How a simple anionic surfactant adopts a lamellar arrangement.
Sein, Arjen

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1995

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Summary

The basic components that largely determine the structure of a liquid laundry detergent are water, salts and a mixture of surfactants. When these are mixed in the right proportions, the surfactant aggregates in a lamellar fashion. This lamellar phase is a packing of amphiphiles in a bilayer, with the tails in the inner core of the bilayer and the headgroups pointing towards the water. Several manifestations of the lamellar phase are known. Examples include a stacking of planar bilayers, either as a single continuous phase, where the lamellae span through the whole system, or a two-phase system, where the lamellar phase coexists with another phase. In special cases the lamellae can fold around one another, like in an onion. Such so-called lamellar droplets are also the basic structural unit of some types of liquid laundry detergents. In dilute solution a lamellar aggregate can appear as a vesicle, if the bilayers repel each other.

The phase behaviour of such a practical mixture of surfactants in water/salt systems is dominated by the surfactant sodium dodecylbenzenesulfonate (NaDoBS, see figure 1.3), a polydisperse compound that is one of the most popular surfactants for detergent products worldwide. The problem that has been addressed in this thesis is how this simple anionic surfactant can adopt a lamellar arrangement, starting from a less ordered state such as either the dilute micellar phase, or the bulk isotropic liquid phase of dodecylbenzenesulfonic acid (HDoBS), the industrial precursor of NaDoBS. Accordingly the thesis can be split into two parts: the dilute phase, comprising the salt-induced transition of micelles into lamellar aggregates (chapters 2-4), and the part on concentrated systems, that deals with the arrangement of amphiphiles into a lamellar fashion starting from a bulk surfactant situation (chapters 5-7).

The question of how the surfactant adopts a lamellar arrangement can be answered by finding out under which environmental conditions a lamellar arrangement of NaDoBS is obtained. These depend on the type and the concentration of the salt, and on the amphiphile concentration, or in other words the water/amphiphile ratio. However, the present thesis also sheds light on the mechanism of the dynamic processes of the rearrangement of amphiphiles into the lamellar phase. Moreover, the process can be viewed as a molecular transformation, but that is only part of the analysis, because the interactions between bilayers, and between the separate aggregates play also an important role in the total aggregation behaviour.

Before the analysis of the details of the aggregation behaviour of NaDoBS in aqueous surroundings begins, an introduction into the aggregation behaviour of amphiphiles is presented (chapter 1). The background of aggregation is touched upon, and the general features that determine the type of aggregate that is formed: the molecular shape, and more importantly, the solution conditions such as amphiphile concentration, presence of salt or a change in pH and mixing of different types of amphiphiles. At low amphiphile concentrations separate aggregates are found: micelles or vesicles. At higher amphiphile concentrations lyotropic liquid-crystalline phases occur.

NaDoBS forms micelles in dilute aqueous solution. Upon the addition of NaCl the NaDoBS precipitates from the solution. The precipitate consists of
Summary

strongly flocculated lamellar droplets. In order to study the factors that
determine the formation of these particular lamellar units, the influence of other
alkali metal chlorides and tetraalkylammonium chlorides on the aggregation
behaviour of NaDoBS was studied (chapter 2). Depending on the type and
concentration of salt, a rather stable dispersion of unilamellar vesicles was
formed spontaneously, but in other cases a phase separation occurred into a
surfactant-rich and a surfactant-lean phase. All alkali metal chlorides eventually
induce the formation of flocculated lamellar droplets at higher salt
concentrations. The chapter also contains an introduction into the physical
interactions between bilayers and between aggregates. The observed phase
behaviour could be traced back to the hydration characteristics of the cation of
the salt: the less hydrated the ion, the better it can expel Na⁺ as a counterion,
leading to a higher counterion binding. This increase in counterion binding
primarily induces the formation of the lamellar arrangement of DoBS by allowing
the headgroups to approach one another more closely. In addition, the type of
ion also strongly influences the attractions between bilayers and between
aggregates.

In chapter 3 the increase in counterion binding induced by a change for a
less hydrated ion is illustrated. The critical aggregation concentration (CAC)
of dodecylbenzenesulfonates in different electrolyte solutions was measured by
microcalorimetry and conductometry. A higher counterion binding is
accompanied by a lower CAC and a higher (more negative) enthalpy of
aggregation, particularly in those cases where the first aggregated state is a
lamellar aggregate. In this chapter it is argued that a critical vesicle
concentration (CVC) never can exceed a value of approximately 10⁻⁴ molar.

The addition of salt to a dilute micellar solution mixture of NaDoBS and a
nonionic surfactant (C₁₃₋₁₅E₇₅) induces the spontaneous formation of a very
stable dispersion of giant vesicles at moderately high salt concentrations. The
large interbilayer repulsions that cause the stability of this dispersion must be
due to the presence of the nonionic surfactant in a good solution condition. The
well-hydrated PEO headgroup will expose a large steric repulsion and will
moreover allow for a high bilayer undulation repulsion. At higher salt
concentrations the nonionic can be salted out, resulting in a break-down of the
repulsions. By a combination of van der Waals attraction between the bilayers
and attraction between the PEO segments of the nonionic headgroups in a poor
solution condition, the vesicles collapse to form flocculated lamellar droplets.

The mechanism of the salt-induced spontaneous formation of vesicles
described in chapters 2 and 4, probably involves a drastic growth of micelles in
two dimensions. At a certain point the growth is extremely rapid resulting in a
bilayer fragment of a critical size, that bends over and closes to form a vesicle.

The formation of a lamellar phase from the bulk surfactant phase was
studied with the commercial processing in mind: the basic ingredients are mixed
in a specific order to finally obtain a colloidally stable dispersion of lamellar
droplets. The occurrence of the lamellar phase is largely determined by the
presence of NaDoBS or its precursor HDoBS, that is neutralized during
processing. To understand the interactions which HDoBS molecules experience
when interacting with NaDoBS and other electrolytes, an understanding of the
underlying mechanism is reached. The preparation of NaDoBS is obtained by
anion exchange reaction between sodium and the alkali metal ion. When
Na⁺ is replaced by Cs⁺, this removes the repulsions between micelles, that
occurs at alkali metal ions other than Na⁺. This means that the hydration energy
between a particular alkali metal ion and Na⁺ will be larger, so that the Na⁺
ion becomes the better counterion. This means that the repulsion between
micelles will become even larger, so that the repulsion energy increases. In the
case of Cs⁺, the repulsion energy is even larger, so that Na⁺ cannot

146
Summary

It is noted that a bilayer-forming amphiphile not necessarily aggregates into a vesicle. In addition, some words are devoted to the formation of a dispersion of lamellar droplets from a bulk mixture of HDoBS and C_{13-15}E_{7-9}, partially presented in chapter 6, but extended here as a thought experiment. The chapter closes by reviewing the formation of the lamellar arrangement seen from the viewpoint of the NaDoBS amphiphile.