Investment evaluation with respect to commercial uncertainty

the production of natural gas
Investment evaluation with respect to commercial uncertainty
the production of natural gas

Proefschrift
ter verkrijging van het doctoraat in de Economische Wetenschappen
aan de Rijksuniversiteit Groningen
op gezag van de Rector Magnificus dr. F. van der Woude
in het openbaar te verdedigen
op donderdag 26 januari 1995 des namiddags te 4.00 uur

door

Douwe Frits Broens
geboren op 2 juni 1966
te Groningen
Promotor: prof.dr. W.K. Klein Haneveld
Foreword

Several years ago N.V. Nederlandse Gasunie contacted the University of Groningen, Department of Econometrics, with a question about their commercial-technical planning: how to properly deal with uncertainty? In 1989 the research project Plato-OOG (an acronym for 'Planning Tools-Research Uncertainties Gastransport') was started. The project team consisted of Ton Fournier from Gasunie, and Anne Boorsma and I from the Department. After two years we presented a final report. Some of the ideas in the report had already been implemented during the project.

As a spin-off of Plato-OOG, I continued the research on the subject at the Department, which resulted in this thesis. The scope of Plato-OOG necessarily had been very broad. Instead, I took a particular idea (the commercial scope) from the Plato-OOG report, elaborated it formally and applied it to a small partial planning problem. In the end, it appeared that a number of other ideas in the Plato-OOG report nicely fitted into the framework developed.

To present a thesis as a piece of scientific writing, the author should adopt some conventions. One of these says that the foreword and acknowledgments are the only place where the writer reveals that in fact he is the only one behind the opinions presented. However many people helped me to arrive at these conclusions, I would like to stress that the few times you might come across the words we or our in the text, it is I myself who is to be blamed.

Acknowledgments

First of all, the financial support of N.V. Nederlandse Gasunie is gratefully acknowledged. Without it, both Plato-OOG and this thesis would not have existed. I am indebted to Anne Boorsma and Ton Fournier for the pleasant and fruitful cooperation during the Plato-OOG period, and for their interest in my research afterwards. The planners of Gasunie greatly contributed to the success of Plato-OOG by their helpful comments and professional cooperation.

It was the Groningen Graduate School/Research Institute ‘Systems, Organisations and Management’ that made the printing of this booklet financially bearable. I thank my colleagues at the University of Groningen, especially Caspar Schwiegman, Ton Steerneman and all those who participated in the research-platform ‘Decision-making under uncertainty’, for their stimulating interest, and in particular Erik Frambach for the \TeX-ics.

Willem Klein Haneveld to a great extent shaped this work, not in the least by our frequent meetings, his critical spirit and his exemplary perseverance. Only a few have a supervisor of such calibre. During the last two years, I found a helpful assistant in Tako Molanus, who proved both patient and creative in the many calculations that were needed for the experiments in this thesis.

Oss, November 28, 1994
Contents

The reader may choose to skip the sections marked by a * without affecting his or her understanding of the rest of the text.

1 Introduction
1.1 Gasunie .. 1
1.2 Investments and commercial uncertainty: the Plato-OOG project 3
1.3 Outline of the thesis .. 4
1.4 A warming-up exercise 5

2 A model of Gasunie’s production planning problem
2.1 The model elements .. 10
 2.1.1 The production decision variables 11
 2.1.2 The commercial scenario 12
 2.1.3 The investment decision variables 14
2.2 Quality aspects and gas flow mixing 16
2.3 The underground storage 24
2.4 The annual matching model restrictions 26
2.5 Extension: production capacity test 28
2.6 Structure of the MATCHPLUS model 30
2.7 Purpose of the MATCHPLUS model 34

3 The commercial scope
3.1 Introduction ... 37
3.2 Robustness, risk and the commercial scope 39
 3.2.1 Review of literature on robustness 39
 3.2.2 Robust plans and flexible planning 41
 3.2.3 Discussion .. 42
 3.2.4 Robustness measures 44
 3.2.5 Risk ... 46
3.3 Formal aspects of the commercial scope 47
 3.3.1 Definition of the commercial scope 47
 3.3.2 (In)feasibility in terms of scenarios 48
 3.3.3 Representing the scope using induced constraints .. 49
 3.3.4 Constructing induced constraints using multipliers ... 52
3.4 Measuring feasibility of a scenario 59
3.5 Measuring infeasibility of a scenario 62
5.6 Sensitivity analysis with respect to the underground storage
5.6.1 Variation of the quality of the gas in storage
5.6.2 Volume capacity of the underground storage
Appendix 5A The construction of the induced constraints

6 Generalizations of the experiments
6.1 A methane content lower bound
6.1.1 Methane content lower bound for entire L-gas market
6.1.2 Lower bound on methane content for a part of the L-gas market
6.2 Uncoupling demands per quarter
6.2.1 The production capacity test uncoupled
6.2.2 All quarterly demands uncoupled
6.2.3 Conclusions on increasing numbers of uncertain variables
6.3 Smaller subperiods
6.3.1 Adaptation of the model
6.3.2 Results
6.3.3 Conclusions on smaller subperiods
6.4 Towards a multiyear consideration: carry forward
6.4.1 One year with carry forward
6.5 Selecting investment alternatives using stochastic programming
6.5.1 A two-stage stochastic programming model
6.5.2 The use of induced constraints on the scenario vector
6.5.3 A simplified example
6.6 Conclusions

7 The use of the commercial scope in investment planning
7.1 Why to use the commercial scope
7.2 When to use the commercial scope
7.3 Commercial positioning: demands versus wishes
7.4 Embedding the commercial scope in a planning process

8 Conclusions

Summary

Bibliography

Index

Samenvatting (in Dutch)