Design and development of a miniaturised flow-through measuring device for the in vivo monitoring of glucose and lactate
Rhemrev-Boom, Maria Martha

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2003

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Design and development of a miniaturised flow-through measuring device for the in vivo monitoring of glucose and lactate
Paranimfen

R. Boom

E.M. Groenendijk-Boom

© Copyright Ria Rhemrev-Boom, 2003, the Netherlands

Layout and coverdesign by Friede Groenendijk-Boom, Moordrecht NL
Printed by Krips BV, Meppel NL

This research was supported by the Commission of the European Communities, Director General for DG XII Science, Research and Development, Biomed 2 Program PL-972726.

Publication of this thesis was financially supported by the Graduate School for Behavioral, Cognitive and Neurosciences and ResQ Lab BV.

Aan een ieder die hier wat aan heeft.
Chapter 1 Clinical motivation and scope of the thesis .. 9
 1.1. Clinical motivation to monitor metabolites .. 10
 1.2. Requirements device for continuous in vivo monitoring 12
 1.3. Technical motivation for the set-up of the in vivo monitoring device 13
 1.4. Aims and scope of the thesis .. 18
 1.5. References ... 20

Chapter 2 Theoretical aspects ... 23
 2.1. The Biosensor .. 24
 2.1.1. Definitions and classification .. 24
 2.1.2. History of the development of enzyme-based amperometric biosensors 27
 2.1.3. Theoretical aspects of amperometric biosensors 32
 2.2. Sampling .. 37
 2.2.1. Introduction .. 37
 2.2.2. Continuous on-line sampling .. 38
 2.3. References ... 43

Chapter 3 Biosensor device and Ultrafiltration Sampling for Continuous in vivo Monitoring of glucose ... 47
 3.1. Introduction ... 48
 3.2. Materials and Methods ... 49
 3.2.1. Materials .. 49
 3.2.2. Methods .. 49
 3.3. Results and discussion ... 50
 3.4. Comments on biomedical applications ... 53
 3.5. References ... 53

Chapter 4 A versatile biosensor device for continuous biomedical monitoring ... 55
 4.1. Introduction ... 56
 4.2. Experimental section ... 58
 4.2.1. Apparatus .. 58
 4.2.2. Materials .. 59
 4.2.3. Procedures .. 60
 4.3. Results and discussion ... 61
 4.3.1. Testing of the permselective membrane 61
 4.3.2. Construction of the miniaturised biosensor 63
 4.3.3. Introduction of the permselective membrane 65
 4.3.4. Performance characteristics of the syringe pump 67
 4.3.5. Biomedical applications ... 69
 4.4. Conclusions .. 70
 4.5. References ... 71

Chapter 5 On-line continuous monitoring of glucose and lactate by ultraslow microdialysis combined with a flow-through nanoliter biosensor based on poly(m-phenylenediamine) ultra-thin polymer membrane as enzyme electrode ... 73
 5.1. Introduction ... 74
 5.2. Experimental ... 77
 5.2.1. Materials and solutions .. 77
 5.2.2. The flow-through cell ... 77
5.2.3. The permselective membrane ... 77
5.2.4. Measurements by means of Flow Injection Analysis (FIA) 78
5.2.5. Measurements in the continuous mode 78
5.2.6. Electron microscopy .. 79
5.2.7. Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR)
command ... 79
5.3. Results .. 79
5.3.1. Construction of the miniaturised flow-through cell 79
5.3.2. Production of the miniaturised flow-through cell 80
5.3.3. Polymer formation of poly(phenylenediamine) films for use in
biosensors ... 80
5.3.4. Dynamic range of the poly(m-phenylenediamine) based biosensor .. 82
5.3.5. Enzyme immobilisation .. 84
5.3.6. Selectivity of the biosensor .. 84
5.3.7. The stability of the glucose biosensor 85
5.3.8. Performance characteristics of the lactate biosensor 88
5.3.9. Applications ... 89
5.4. Conclusion ... 90
5.5. References ... 91

Chapter 6 Covalent immobilisation of enzymes throughout a
poly(m-phenylenediamine) ultra-thin polymer membrane for the
production of stable flow-through nanoliter biosensors 93
6.1. Introduction .. 94
6.2. Experimental ... 97
 6.2.1. Materials and solutions ... 97
 6.2.2. The flow-through cell ... 98
 6.2.3. The permselective membrane ... 98
 6.2.4. Measurements in the continuous mode 99
 6.2.5. Measurements by Flow Injection Analysis (FIA) 99
 6.2.6. Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR)
command ... 100
 6.2.7. Ultrafiltration catheter ... 100
 6.2.8. In vivo experiments ... 100
6.3. Results and discussion .. 101
6.4. Conclusion ... 108
6.5. References ... 108

Chapter 7 A lightweight measuring device for the continuous in vivo
monitoring of glucose by means of ultraslow microdialysis in combination with a
miniaturized flow-through biosensor .. 111
7.1. Introduction .. 112
7.2. Materials and methods .. 114
 7.2.1. Materials .. 114
 7.2.2. Production of the flow-through biosensor 115
 7.2.3. Testing of the flow-through biosensor by means of Flow Injection
Analysis ... 116
 7.2.4. A lightweight measuring device for the continuous monitoring of
glucose .. 116
 7.2.5. Oral glucose tolerance test (OGTT) 117
7.3. Results and discussion .. 118
7.3.1. Performance characteristics ... 118

Contents
Chapter 8 Twenty-four hours profiling of glucose in the subcutaneous tissue of healthy volunteers by means of a lightweight portable measuring device.

Chapter 9 Turnover of extracellular glucose and lactate in the rat striatum estimated by equilibrium microdialysis and sensor technology.