocellulose filter. The filter was washed once with 2 ml ice-cold 0.1 M LiCl, after which the filters were submerged in scintillation fluid and the retained radioactivity was counted in a liquid scintillation counter. The background was estimated by adding the radio labeled substrate to the cell suspension after the addition of 2 ml ice-cold LiCl, followed by immediate filtering.

β-galactosidase assay

B. subtilis strain CM010 contains the lacZ gene fused behind the promoter region of CitM (*PcitM-lacZ*) integrated in the *amyE* locus of a CcpA deficient strain (17). The β-galactosidase activity was measured by harvesting one ml of culture by centrifugation for 5 min in an Eppendorf tabletop centrifuge operated at 14,000 rpm. Cell extracts were obtained by lysozyme treatment, and β-galactosidase activity was determined using o-nitrophenyl-β-D-galactopyranoside as the substrate as described previously (11).
Cloning of citM from MeR strains

Escherichia coli strain DH5α (Invitrogen) was used for cloning and sequencing purposes and routinely grown in LB medium containing ampicillin at a concentration of 100 µg/ml. Chromosomal DNA of three MeR strains was isolated using a standard protocol. A 2.1 kb fragment containing the promoter region of *citM* (*P*_{citM}) and the *citM* gene was amplified by PCR using *Pwo* DNA polymerase for high fidelity amplification (Roche Molecular Biochemicals, Mannheim Germany). The forward primer (5’-CTCCAAGGAATTCCAGACGTTGCATTGCC-3’) introduced an *Eco*RI site (italic) and the backward primer (5’-GCTCTAGATCATCGGAAATAGAGATCGCA-3’) introduced a *Xba*I site (italic) downstream of the stop codon (17). The PCR fragment of 2.1 kb was digested with *Eco*RI and *Xba*I and ligated into pBluescript SK− (Stratagene, La Jolla, USA) digested with the same enzymes. Subsequently, using a unique internal *Nco*I site, two fragments of 0.8 and 1.3 kb were subcloned into pBluescript SK+ and pET302 (16), respectively, and sequenced (Baseclear, Leiden, The Netherlands).
Results

The effect of citrate on metal ion toxicity in B. subtilis.

B. subtilis 168 was grown in LB containing increasing concentrations of Zn$^{2+}$, Ni$^{2+}$ and Co$^{2+}$ (Figure 1, ■). The growth rate started to decrease at a concentration of 0.4 mM ZnCl$_2$ and growth was abolished at 1 mM ZnCl$_2$. The effect of NiCl$_2$ was less dramatic; the growth rate decreased at concentrations higher than 1 mM and no growth was observed above 2.5 mM. CoCl$_2$ appeared the most toxic with a severe effect on the growth rate at a concentration as low as 0.6 mM CoCl$_2$. Therefore, toxicity of the metal ions for growth of *B. subtilis* in LB medium in the absence of citrate decreased in the order Co$^{2+}$$>Zn^{2+}$$>Ni^{2+}$.

Addition of citrate to the growth medium may have two effects. One, it will chelate divalent metal ions, thereby reducing the concentration of free ions, and, second, it may induce expression of the Mg$^{2+}$-citrate transporter CitM which introduces an entrance pathway for the Me$^{2+}$-citrate complex. To separate the two effects, the toxicity of Zn$^{2+}$, Ni$^{2+}$ and Co$^{2+}$ in the presence of citrate was first investigated using a CitM deletion strain of *B. subtilis* (strain CITMd, a gift from Prof. Sekiguchi, Shinshu University, Japan). Citrate protected *B. subtilis* CITMd against the toxic effects of the three metal ions (Figure 1, ▼). Significant growth of strain CITMd was observed at a concentrations of 1 mM ZnCl$_2$ when the medium was supplemented with 10 mM citrate, while no growth was observed of the wild type strain at the same concentration in the absence of citrate. Similarly, while *B. subtilis* 168 ceased to grow in the presence of NiCl$_2$ and CoCl$_2$ concentrations of 2.5 and 1 mM, respectively, significant growth of strain CITMd was observed in the presence of citrate. At higher metal concentrations the growth rate of CITMd in the presence of citrate was affected for all metals tested, most likely because the citrate concentration was no longer sufficient to chelate all of the metal ions.

Surprisingly, the toxicity of Zn$^{2+}$, Ni$^{2+}$ and Co$^{2+}$ in the presence of citrate was not significantly different for wild type *B. subtilis* and the CitM deletion strain.
Control experiments demonstrated that CitM was not expressed when grown in LB medium supplemented with citrate. The activity of CitM is routinely measured by the uptake of 14C-citrate in the presence of Ni$^{2+}$ after growth of \textit{B. subtilis} on minimal media (7, 17). The CitM deletion strain grown in minimal media was completely devoid of 14C-citrate uptake activity in the presence of Ni$^{2+}$ (not shown) and, similarly, wild type cells grown in LB medium did not show any uptake of 14C-citrate (Figure 2A, ●).

Figure 2. Uptake of [1,5-14C]citrate and 65Ni$^{2+}$ in resting cells. Uptake of [1,5-14C]citrate in the presence of 1 mM NiCl$_2$ (A) and 65Ni$^{2+}$ in the presence of 100 µM citrate (B) in the wild type strain (●) and the CcpA deficient strain CM010 (▼) grown in LB containing 10 mM citrate was measured in 50 mM PIPES buffer pH 6.5.

Toxicity of Me$^{2+}$-citrate in the CcpA deficient strain CM010

\textit{B. subtilis} strain CM010 is deficient in CcpA, a central component in carbon catabolite repression (CCR) in \textit{B. subtilis}. Growth of the CM010 strain in LB medium resulted in significant uptake of 14C-citrate in the presence of Ni$^{2+}$, indicative of functional expression of CitM (Figure 2A, ▼). Apparently, expression of CitM in LB medium is repressed by the CCR system. To demonstrate that expression of CitM under these conditions resulted in enhanced uptake of toxic metal ions, uptake of 65Ni$^{2+}$ was measured. While the wild type showed no uptake of 65Ni$^{2+}$ in the presence of citrate, the CcpA deficient strain revealed significant 65Ni$^{2+}$ uptake activity (Figure 2B).

In the absence of citrate, the toxicity of Zn$^{2+}$, Co$^{2+}$, and Ni$^{2+}$ for the CcpA deficient \textit{B. subtilis} strain was similar as observed for the wild type strain (compare Figures 3A and 1A, ■ for Zn$^{2+}$). In contrast, in the presence of citrate, already low concentrations of the toxic ions had a dramatic effect on the growth behavior of the CcpA deficient strain. For instance, 0.2 mM ZnCl$_2$ hardly effected growth in the absence of citrate while in the presence of citrate the strain failed to grow for about 4 h after which growth resumed (Figure 3). At higher concentrations of ZnCl$_2$ in the growth medium, the lag time seemed to increase. Similar observations were made for media containing Co$^{2+}$ and Ni$^{2+}$. Clearly, during the first hours of incubation, the presence of citrate dramatically increased the toxicity of the metal ions in case of the CcpA deficient strain, while the opposite was observed in case of the CitM deficient strain and the wild-type strain. The enhanced toxic effects of
the heavy metal ions in the CcpA deficient strain correlated with the presence of CitM activity and enhanced uptake of Ni\(^{2+}\) in the cells (Figure 2).

Figure 3. Growth of the CcpA deficient strain CM010 in LB (A) and LB containing 10 mM citrate (B) and concentrations of ZnCl\(_2\) of 0.0 (○), 0.2 (●), 0.4 (▼), 0.6 (■), 0.8 (♦), and 1.0 (▲) mM. In the absence of added metal ions, the growth rates in the absence (A) and presence of citrate (B) were similar (1.3 h\(^{-1}\)).

Development of Me\(^{2+}\) resistance

The recovery of growth of the CcpA deficient strain CM010 in the presence of the toxic Me\(^{2+}\)-citrate complexes after a prolonged lag-time suggested the development of increased resistance against the Me\(^{2+}\). Growth of the CM010 strain in the presence of citrate and 0.6 mM Zn\(^{2+}\) resulted in a lag-phase of 6-7 h (Figure 3, ■). After 24 h of growth, the culture reached a similar cell density as a culture with no Zn\(^{2+}\) added. The overnight culture grown in the presence of 0.6 mM Zn\(^{2+}\) was used to inoculate LB containing 10 mM citrate in the absence and presence 0.6 mM Zn\(^{2+}\). In the presence of Zn\(^{2+}\), the long lag-phase as observed on day one was absent, and the growth rates in the two media were indistinguishable (not shown). Clearly, the culture had adapted to the presence of Zn\(^{2+}\) in the medium by developing a higher resistance against Zn\(^{2+}\). The same phenomenon was observed for Co\(^{2+}\) and Ni\(^{2+}\) when present at toxic levels in the growth medium.

Cells taken from cultures adapted to toxic levels of 0.6 mM Zn\(^{2+}\), 0.4 mM Co\(^{2+}\), or 1 mM Ni\(^{2+}\) were plated on LB plates yielding single colonies (MeR strains ZnR, CoR, and NiR, respectively). A single colony of each of the resistant strains was grown for several generations in the absence of the metal ions after which the cells were grown under the original toxic conditions. All three strains were still resistant indicating that the resistance was stable. The three MeR strains were tested for cross-resistance against the other metal ions. Overnight cultures of single colonies were diluted 1:100 in fresh LB containing 10 mM citrate and 0.6 mM ZnCl\(_2\), 1 mM NiCl\(_2\), or 0.4 mM CoCl\(_2\). In all cases, the lag-time observed for the CM010 strain was absent (not shown). In conclusion, a strain with increased resistance against one of the metal ions was also resistant against the two others.

Resistance mechanism

In the presence of citrate, strain CM010 showed \(^{63}\)Ni\(^{2+}\) uptake with an initial rate of 1.6 nmol/min·mg protein (Figure 2B). In contrast, none of the MeR strains showed any \(^{63}\)Ni\(^{2+}\) uptake activity. Apparently, the MeR strains had lost
their ability to accumulate the toxic metal ions. Similarly, in the presence of NiCl₂, CM010 took up ¹⁴C-citrate with an initial rate of 0.2 nmol/min mg protein, while the MeR strains did not take up ¹⁴C-citrate under the same conditions. The lack of Ni²⁺-dependent citrate uptake and citrate-dependent Ni²⁺ uptake in the MeR strains indicated the absence of active CitM in the cell membrane, which allowed the MeR strains to grow in higher concentrations of Me²⁺ in the presence of citrate than the parental CM010 strain.

Table 1. CitM promoter activities in MeR strains. β-galactosidase activity of B. subtilis strains containing a PcitM-lacZ promoter fusion was measured after 7 h of growth in LB medium in the presence or absence of 10 mM citrate.

<table>
<thead>
<tr>
<th>Strain</th>
<th>citrate in the medium</th>
<th>LacZ activity (MU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM010</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>26</td>
</tr>
<tr>
<td>ZnR</td>
<td>+</td>
<td>21</td>
</tr>
<tr>
<td>CoR</td>
<td>+</td>
<td>21</td>
</tr>
<tr>
<td>NiR</td>
<td>+</td>
<td>20</td>
</tr>
</tbody>
</table>

The stability of the resistance of the MeR strains suggested that the lack of CitM activity was due to the lack of synthesis of CitM in the cell which may be due to mutations in the two-component sensory system CitST, in the promoter region, or in the structural citM gene. Strain CM010 and, therefore, the MeR strains, contain a fusion of the citM promoter region and the gene coding for β-galactosidase lacZ integrated in the chromosome at a location distant from the citM gene (PcitM-lacZ promoter fusion; (17)). The promoter fusion was used to test the integrity of the two-component system. The β-galactosidase activity of CM010 cells grown in LB medium in the absence of citrate was very low, while growth in the presence of citrate resulted in β-galactosidase activities of 26 Miller units (Table 1). The MeR strains revealed β-galactosidase activities in the presence of citrate similar as observed for the parental CM010 strain indicating a functional CitST two-component system.

Subsequently, the citM promoter region in front of the citM gene as well as the structural gene of CitM was amplified from two independent MeR strains using PCR and the nucleotide sequence was determined. The promoter region of citM contains the CitT binding site (19), the transcription start point, the Catabolite Responsive Element (CRE-site) (17) and the ribosomal binding site; all elements involved in the transcription of citM. Sequencing of the promoter region of the two MeR strains revealed no mutations (not shown). Sequencing of the citM gene revealed that in both cases a single point mutation had occurred. One strain contained a C to A mutation in the TAC codon for Phe at position 349 resulting in a TAA stop codon at that position. The other strain contained a G to T mutation in the GAA codon for Glu at position 199 also resulting in a stop codon.
Conclusion and Discussion

One approach in the bioremediation of heavy metal polluted sites and wastewater is the use of chelating agents (14). The use of citrate as the chelator may be particularly interesting, since citrate, on the one hand, may be produced in situ by specific microorganisms (e.g. (18)) while, on the other hand, some microorganisms are capable of accumulating heavy metals complexed to citrate (10). Combination of the two processes would result in a complete cycle of bioremediation in which the toxic metal, in the first step, is mobilized from the contaminated site by binding to citrate, and, in the second step, is recovered from the leachate by bioaccumulation. B. subtilis expressing the Mg2+-citrate transporter CitM could potentially be useful in the latter step as the transporter accepts the toxic heavy metal ions Zn2+, Co2+, and Ni2+ instead of Mg2+ in the complex with citrate (7). Potential drawback of the bioaccumulation of heavy metal ions may be increased toxicity at relatively low concentrations.

Most microorganisms are protected against the toxic effects of heavy metal ions by the addition of citrate to the growth medium. The metal ions are taken up by transporters that are specific for the free metal ions and do not recognize the Me-citrate complex. Also, while most microorganisms have transporters for citrate, these transporters do not recognize the Me-citrate complex and transport only the free citrate anion. A simple application of this is the use of citrate in microbial growth media to complex metals, thereby reducing their toxicity (3). The protective effect of citrate is demonstrated here for B. subtilis when CitM is not present in the membrane (Figure 1). Clearly, protection by citrate is compromised when transporters are present in the membrane that transport the complex of the toxic metal ions and citrate. Then, the new entrance pathway for the metal ions into the cell may even increase toxicity. It is demonstrated that the dramatically increased sensitivity of B. subtilis to Zn2+, Co2+, and Ni2+ ions in the presence of citrate under conditions when CitM was expressed (Figure 3) correlated with enhanced Ni2+-citrate transport into the cell (Figure 2). Toxicity sets an upper limit to the concentration of the toxic metal ions in the bioaccumulation process. Under the conditions of the experiments presented in Figure 3 we observed more or less normal growth of B. subtilis in the presence of concentrations of Zn2+, Co2+, and Ni2+ of 100, 20, and 200 \(\mu\text{M}\), respectively.

Toxic concentrations of the metal ions initially completely inhibited growth of B. subtilis but after some time the cultures adapted to the presence of the metal ions and, subsequently, showed the original growth behavior. The development of resistance against heavy metal ions is a generally observed phenomenon. Most commonly, the mechanism of resistance in prokaryotes is efflux of the toxic metals by the action of P-type ATPases or secondary efflux systems (12, 13). The genome of B. subtilis contains several ORF’s with similarity to P-type ATPases and ORF’s for cation efflux systems belonging to the CDF family of secondary transporters. Other less ubiquitous systems for metal resistance involve the expression of metal binding proteins like metallothioneins and, specific for mercury ions, chemical reduction to the metallic state (reviewed in (15)). Analysis of the MeR strains of B. subtilis generated in this study showed that the cultures had adapted to the toxic conditions by inactivation of the uptake system.
The cells contained point mutations in the structural gene coding for CitM that introduced stop codons, resulting in premature termination of translation and, consequently, truncated CitM molecules. The mechanism by which these point mutations may occur could be either spontaneous or mediated by a specific mechanism induced by the presence of the toxic ions. In the former mechanism, the adaptation process would involve selection of those cells with random mutations in the citM gene that inactivate the transporter. The observation that the time span after which growth occurred was reproducible and metal ion concentration dependent (Figure 3) suggests involvement of a more specific mechanism for the introduction of the mutations. It is known that heavy metals are mutagenic by replacing essential metals like Mg$^{2+}$ or Ca$^{2+}$ in biomolecules (9) and thus influencing the function of these molecules. More research is required to resolve this issue. At any rate, the development of resistance has the advantage that the cells can cope with higher concentrations of the metal ions in the medium. In terms of bioaccumulation, the resistance is only advantageous when the cells inactivate the ions by binding to macromolecules which effectively increases the total concentration of the toxic ions in the cells. Pumping out the metal ions or preventing influx is unwanted for this purpose.

The results presented in this paper show that the activity of the Mg$^{2+}$-citrate transporter CitM promotes toxic metal ion accumulation in B. subtilis and increases the toxicity of these metal ions. The system could potentially have an application as part of a bioremediation system of sites polluted with heavy metals involving citrate chelation followed by accumulation of the Me$^{2+}$-citrate complex by B. subtilis. However, metal ion concentrations should be low enough to prevent inactivation the transporter. Overexpression of metal ion binding proteins like pea or yeast metallothioneins has been demonstrated to increase the resistance of E. coli against Ni$^{2+}$ and Hg$^{2+}$ ions (4, 6). Expression of these metal-binding proteins in B. subtilis may enhance the resistance to heavy metals without compromising the potential application. Alternatively, heterologous expression of CitM in a more metal resistant host may be useful to enhance accumulation of the metal ions in the biomass.
Acknowledgements

The authors would like to acknowledge Prof. Dr Sekiguchi for the gift of *B. subtilis* strain CitMd. This research was supported by the Ministry of Economic Affairs in the framework of the IOP Milieutechnologie/Zware metalen IZW97404.
References

