Chapter 8

A non-invasive, low-cost study design to determine the release profile of oral colon drug delivery systems: a feasibility study

*: both authors share first authorship

based upon: submitted paper
Abstract

Conventional bioavailability testing of dosage forms is based on the plasma concentration-time graph of two products determined in a two-sequence, two-period, crossover design. However, this approach is not applicable to dosage forms aiming to deliver the drug substance in a specific intestinal segment for topical treatment. In previous studies we used 13C-urea as a marker substance to determine local bioavailability and release profile of a coated capsule which acts as a colon drug delivery system (the ColoPulse-system) in a single dose, two-period crossover design. In this article we describe a feasibility study to show that by a dual-label approach (i.e., 13C- and 15N$_2$-urea isotopes) the local bioavailability and release profile of colon drug delivery systems can be studied in a one-day, non-invasive study design.

An uncoated or a ColoPulse-capsule containing 13C-urea and an uncoated capsule containing 15N$_2$-urea were taken by four healthy volunteers. When 13C-urea is delivered in the colon, the 13C-label is detected in breath as 13CO$_2$, due to intraluminal fermentation. Upon delivery in proximal parts of the intestine, 13C-urea and 15N$_2$-urea will be absorbed unfermented and appear unaltered in urine. Breath and urine samples were collected during 24 h after intake of the capsules. The data were expressed as percentage of the dosage recovered (PDR) en the 13C/15N-ratio was calculated to determine local bioavailability from the ColoPulse-capsule.

The recoveries of 13C and 15N from uncoated capsules showed a ratio of 1.01±0.06 during the first 24 h. The 13C/15N-ratio after intake of a ColoPulse-capsule containing 13C-urea showed considerable interindividual variation but was constant between 12 and 24 h after intake. The cumulative PDR of 13C in urine was in all collections much lower than the cumulative PDR of 15N in the same collection. After 24 h for 13C a median cumulative PDR of 11.9% was found for the ColoPulse-capsule versus 73.1% for uncoated capsules. The 13C/15N-ratio in a single urine sample at t ≥ 12 h post dose could be used to predict the cumulative PDR of 13C after 24 h. The ColoPulse-capsule showed a delayed sigmoid release-pattern with a lag time of > 3 h derived from the time course of 13CO$_2$ in breath.

Our results show that both 13C and 15N urea-isotopes have a comparable pharmacokinetic profile. Since both isotopes can be taken at the same time, day-to-day variation is eliminated. Furthermore, a combination of breath and a single urine sample provides sufficient information on the segment of release and release kinetics of the ColoPulse-capsule. With this design clinical studies can now be executed with increased power (or reduced group size), completely non-invasive and without any radioactive exposure of the subjects. The dual-label stable isotope strategy permits therefore safer and less costly clinical studies for the evaluation of the release profile of colon drug delivery systems.
8.1 Introduction

Investigation of the bioavailability (BA) or the bioequivalence (BE) is an early step in the clinical development of a new drug product or drug delivery system. The United States Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have released guidelines for BA- and BE-testing of drug products which aim for systemic exposure of the drug substance [1,2]. The conventional systemic BA study design is a two-sequence, two-period crossover design, where blood pharmacokinetic parameters as the maximal concentration (C\text{max}) and the area under the concentration–time curve (AUC) play a pivotal role. This conventional approach however is not applicable to drug products which aim for delivery of the drug substance in a specific intestinal segment for topical treatment. Examples are 5-aminosalicylic acid or immunosuppressant formulations such as budesonide for the treatment of inflammatory bowel disease. In these specific cases it is not relevant to investigate systemic bioavailability. To the best of our knowledge no international guidelines are available describing a consensus approach to evaluate local bioavailability. In the international literature a myriad of approaches are described to determine intestinal drug delivery. Pharmacokinetics is often combined with imaging technologies to localize release, such as endoscopy, radiology, gamma scintigraphy [3,4,5] or MRI [6,7]. Stable isotope technology is seldom mentioned in this context.

In two earlier studies we determined the local bioavailability and release profile of a coated capsule which acts as colon drug delivery system (the ColoPulse-system) using stable isotope technology [8,9]. The first paper describes a proof-of-concept study in which we showed that 13C-urea was able to provide information on both the release kinetics of a colon targeted oral dosage form and the gastro-intestinal segment of release. The second paper describes a single dose two-period crossover study in which 13C-urea was used as the marker substance. In this study an uncoated capsule was taken on day 1 (as a reference) and a ColoPulse-capsule on day 8. The delivery in the colon by the ColoPulse-capsule was monitored by measuring the 13CO2 response in breath produced by bacterial fermentation in the colon of 13C-urea. Local bioavailability was determined by recovery of 13C in breath. Total recovery was quantified by the sum of recoveries of 13C in breath and blood or urine. A strong correlation (r=0.943) was found between blood and urine kinetics, indicating that non-invasive urine sampling could replace blood sampling.

We hypothesized that investigation of local bioavailability and determination of the release profile of ColoPulse-capsules could be improved by application of a dual-label isotope strategy. This approach permits a one-day study design and non-invasive sampling. A ColoPulse-capsule containing 13C-urea and an uncoated capsule containing 15N2-urea (as a reference) are taken simultaneously. Release of 13C- or 15N2-urea in the small intestine (urease-poor region) from an uncoated capsule leads to the recovery of unaltered 13C- or 15N2-urea in urine. Release of 13C-urea in the ileocolonic intestinal segment (urease-rich region) from a ColoPulse-capsule leads to in situ fermentation of 13C-urea into 13CO2 followed by exhalation of in breath.
Local bioavailability in the colon can be described by the difference between kinetics of $^{15}\text{N}_2$- and ^{13}C-urea (figure 1). The differential kinetics of these isotopically labeled substances can potentially describe both release kinetics and the gastro-intestinal segment of release. Using this strategy, the clinical trial can be shortened to a one-period design and the sample load can be reduced by 50%. As a consequence the cost of a bioavailability trial is reduced. In addition, the influence of day-to-day variation in urea kinetics is eliminated, which increases the power of the study. As a consequence less subjects need to be included, which further reduces the cost of the clinical trial.

In this paper we describe a proof-of-concept study to demonstrate the feasibility of the dual-isotope strategy to determine the release profile of ColoPulse-capsules in a one-day, non-invasive study design.

8.2 Material and methods

Chemicals, drug substances and drug products

Polyethylene glycol 6000, acetone, colloidal anhydrous silica (BUFA, The Netherlands), microcrystalline cellulose (Avicel PH102, FMC Biopolymer, USA), croscarmellose sodium (Ac-di-sol, FMC Biopolymer, USA), methacrylic acid-methyl methacrylate copolymer 1:2 (Eudragit S100, Röhm, Germany), were obtained via a certified

Figure 1: Absorption, metabolism and elimination of ^{13}C-urea and $^{15}\text{N}_2$-urea. The weight of the line symbolizes the importance of the kinetic process.
wholesaler (Spruyt-Hillen, The Netherlands). Hard gelatine capsules (size 2) were obtained from Lamepro (The Netherlands). Water for injections was obtained from Fresenius Kabi (Germany). All ingredients were of pharmacopeial grade (Ph. Eur.). The stable isotope labelled 13C-urea and 15N-urea (AP 99%) was obtained from an FDA-controlled facility (Isotec, USA).

Hard gelatine capsules containing 100 mg 13C- or 50 mg 15N$_2$-urea were prepared according to the compounding procedures of the Laboratory of Dutch Pharmacists (LNA). The capsules were manually filled with a premix of 13C-urea or 15N$_2$-urea and excipients. A coating was applied using the ColoPulse technology [10]. The composition of the coating used was Eudragit S-100:PEG 6000:Ac-di-sol = 58.3%:8.3%:33.3% w/w. Coating thickness was calculated and expressed as the amount of Eudragit S-100 applied per cm2. The coated capsules met established quality control criteria (table 1). The pulsatile release properties are reflected by the so-called pulse-time, defined as the period between the lag time ($t_{5\%}$ release) and $t_{70\%}$ release.

Subjects

Four healthy volunteers (one female, three males, age 30, 39, 50, 61 years) participated in the study. They had neither history of gastrointestinal diseases (ulcerative colitis, Crohn’s disease, spastic colon, colon cancer, ileus, stoma, stomach- and/or intestinal infection) nor of gastrointestinal surgery. They did not use antibiotics or drugs influencing the gastrointestinal transit time for at least 3 months before start of the study. A possible Helicobacter pylori infection was excluded. The study design was approved by the ethical committee of the University Medical Center Groningen.

Study Design

The clinical study consisted of two experiments. In the first experiment two uncoated capsules containing 100 mg 13C-urea and 50 mg 15N$_2$-urea respectively were taken simultaneously in order to compare the kinetic behaviour of 13C-urea and 15N$_2$-urea affected by absorption, distribution, metabolism and elimination. In the second experiment an uncoated capsule containing 50 mg 15N$_2$-urea and a ColoPulse-capsule

Table 1: Quality control data of the capsules

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation of mass (capsules, uncoated, n=20)</td>
<td>< 4%</td>
<td>1.52%</td>
</tr>
<tr>
<td>Variation of mass (capsules, coated, n=20)</td>
<td>< 4%</td>
<td>1.59%</td>
</tr>
<tr>
<td>Coat thickness (mg Eudragit S/cm2) (n=20)</td>
<td>Not applicable</td>
<td>9.8</td>
</tr>
<tr>
<td>Bursts or cracks in coating (n=6)</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Lag time (minutes) (n=6)</td>
<td>> 180</td>
<td>220</td>
</tr>
<tr>
<td>Pulse time (minutes) (n=6)</td>
<td>< 60</td>
<td>38</td>
</tr>
<tr>
<td>Release at $t_{360\text{min}}$ (n=6)</td>
<td>> 80%</td>
<td>107.9%</td>
</tr>
</tbody>
</table>
containing 100 mg 13C-urea were taken simultaneously. The second experiment aimed to give information on the release of 13C-urea in the ileocolonic intestinal segment (urease-rich region) and of 15N$_2$-urea in the proximal small intestine (urease poor region) respectively. During the experiments the subjects feeding and drinking were standardized as described before [8,9].

Sample collections and analysis
Breath samples were collected at predetermined time intervals up to 15 h after intake of the capsules and were analysed as described before [8,9]. Briefly, 13C/12C isotope ratios in the CO$_2$ of breath samples were analysed by using a validated breath 13C-analyser (Thermo Fisher Scientific, Bremen, Germany) based on isotope ratio mass spectrometry (IRMS). Urine samples were collected during 24 h at prescribed intervals (0-4, 4-8, 8-12, 12-16 and 16-24 h) in 200 ml containers each containing 650 μl 6M HCl. Urine volumes were recorded and 20 ml samples were stored at -20°C until analysis. The remaining urine was pooled and a 20 ml sample was stored at -20°C. This pooled sample was considered as a simulated 24 h collection and used as gold standard for modeling (section 2.6).

Concentrations of total N and C were determined based on element analysis. Urine aliquots of 25 μl were combusted in an elemental analyzer SL™ (SerCon, Crewe, UK) using copper oxide at 900°C and subsequently reduced to nitrogen gas over copper at 600°C. Thereafter the 13C and 15N enrichments were measured online by IRMS (Tracer mass 20-20™, SerCon, Crewe, UK).

Data were expressed either as enrichment, as atom percent excess (APE) or as percentage of the dose 15N or 13C recovered (PDR). The method of urine sample preparation and IRMS-analysis was tested for accuracy (recovery), precision and linearity. This test was performed by spiking equal volumes (100 ml) of urine collected by one subject during 24 h with fixed amounts of 15N$_2$-urea (5 mg) and increasing amounts of 13C-urea (0-10 mg). The theoretical ratios of 13C/15N in these samples were 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0.

Calculations
The percentage of the dose recovered (PDR) of 13C and 15N in each urine sample, the ratio of the PDRs from 13C versus 15N-ratio (the 13C/15N-ratio), the fermented ($F_{fermented}$) and non-fermented ($F_{non-fermented}$) fraction of 13C-urea were calculated as described before [9]. In short, the fermented fraction was calculated as the cumulative PDR as 13C in breath over the 15 h time period. The non-fermented fraction was calculated as the ratio of the percentage of the dose recovered as 13C and 15N (ratio 13C/15N) in the simulated 24 h urine collection. Total recovery was expressed as $F_{non-fermented} + F_{fermented}$.

Statistical procedures and modeling
The results were evaluated by descriptive statistics. The center was characterized by the arithmetic mean and median. The dispersion was characterized by the coefficient of variation (CV) and range correspondingly. A Wilcoxon matched-pairs
test (two tailed, \(\alpha=0.05 \)) was used to compare the ratio \(^{13}\text{C}/^{15}\text{N} \)-ratio in the simulated 24 h urine collection with the calculated ratio from a single urine sample and 95\% confidence intervals were established.

The correlation between the \(^{13}\text{C}/^{15}\text{N} \)-ratio in the 24 h urine collection and in a single urine collection collected at a time point ≥ 12 h post dose was investigated. The algorithm was obtained from the regression line. The correlation coefficient was calculated from the determination coefficient of the regression line.

Endpoints
The first endpoint of the study was to determine that \(^{13}\text{C}-\text{urea} \) and \(^{15}\text{N}_2\)-urea exhibit the same kinetic properties in terms of absorption, distribution and elimination. The second was to show that a reduced PDR of \(^{13}\text{C}-\text{urea} \) in urine is an indicator of bacterial fermentation of \(^{13}\text{C}-\text{urea} \) delivered in the colon. The third endpoint was the total recovery of the \(^{13}\text{C} \)-labeled atom to confirm that all elimination routes are covered by our sampling plan.

8.3 Results

Urine spiking experiment
The method of sample preparation and IRMS analysis showed a recovery of 98 ± 3.7 \% for the \(^{15}\text{N} \)- (n=7) and 94 ± 2.2 \% (n=6) for the \(^{13}\text{C} \)-isotope. The precision was 3.8\% (n=7) for \(^{15}\text{N} \) and 2.6\% (n=6) for \(^{13}\text{C} \). Furthermore, the method was linear in a range of 0 to 100 mg \(^{13}\text{C}-\text{urea} /\text{L} \) (slope=0.95, \(r^2=0.9987 \)). The ratio \(^{13}\text{C}/^{15}\text{N} \) was linear in a range of 0 to 1.0 (slope=0.98, \(r^2=0.9999 \)) when the measured ratio was plotted against the theoretical value.

In-vivo experiment

Urine-data
In figure 2 the ratio of the PDRs of \(^{13}\text{C} \) and \(^{15}\text{N} \) measured in the urine samples is shown as a function of time. The \(^{13}\text{C}/^{15}\text{N} \)-ratio from uncoated capsules showed a mean ratio of 1.01 ± 0.06 (n=20) during the first 24 h. The \(^{13}\text{C}/^{15}\text{N} \)-ratio after intake of the ColoPulse-capsule showed larger interindividual variation but remained constant in all subjects after 12 h post dose (median 0.22, range 0.13-0.48). In all four cases the \(^{13}\text{C}/^{15}\text{N} \)-ratio in the simulated 24 h urine collection after intake of the coated capsules (median 0.15, range 0.09-0.32) was lower than the ratio measured in the single urine samples after 12 h post dose.

The cumulative percentage non-fermented \(^{13}\text{C} \)- and \(^{15}\text{N}_2\)-urea expressed as percentage of the dose recovered (PDR) per collected urine volume is shown for each subject in figure 3. The cumulative PDR of \(^{13}\text{C} \) and \(^{15}\text{N} \) in urine after 24 h is shown in table 2. The cumulative PDR of \(^{13}\text{C} \) in urine from the coated colon targeted capsule (median 11.9\%, range 7.4-25.9\%) was in all collections lower (p<0.05) than the cumulative PDR of \(^{15}\text{N} \) (median 81.6\%, range 76.6-86.8\%) in the same collection and
the cumulative PDR of $\text{^{13}C}$ from the uncoated capsule for the same subject (median 73.1\%, range 64.0-77.9\%).

The median cumulative PDR at $t=24$ h of $\text{^{15}N}$ from the uncoated capsules in experiment 1 and 2 (73.7\% versus 81.6\%) showed 7.9\% absolute difference. The median cumulative PDR at $t=24$ h of $\text{^{15}N}$ and $\text{^{13}C}$ from the uncoated capsule in experiment 1 (73.7\% versus 73.1\%) showed 0.6\% absolute difference.

The median interindividual variation in cumulative PDR (3.4\%) was in the same range as the median interlabel variation (2.9\%). Median interday variation in cumulative PDR of $\text{^{15}N}$ was 9.7\%. Calculations of median variations were performed by combining the data from uncoated $\text{^{13}C}$ and $\text{^{15}N}$-urea because we considered kinetics of both isotopes as equal after review of the results.

Breath-data

In figure 4 the breath $\text{^{13}C}$ exhalation data are shown, expressed as the cumulative PDR versus time curves over a time period of 15 h after intake of the coated capsule. All 4 subjects exhibited a significant excretion of $\text{^{13}C}$ in breath varying from 54.5 to 81.5 \%. These percentages represent the fermented fraction of $\text{^{13}C}$-urea. The curves also indicate a lag time of > 3 h. Figure 5 shows the fermented (breath) and non-fermented (urine) fractions of $\text{^{13}C}$-urea recovered 15 h after intake of a coated capsule. Total recovery was large (>77\%), whereas the non-fermented fraction was limited (< 32\%).
Figure 3: Cumulative percentage of the dose recovered as non-fermented 13C- and 15N$_2$-urea in urine as a function of time.

Modeling

When $F_{\text{non-fermented}}$, calculated from a single urine-sample taken ≥ 12 h post dose was compared to $F_{\text{non-fermented}}$ calculated from the simulated 24 h urine collection the absolute difference had a mean value of 8.6% (95% CI 5.5-11.7%, p=0.068). The relationship between the 13C/15N-ratios could be described by equation (1) obtained from the regression line.

Eq. 1: $(^{13}$C/15N)$_{24\text{h-collection}} = (^{13}$C/15N)$_{\text{single-collection}} / 1.51$ ($R^2=0.9977$):

Using this equation the mean difference between the calculated $F_{\text{non-fermented}}$ from a single sample ≥ 12 h post dose and the simulated 24h urine collection was 0.1% (95% CI -0.3 to 0.5%, p=0.67).
Table 2: Cumulative PDR of 13C and 15N in urine at t=24 h

<table>
<thead>
<tr>
<th>Subject</th>
<th>15N (exp 1)</th>
<th>15N (exp 2)</th>
<th>13C (exp 1)</th>
<th>13C (exp 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>61.8</td>
<td>82.3</td>
<td>64.0</td>
<td>16.1</td>
</tr>
<tr>
<td>2</td>
<td>73.3</td>
<td>80.9</td>
<td>77.9</td>
<td>25.9</td>
</tr>
<tr>
<td>3</td>
<td>74.9</td>
<td>86.8</td>
<td>71.4</td>
<td>7.6</td>
</tr>
<tr>
<td>4</td>
<td>74.0</td>
<td>76.6</td>
<td>74.8</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Median 73.7 81.6 73.1 11.9
Mean 71.0 81.6 72.0 14.3
SD 6.2 4.2 5.9 8.7
CV 8.7 5.2 8.2 61.2

Median interindividual variation (uncoated 13C+15N) 3.4%
Median interday variation (15N) 9.7%
Median interlabel variation (exp 1) 2.9%

Figure 4: Cumulative percentage recovery of 13C in breath as percentage of the administered dose 13C-urea in all four subjects
8.4 Discussion

Kinetics of 13C and 15N$_2$-urea.

The method of sample preparation and IRMS analysis proved to be reliable as shown by the spiking results. The accuracy was high with a recovery over 95% and variation was low with a precision under 4%. Furthermore the 13C/15N-ratio was linear in a range of 0 to 1.0 ($r^2=0.9999$).

A prerequisite for the successful application of the dual stable isotope approach to determine local bioavailability is comparable kinetics of 13C and 15N$_2$-urea. The so-called “isotope effect” [11,12] is the sum of differences in metabolism and physical properties (such as polarity, lipophilicity, protein binding) between the two different labeled compounds. Since urea is the end product of the nitrogen metabolism and therefore undergoes limited recycling, the kinetic isotope effect differentiating between 13C and 15N$_2$-urea is expected to be absent. This hypothesis was tested in the first experiment. Two uncoated capsules containing 100 mg 13C-urea and 50 mg 15N$_2$-urea respectively were taken simultaneously. Release of labelled urea will occur in the stomach and absorption of intact molecules into the systemic circulation will be fast. The mean of the 13C/15N-ratio in urine for uncoated capsules shortly after administration was around 1.01 ± 0.06. This reflects the equimolar concentration in the urea distribution volume (UDV), pointing to comparable dissolution in the stomach, absorption, distribution and renal excretion. The interlabel variation appeared to be

Figure 5: Fractions fermented and non-fermented 13C-urea after intake of a ColoPulse-capsule; □: $F_{\text{non-fermented}}$; ▪: $F_{\text{fermented}}$; ■: total recovery of 13C.
very limited as shown by the median recoveries from 15N and 13C in experiment 1 (73.7% versus 73.1%). This confirms the aforementioned hypothesis that both urea-isotopes have comparable kinetics and that the isotope effect is absent.

The cumulative PDR at t=24 h for 13C or 15N from uncoated capsules was high (61.8-86.8%) as one expects for a small, water-soluble molecule, which is readily absorbed from the intestine. The amount not recovered can partly be explained by the so-called urea salvage. Intact absorbed urea diffuses from the systemic circulation back into the intestine where it may either be fermented (colon) or excreted via the feces. In earlier work we found this fraction to be 7.5% at 12 h after oral administration [9]. The major part of the non-recovered isotope-label is probably still present in the urea distribution volume and will gradually be excreted in the urine afterwards, as the elimination half-life of urea is 7 h [11]. This hypothesis is supported by two observations. First, the cumulative PDR-time curves in urine did not reach a plateau level within 24 h (figure 3). Secondly, fermentation was finished within 15 h (figure 4).

Since the “isotope effect” is absent for 13C- and 15N$_2$-urea and the urea salvage is limited after release of urea in the stomach, 15N$_2$-urea excretion in urine collected over a certain time interval can serve as an internal standard correcting for day-to-day variation in urea kinetics. The fraction of non-fermented 13C-urea after delivery in the colon may be quantified relative to this standard.

Dual-label stable isotope strategy

The third experiment aimed to give information on the release of 13C-urea in the ileocolonic intestinal segment (urease-rich region). In an earlier proof-of-concept clinical study we showed that urea is fermented in the colon, which leads to reduced availability of intact 13C-urea in blood and urine from a ColoPulse-capsule [8].

Urine data

After concomitant administration of 15N$_2$-urea in an uncoated and 13C-urea in a ColoPulse-capsule, the 13C/15N-ratio in urine became constant about 12 h after intake (figure 2). The ratio was much smaller than one in all subjects, which is explained by limited absorption of intact 13C-urea from the ColoPulse-capsules in comparison to uncoated capsules (11.9% versus 73.1%). The fraction non-fermented of 13C- and 15N$_2$-urea expressed as PDR per collected urine volume for each subject (figure 3) also illustrates the comparable kinetics of 13C- and 15N$_2$-urea and the difference in segment of release of the uncoated and the ColoPulse-capsule.

The constant value of the 13C/15N-ratio in urine 12 h after intake becomes constant. This is explained by the release characteristics of the ColoPulse-capsule, which starts releasing its contents when the ileocolonic region is reached about 3 h after intake. As might be expected, at 12 h all 13C-urea has been released in the intestine and is absorbed or fermented or encapsulated in viscous feces. The curves of figure 4 indicate a lag time of >3 h. The combination of this time delay and the high 13C response in breath proves that the capsule released its content in the urease-rich ileocolonic region.
The median cumulative PDR of ^{15}N from the uncoated capsules in experiment 1 and 2 (73.7% versus 81.6%) showed 7.9% absolute difference indicating day-to-day variation in urea kinetics. The median interday variation (9.7%) appeared to be larger than the interlabel (2.9%) and interindividual variation (3.4%), supporting the proposal to apply $^{15}\text{N}_2$-urea released in the stomach as an internal standard to correct for day-to-day variations.

Breath data

The release profile of the ColoPulse-capsules obtained from the $^{13}\text{CO}_2$ response in breath (fig. 4) is comparable to the one we found in the single dose, two-period crossover study [9]. Median values found for the fermented fraction were 63.5% in this study versus 69.2% earlier. For the non-fermented fraction this was 14.8% (urine) versus 16.0% (blood). These results support our earlier finding that combining breath and urine data yields results comparable to combining breath and blood data.

Single urine sample

When $F_{\text{non-fermented}}$ calculated from a single urine-sample taken ≥ 12 h post dose was compared to $F_{\text{non-fermented}}$ calculated from the simulated 24 h urine collection the absolute difference in $F_{\text{non-fermented}}$ had a mean value of 8.6% (p=0.07). This difference is caused by the excretion of ^{15}N-label during the first 4 h post dose when the coated ^{13}C-urea capsule still did not release its content.

We tried to find a reliable mathematical relationship between $^{13}\text{C}/^{15}\text{N}$-ratio's in a single collection and in a 24 h-collection, taking into account the earlier start of ^{15}N-label excretion. This algorithm is to be used in future studies to enable calculation the $F_{\text{non-fermented}}$ from a single urine sample. For each subject the mean $^{13}\text{C}/^{15}\text{N}$-ratio of the single urine collections ≥ 12 h post dose was plotted against the $^{13}\text{C}/^{15}\text{N}$-ratio in the simulated 24 h urine collection. The obtained correlation coefficient was 0.9977 indicating a very strong relationship. This was confirmed by calculation of the $F_{\text{non-fermented}}$ both from a single sample (≥ 12 h post dose) and the simulated 24 h urine collection. No difference could be detected between the $F_{\text{non-fermented}}$ obtained between these methods. The mean difference between these outcomes was only 0.1%, (p=0.67) showing the validity of the model as used.

The strong relationship between the $^{13}\text{C}/^{15}\text{N}$-ratio in a single urine sample collected ≥ 12 h post dose and that in the simulated 24 h urine collection implies that the non-fermented fraction, needed to evaluate total bioavailability of the content of a ColoPulse-capsule, can be determined by analyzing the $^{13}\text{C}/^{15}\text{N}$-ratio in any urine sample obtained between 12 and 24 h after administration.

Increase of study power by one-day design

Heck et al. [12] reported already in 1979 that the application of stable isotope technology in bioavailability studies permits smaller group size by increase study power via elimination of day-to-day variation which is unavoidable in a two-day study design. To further evaluate the ColoPulse-technology, we calculated the difference in required group size when applying a one- or –two day study design by equation (2):
We established a level of significance of 95% ($\alpha=0.05$, corresponding $z_\alpha=0.84$) and a power of 80% ($\beta=0.2$, corresponding $z_{\alpha/2}=1.96$). We chose to be able to detect a difference (δ) in local bioavailability of 10 or 20%. The population variance (σ) was estimated based on bioavailability data of our two-day [9] and one-day studies. As is shown in table 3, the group size (n) is smallest in the one-day study design and decreases more than proportional with a decrease in population variance.

Together with the elimination of blood samples, the reduction of breath samples by performing the study in one-day and the absence of day-to-day variation in urea kinetics adds additional advantages to the proposed study design. We will further investigate this approach in a clinical study to evaluate the release profile of colon targeted tablets in both healthy subjects and patients with Crohn’s disease.

Table 3: Sample size calculations for a local bioavailability study of a colon drug delivery system applying non-invasive stable isotope technology ($\alpha=0.05$, $\beta=0.2$).

<table>
<thead>
<tr>
<th>Reference</th>
<th>Detectable difference</th>
<th>Population variance</th>
<th>Required group size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schellekens et al, 2010</td>
<td>20%</td>
<td>CV = 49%</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>CV = 49%</td>
<td>144</td>
</tr>
<tr>
<td>Schellekens et al. 2010 (non-responder excluded)</td>
<td>20%</td>
<td>CV = 19%</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>CV = 19%</td>
<td>31</td>
</tr>
<tr>
<td>This paper</td>
<td>20%</td>
<td>CV = 18%</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>CV = 18%</td>
<td>21</td>
</tr>
</tbody>
</table>

8.5 Conclusions

Application of a dual-label stable isotope strategy of 15N$_2$- and 13C-urea is suitable for the evaluation of local bioavailability of colon drug delivery systems. Since both isotopes can be taken at the same time, day-to-day variation in urea kinetics is eliminated and study power is increased.

Compared with the conventional two-period study design, our approach reduces clinical study costs by a decrease in study run through time (one period instead of two) and in sample-load by omitting blood-samples, reducing breath samples by 50% and only taking one urine sample. With this feasibility study we showed that combination of breath and a single urine sample provides sufficient information to assess ColoPulse-capsules in vivo without radioactive exposure in a non-invasive, low-cost study design.
8.6 References
