ON THE PARAMETRIZATION AND CONSTRUCTION OF NONLINEAR STABILIZING CONTROLLERS

A.D.B. PAICE* and A.J. VAN DER SCHAFT**

*Institut für Dynamische Systeme, Universität Bremen, Postfach 330 440, D-28334 Bremen, Germany
**Dept. of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract. Continuing on our previous papers, we specialize the parametrization of stabilizing controllers to the case of a stable nonlinear plant, and we obtain a nonlinear generalization of the Internal Model Control principle. Furthermore, based on the notions of a stable kernel and stable image representation of a nonlinear system, we derive two candidate stabilizing controllers for unstable nonlinear plants.

Key Words. nonlinear control systems, stabilizing controllers, parametrization

1. Introduction

In linear control theory the Youla parametrization of stabilizing controllers of a given linear plant has proved to be a very powerful tool in various control problems. In our previous paper [3], we have obtained an intrinsic generalization of the Youla parametrization to the nonlinear case. In fact, given a single stabilizing controller, the class of all nonlinear stabilizing controllers is being parametrized. A crucial notion in this approach is that of a stable kernel representation of a nonlinear system, generalizing (and in the linear case equivalent to) the notion of a left coprime factorization of a system.

In the present note we first explicitate the parametrization of stabilizing controllers for the special case of a stable nonlinear plant, where the given stabilizing controller can be taken to be the zero-system. In particular, we show that in this case the above parametrization of stabilizing controllers leads to a nonlinear version of Internal Model Control. Based on the notions of a stable kernel representation and a stable image representation of a nonlinear plant we propose in the last section two candidate stabilizing controllers for unstable plants.

2. An explicit parametrization of all stabilizing controllers of a stable plant

Consider a smooth nonlinear state space system (the plant), for simplicity given in affine form

\[\dot{x} = f(x) + g(x)u, \quad u \in \mathbb{R}^m \]

\[G : \quad y = h(x), \quad y \in \mathbb{R}^p \] \hspace{1cm} (1)

where \(z = (x_1, \ldots, x_n) \) are local coordinates for some \(n \)-dimensional state space manifold \(X \).

In our paper [3], see also [4], it has been shown how, given a single stabilizing controller \(K \) for \(G \), the class of all stabilizing compensators may be parametrized. This result directly generalizes the well-known Youla parametrization of stabilizing linear controllers of a linear plant \(G \) to the nonlinear setting. In this section we wish to make this parametrization more explicit and transparable in the case the plant \(G \) is already stable, and so \(K \) may be taken to be the zero-compensator.

First we recall from [3] the following crucial notions. Consider an arbitrary state space system

\[\dot{p} = F(p, v), \quad v \in \mathbb{R}^k \]

\[z = H(p, v), \quad z \in \mathbb{R}^l \] \hspace{1cm} (2)

with inputs \(v \), outputs \(z \), and state \(p \) (belonging to some state space manifold \(P \)). Denote the space of input signals for \(\Sigma \) by \(V \) (a subset of the space of (time-) functions from \([0, \infty)\) to \(\mathbb{R}^k \)), and the space of output signals by \(Z \) (a subset of the space of functions from \([0, \infty)\) to \(\mathbb{R}^l \)). In the next section we will take

\[V = L^k_{2k}[0, \infty), \quad Z = L^l_{2l}[0, \infty) \] \hspace{1cm} (3)

but this is not necessary yet at this level of gener-
ity. Write \mathcal{V} as a disjoint union of a set of stable signals \mathcal{V}^s including the zero signal, and a set of unstable signals \mathcal{V}^u, i.e.,

$$\mathcal{V} = \mathcal{V}^s \cup \mathcal{V}^u, \quad \mathcal{V}^s \cap \mathcal{V}^u = \emptyset, \quad 0 \in \mathcal{V}$$

and similarly,

$$\mathcal{Z} = \mathcal{Z}^s \cup \mathcal{Z}^u, \quad \mathcal{Z}^s \cap \mathcal{Z}^u = \emptyset, \quad 0 \in \mathcal{Z}$$

(In case $\mathcal{V} = L_2^\infty(0, \infty)$ we will take $\mathcal{V}^s = L_2^\infty(0, \infty)$ and \mathcal{V}^u its complement; similarly for \mathcal{Z}.)

Definition 1 Σ is a stable system if for every initial condition $x_0 \in \mathcal{X}$ and initial condition $u_0 \in \mathcal{U}$, the input-output map associated to Σ maps \mathcal{V}^s into \mathcal{Z}^s. In [5] it has been shown that under appropriate technical conditions (see also Section 3) any plant G admits (at least locally around an equilibrium) a stable kernel representation:

Definition 2 Consider the plant G. A nonlinear system Σ

$$\begin{align*}
\dot{x} &= F(x,y,u), \quad u \in \mathbb{R}^m, \quad y \in \mathbb{R}^p \\
z &= H(x,y,u), \quad x \in \mathcal{X}, \quad z \in \mathbb{R}^q
\end{align*}$$

with $\mathcal{U} = \mathcal{U}^s \cup \mathcal{U}^u$, $\mathcal{Y} = \mathcal{Y}^s \cup \mathcal{Y}^u$, $\mathcal{Z} = \mathcal{Z}^s \cup \mathcal{Z}^u$, is a stable kernel representation of G if

(i) For every initial condition $x_0 \in \mathcal{X}$ and every $u \in \mathcal{U}$ there exists a unique solution $y \in \mathcal{Y}$ to (6) with $z = 0$, which equals the output of (1) for the same initial condition x_0 and input u.

(ii) For every initial condition $x_0 \in \mathcal{X}$ and every $z \in \mathcal{Z}^s$ there exists a unique solution u,y to (6) with $u \in \mathcal{U}^s, y \in \mathcal{Y}^s$.

In shorthand notation a stable kernel representation for G will be denoted by $R_G : \mathcal{Y} \times \mathcal{U} \rightarrow \mathcal{Z}$.

Note that if the plant G is itself a stable system, then a stable kernel representation R_G of G is simply

$$\begin{align*}
\dot{x} &= f(x) + g(x)u \\
z &= y - h(x)
\end{align*}$$

The class of controllers we wish to consider for G are stable kernel representations of smooth state space systems, i.e., controllers K with stable kernel representations

$$R_K : U \times Z \rightarrow Z_K,$$

with a state space manifold (space of initial conditions) X_K. The stability of the closed-loop system

$$\begin{align*}
R_G(y,u) = 0 \\
R_K(u,y) = 0
\end{align*}$$

is defined in the following strong sense [3].

Definition 3 Let $R_G : \mathcal{Y} \times \mathcal{U} \rightarrow \mathcal{Z}$ be a stable kernel representation of G, and let $R_K : U \times Z \rightarrow Z_K$, with state space X_K, be a stable kernel representation of a controller K for G. The closed-loop system (9), denoted by $\{R_G, R_K\}$, is said to be stable if for all initial conditions $z^s \in \mathcal{X}, z^u_K \in X_K$, and all $z \in \mathcal{Z}^s, z^u_K \in Z^u_K$, there exists a unique solution $y \in \mathcal{Y}^s, u \in \mathcal{U}^s$ to

$$\begin{align*}
z &= R_G(y,u) \\
z^u_K &= R_K(u,y)
\end{align*}$$

Note that if the plant G is stable with stable kernel representation (7), and also the controller K is itself a stable system

$$\begin{align*}
\dot{\xi} &= \alpha(\xi,y), \quad \xi \in X_K \\
u &= \beta(\xi,y)
\end{align*}$$

with obvious stable kernel representation

$$\begin{align*}
\dot{\xi} &= \alpha(\xi,y) \\
z^u_K &= u - \beta(\xi,y)
\end{align*}$$

then the closed-loop system $\{R_G, R_K\}$ is stable if and only if for all initial conditions $z^s \in \mathcal{X}, \xi^s \in X_K$, and all stable $z \in \mathcal{Z}^s, z^u_K \in Z^u_K$, the signals y and u in Figure 1 are stable. This is a very classi-
representations \(R_{G_S} \) and \(R_{K_Q} \) (in the signals \(y \) and \(u \))

\[
\begin{align*}
R_{G_S} : & \mathcal{Y} \times \mathcal{U} \rightarrow \mathcal{Z}_S \\
R_{K_Q} : & \mathcal{U} \times \mathcal{Y} \rightarrow \mathcal{Z}_Q
\end{align*}
\]

given as

\[
\begin{align*}
z_S &= R_S(R_G(y, u), R_K(u, y)) \\
z_Q &= R_Q(R_K(u, y), R_G(y, u))
\end{align*}
\]

The main observation of [3] is that the closed-loop system \(\{R_{G_S}, R_{K_Q}\} \) is stable if and only if the closed-loop system \(\{R_S, R_Q\} \) is stable, and furthermore that all stabilizing controllers can be generated this way. This yields a nonlinear Youla parametrization of all stabilizing controllers (based on the given stabilizing controller \(K \)) by letting \(S \) to be the system 0 corresponding to a zero input-output map, i.e.

\[
R_S(z, z_K) = R_0(z, z_K) = z.
\]

In [3] it has been shown that the closed-loop system \(\{R_S, R_Q\} \) is stable only if \(Q \) is a stable input-output system (from \(z \) to \(z_k \)):

\[
\begin{align*}
z_Q &= F_Q(z_Q, z) \\
z_k &= H_Q(z_Q, z)
\end{align*}
\]

Conversely, if \(Q \) is a stable input-output system then by taking the obvious stable kernel representation \(R_Q \) given as

\[
\begin{align*}
\dot{z}_Q &= F_Q(z_Q, z) \\
z_Q &= u - H_Q(z_Q, z)
\end{align*}
\]

it follows that \(\{R_S, R_Q\} \) is stable if and only if \(Q \) is a stable input-output system.

Note that in this case (14) specializes to

\[
\begin{align*}
z_S &= R_G(y, u) \\
z_Q &= R_Q(R_K(u, y), R_G(y, u))
\end{align*}
\]

Now, let us furthermore assume that the plant \(G \) is already stable with obvious stable kernel representation (7). Then, as above the zero-controller \(K = 0 \), with stable kernel representation \(R_0(u, y) = u \), yields a stable closed-loop system \(\{R_G, R_0\} \), while (18) further specializes to

\[
\begin{align*}
z_S &= R_G(y, u) \\
z_Q &= R_Q(u, R_G(y, u))
\end{align*}
\]

It thus follows that the set of all stabilizing controllers for the stable plant \(G \) is given (in implicit form) as

\[
0 = R_Q(u, R_G(y, u))
\]

with \(R_Q \) given by (17). Since \(R_G \) is given by (7) the resulting stabilizing compensators are given in implicit form as

\[
\begin{align*}
\dot{z} &= f(\hat{z} + g(\hat{z})u), \quad \hat{z} \in X \\
\dot{z}_Q &= F_Q(z_Q, y - h(\hat{z})), \quad z_Q \in X_Q
\end{align*}
\]

and in explicit form as

\[
\begin{align*}
\dot{\hat{z}} &= f(\hat{z}) + g(\hat{z})H_Q(z_Q, y - h(\hat{z})) \\
K_Q : \dot{z}_Q &= F_Q(z_Q, y - h(\hat{z}))
\end{align*}
\]

To be precise, it is shown in [3] that for every stable \(Q \) as in (16) the controller \(K_Q \) is stabilizing for \(G \) (i.e., the closed-loop system \(\{R_G, R_K\} \) is stable) whenever \(\hat{z}(0) = x(0) \), and that moreover all stabilizing controllers may be generated in this way.

It follows that every stabilizing controller for \(G \) necessarily contains a model of \(G \), namely

\[
\dot{z} = f(\hat{z}) + g(\hat{z})u, \quad \hat{z} \in X
\]

The signal flow diagram is given in Figure 2, and generalizes the concept of Internal Model Control (see [1]) to the nonlinear setting.

\[
\begin{align*}
V_x(x)f(x) - \frac{1}{2}V_x(x)g(x)g^T(x)V_x^T(x) \\
+ \frac{1}{2}h^T(x)h(x) = 0
\end{align*}
\]

Fig. 2.

3. On the construction of stabilizing controllers

Consider the plant \(G \), together with the Hamilton-Jacobi equations (in the unknowns \(V \), resp. \(W \))

\[
\begin{align*}
V_x(x)f(x) - \frac{1}{2}V_x(x)g(x)g^T(x)V_x^T(x) \\
+ \frac{1}{2}h^T(x)h(x) = 0
\end{align*}
\]
\[W_x(x)f(x) + \frac{1}{2} W_x(x)g(x)g^T(x)W_x^T(x) - \frac{1}{2} h^T(x)h(x) = a \] (23)

with \(V_x(x) \) denoting the gradient \(\left(\frac{\partial V}{\partial x_1}(x), \ldots, \frac{\partial V}{\partial x_n}(x) \right) \) of the function \(V(x) \), and similarly for \(W_x(x) \).

In [5] the following is proven. Suppose there exists a solution \(W \geq a \) to (23), and additionally assume there exists a solution \(k(x) \) to

\[W_x(x)k(x) = h^T(x) \] (24)

Then the system

\[
R_G \begin{cases}
\dot{z} &= f(x) - k(x)h(x) + g(x)u + k(x)y \\
z &= y - h(x)
\end{cases}
\] (25)

has finite \(L_2 \)-gain from \(\begin{bmatrix} y \\ u \end{bmatrix} \) to \(z \); in fact the \(L_2 \)-gain is equal to 1. Thus (25) constitutes a stable kernel representation of \(G \) (where we take signal spaces \(L_2 \), with stable part \(L_2 \)).

On the other hand, suppose there exists a solution \(V \geq 0 \) to (22), then the system

\[
I_G \begin{cases}
\dot{z} &= f(x) - g(x)g^T(x)V_x^T(x) + g(x)s \\
y &= h(x) \\
u &= -g^T(x)V_x^T(x) + s
\end{cases}
\] (26)

has \(L_2 \)-gain equal to 1 (from \(s \) to \(\begin{bmatrix} y \\ u \end{bmatrix} \)); in fact the system is inner. System (26) constitutes a stable image representation of \(G \), since the set of input-output pairs generated by the driving signal \(s \) equals the input-output behavior of \(G \).

In the linear case, \(R_G \) corresponds to the normalized left coprime factorization, while \(I_G \) corresponds to the normalized right coprime factorization.

A right inverse system to \(R_G \) is given by

\[
R_G^{-1} \begin{cases}
\dot{p} &= f(p) - g(p)g^T(p)V_p^T(p) + k(p)\xi \\
p &= h(p) + \xi \\
u &= -g^T(p)V_p^T(p)
\end{cases}
\] (27)

Indeed, if \(p(0) = x(0) \), then the input-output map (from \(\xi \) to \(z \)) of \(R_G \circ R_G^{-1} \) is the identity mapping. Furthermore, a left inverse system to \(I_G \) is given by

\[
I_G^{-1} \begin{cases}
\dot{p} &= f(p) - k(p)h(p) + g(p)u + k(p)y \\
\xi &= g^T(p)V_p^T(p) + u
\end{cases}
\] (28)

Indeed, if \(p(0) = x(0) \), then the input-output map (from \(s \) to \(\zeta \)) of \(I_G^{-1} \circ I_G \) is the identity mapping. Now note that \(R_G^{-1} \) is an image representation of

\[
K : \begin{cases}
\dot{p} &= f(p) - g(p)g^T(p)V_p^T(p) - k(p)h(p) + k(p)y \\
u &= -g^T(p)V_p^T(p)
\end{cases}
\] (29)

while on the other hand \(I_G^{-1} \) is a kernel representation of this same system \(K \).

Following linear theory, see e.g. [2], this strongly supports the idea that \(K \) is a “good” stabilizing controller for \(G \). Note that \(K \) is the nonlinear version of the LQG controller; it is composed of the optimal state feedback (with regard to the cost criterion \(\int_0^\infty \left(\| u \|^2 + \| y \|^2 \right) \))

\[
u = -g^T(x)V_x^T(x),
\] (30)

with the actual state \(x \) replaced by the “optimal estimate” \(p \) of \(x \), generated by the nonlinear observer

\[
p = f(p) + g(p)u + k(p)[y - h(p)]
\] (31)

(Indeed, in the linear case (31) is precisely the Kalman filter!) Since \(R_K = I_G^{-1} \) the closed-loop system \(\{R_G, R_K\} \) as in (10) is given in state space form as (see (25) and (28))

\[
\begin{align*}
\dot{z} &= f(x) - k(x)h(x) + g(x)u + k(x)y \\
\dot{p} &= f(p) - k(p)h(p) + g(p)u + k(p)y \\
z &= y - h(x) \\
\xi &= u + g^T(p)V_p^T(p)
\end{align*}
\] (32)

In order to investigate closed-loop stability in the sense of Definition 3 we insert the system (32) (by solving \(y \) and \(u \)) to obtain

\[
\begin{align*}
\dot{z} &= f(x) - g(x)g^T(x)V_x^T(x) + g(x)\xi + k(x)z \\
\dot{p} &= f(p) - k(p)h(p) - h(x) \\
y &= h(x) + z \\
u &= -g^T(p)V_p^T(p) - \xi
\end{align*}
\] (33)

Following Definition 3 the closed-loop system
\{R_G, R_K\} is stable if for every pair of initial conditions \(x(0), p(0)\) of (33), and all stable signals \(z, \xi\), the signals \(y, u\) produced by (33) are stable, i.e., \(\{R_G, R_K\}\) is stable if (33) is a stable input-output system (from \(z, \xi\) to \(y, u\)).

Unfortunately the input-output stability of (33) is not easy to check in general. Note that for a linear plant \(\dot{x} = Ax + Bu, y = Cx\), the matrix \(k(x)\) will be a constant matrix \(K\), and the error dynamics in \(\dot{e} := p - x\) is simply given as

\[
\dot{e} = (A - KC)e
\]

(34)

from which input-output stability immediately follows.

Remark 4 Suppose \(G\) has an equilibrium \(x_0\), i.e., \(f(x_0) = 0\) and without loss of generality \(h(x_0) = 0\). Assume that the linearization \(G_L\) of \(G\) around \(x_0\) is stabilizable and detectable. Then the linearization \(K_L\) of \(K\) around \(p_0 = x_0\) equals the LQG controller for \(G_L\), and thus the linearized closed-loop system of \(G\) and \(K\) is stable.

A different candidate stabilizing controller can be obtained as follows, generalizing an idea proposed in [6]. Again, consider the stable image representation \(I_e\) of \(G\), and its left inverse \(I_{eI}\) given by (28). Now consider the control law (with \(v\) a new external input)

\[
u = \tilde{u} + v - \zeta\]

(35)

\[
\begin{align*}
\tilde{u} &= -g^T(\xi)V_{\xi}^T(\xi) + \zeta \\
\dot{\xi} &= f(\xi) - g(\xi)g^T(\xi)V_{\xi}^T(\xi) + g(\xi)\zeta, \\
\epsilon(0) &= 0
\end{align*}
\]

(36)

where \(\zeta\) is generated by \(I_{eI}^{-1}\) for \(p(0) = 0\). Since \(I_{eI}^{-1}\) is the left inverse of \(I_e\) it follows that \(\zeta(t) = \sigma(t), t \geq 0\). Therefore, cf. (26), if \(x(0) = 0\) then also \(\tilde{u}(t) = u(t), t \geq 0\), yielding \(v(t) = \zeta(t), t \geq 0\), and thus the input-output map from \(v\) to \(y\) (in closed-loop) is simply given as

\[
\begin{align*}
\dot{x} &= f(x) - g(x)g^T(x)V_{\xi}^T(\xi) + g(x)v, \\
y &= h(x), x(0) = 0
\end{align*}
\]

(37)

which is stable by construction.

References

