An investigation into compositional features and feature merging for maximum entropy-based parse selection
Mullen, Anthony James

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2002

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
An Investigation into Compositional Features and Feature Merging for Maximum Entropy-Based Parse Selection

Tony Mullen
The work in this thesis has been carried out under the auspices of the Behavioral and Cognitive Neurosciences (BCN) research school, Groningen, and the Dutch Graduate School in Logic OzsL (Onderzoeksschool Logica), Amsterdam.

Groningen Dissertations in Linguistics 37
ISSN 0928-0030
Typeset in \LaTeX
RIJKSUNIVERSITEIT GRONINGEN

An Investigation into Compositional Features and Feature Merging for Maximum Entropy-Based Parse Selection

Proefschrift

door

Anthony James Mullen

tegen op 15 mei 1971 te Fairbanks, Alaska (Verenigde Staten)
Promotor : Prof. dr. ir. John Nerbonne

Referenten : Dr. Robert Malouf
 Dr. Miles Osborne

Beoordelingscommissie : Prof. dr. Chris Brew
 Prof. dr. Eric Brill
 Prof. dr. Lambert Schomaker
Acknowledgements

This thesis would not have been possible without the help of many people. In particular I would like to thank John Nerbonne for his supervision as my promotor. His experience and guidance helped to ensure that the work was done to the best of my ability. Others whose direct input was crucial throughout the research and writing of this thesis were my “referents” Miles Osborne and Rob Malouf. I thank Miles for putting me onto the topic in the first place and giving me much valuable guidance in the field, as well as giving me the opportunity to spend a wonderful academic year in Edinburgh. Rob gave me no end of technical advice and I thank him for his patient explanations and helpful collaborations. To the list of colleagues deserving of gratitude I would like to add Gertjan van Noord, to whom I am grateful for his patience and assistance with my various questions and problems throughout my time in Groningen. Many other people in the department of Alfa-Informatica also gave me help in many ways, and I would like to acknowledge Gosse Bouma, Mark-Jan Nederhof and Peter Kleiweg for all their help. In addition, I am grateful to Shoji Yoshikawa, Rob Visser, and the fourth floor secretarial staff for their assistance with the day-to-day issues of computers, money, and miscellaneous, respectively.

Among those less directly related to this work itself, I am grateful to Christine Appel not only for her friendship and support throughout the past few years but for her professional collaboration, which allowed me to expand my own research interests into a field I would not have been qualified to enter without her. Rob Koeling, Stasinos Konstantopolous, and Ivelyn Stoianov deserve mention not only for their friendship but for their help and advice in a variety of technical areas, from maxent modeling to Linux installation to lamp repair. I would also like to thank Carl Vogel, who helped me to get the position in Groningen in the first place, and once I was here, helped me to minimize the number of embarrassing questions I had to ask right off the bat. Stasinos Konstantopolous and Begoña Villada Moirón deserve special mention for their help as my “paranimfs.”

There are many other people whose friendship and company helped get me through the sometimes tedious four years of grad school. I would like to single out Elissaveta Katchouleva to thank for all of her support and encouragement, and, as always, I am grateful to my family, whose love and support has helped me in all that I’ve done.
Contents

1 Introduction ... 1
 1.1 The emergent field of NLP 1
 1.1.1 Linguists versus statisticians? 3
 1.1.2 Interdisciplinary approaches to NLP 3
 1.2 The problem of ambiguity 4
 1.2.1 Statistical parsing 7
 1.2.2 Maximum entropy and NLP 8
 1.3 Where does this work stand? 8
 1.4 The structure of this thesis 9

2 The task of parse selection 11
 2.1 Syntax and structure in language 11
 2.1.1 Dependency structures 12
 2.2 The basics of parsing 13
 2.2.1 Earley parsing 13
 2.3 Ambiguity and large grammars 16
 2.3.1 Statistical parsing and “parse selection” 18
 2.4 Performance evaluation 18
 2.5 Approaches to statistical grammars 19
 2.5.1 PCFGs .. 20
 2.5.2 Lexicalized parsing 21
 2.5.3 Attribute-value grammars and maximum entropy-based parsing 25
 2.5.4 Other approaches 26
 2.6 Commonalities in statistical approaches 26

3 The maximum entropy technique 29
 3.1 The maximum entropy principle 29
 3.2 Basic definitions in probability and information theory 30
 3.2.1 Expected value 31
 3.2.2 Entropy .. 31
 3.2.3 Cross entropy 33
 3.2.4 KL divergence 34
3.2.5 Log-likelihood ... 34
3.3 Features and maxent .. 35
3.4 Parametric form .. 36
3.5 Maximum Entropy Modeling 41
3.6 Improved iterative scaling 41
 3.6.1 The IIS Algorithm 42
3.7 Noise and overfitting 43
 3.7.1 Maximum entropy and statistical dependencies 44
3.8 Feature Selection .. 44
3.9 Implementation .. 45

4 Log-linear approaches ... 47
 4.1 History-based parsing of WSJ text with maxent models . 47
 4.1.1 Maxent as a classifier 48
 4.1.2 A simple classification example 48
 4.1.3 Parsing as classification 49
 4.2 Stochastic modeling of attribute-value grammars 50
 4.2.1 Why independence assumptions fail 50
 4.2.2 The log-linear solution 51
 4.2.3 Abney .. 51
 4.2.4 Johnson ... 52
 4.2.5 Osborne .. 53
 4.3 Salient points ... 53

5 Maxent parsing with compositional features 55
 5.1 Parsing with maximum entropy 55
 5.2 Representing parses as events 56
 5.2.1 A disambiguation example 59
 5.2.2 What it means ... 61
 5.3 The training data .. 61
 5.4 Compositional features 63
 5.4.1 The structure of the features 63
 5.5 Feature merging .. 66

6 Improved models with feature merging 69
 6.1 The Alvey Tools experiments 69
 6.1.1 How this work differs from other work in the field .. 69
 6.2 The problem of overfitting 70
 6.3 Parse selection with compositional features 71
 6.4 Feature merging and overfitting reduction 72
 6.5 Experiments with Alvey Tools 74
 6.5.1 Evaluation .. 75
 6.6 Results .. 76
CONTENTS

6.6.1 Performance of unmerged models 76
6.6.2 Performance of merged models 76
6.7 Frequency based feature cutoffs 79
 6.7.1 Problems with feature cutoffs 79
6.8 A combined approach .. 81
6.9 Increased training data and richer feature sets 81
 6.9.1 Backing off with compositional features 83
6.10 Conclusion .. 86
 6.10.1 Why investigate further? 86

7 Experiments with Alpino .. 89
7.1 Another context for feature merging 89
7.2 Alpino: Wide-coverage Parsing of Dutch 90
 7.2.1 Grammar ... 90
 7.2.2 Robust Parsing ... 91
 7.2.3 Dependency Structures 91
 7.2.4 Treebank .. 92
7.3 Maximum entropy modeling and Alpino 93
7.4 The Features and Feature Merging 93
 7.4.1 Noise reduction and feature merging 94
 7.4.2 Why feature merging? 95
 7.4.3 Building merged models 95
 7.4.4 Composition of lexicalized features 96
 7.4.5 Composition of multiple rule features 96
7.5 Experiments .. 98
 7.5.1 Experiments with lexicalized features 98
 7.5.2 Evaluation ... 99
7.6 Results with lexical features 99
 7.6.1 Experiments with multiple-rule features 100
7.7 Conclusion .. 101

8 Conclusion ... 103
8.1 Summation .. 103
8.2 Discussion .. 104
 8.2.1 Selecting features to merge 106
 8.2.2 Modeling with rich feature sets 107
8.3 Future directions ... 107
 8.3.1 Modeling techniques 107
 8.3.2 Smoothing operations 108
 8.3.3 Parameter estimation 109
 8.3.4 Search speed ... 109
 8.3.5 Parsing in practice 109
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Samenvatting</td>
<td>110</td>
</tr>
<tr>
<td>References</td>
<td>116</td>
</tr>
</tbody>
</table>