Absence of mass renormalisation in supersymmetric QED in two and three dimensions

de Roo, M. ; Steringa, J.J.

Published in:
Physics letters b

DOI:
10.1016/0370-2693(88)91888-6

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1988

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
ABSENCE OF MASS RENORMALISATION IN SUPERSYMMETRIC QED
IN TWO AND THREE DIMENSIONS

M. DE ROO and J.J. STERINGA
Institute for Theoretical Physics, P.O. Box 800, 9700 AV Groningen, The Netherlands

Received 6 June 1988

We show that there is no mass renormalisation to one-loop order in supersymmetric QED in $d=2$ and $d=3$, if the value of the bare gauge multiplet mass equals twice that of the matter multiplet. We discuss the possible origin of this effect.

A striking feature of certain supersymmetric field theories in four dimensions is the absence of quantum corrections to parameters of the theory, such as particle masses. Indeed, this property is the reason behind most of the applications of supersymmetry in unification models. In four dimensions this phenomenon of perturbative non-renormalisation is well understood [1]. Non-renormalisation theorems do not hold for $N=1$ supersymmetric models in two and three dimensions. In this letter we point out that for a special choice of the bare mass parameters mass renormalisation is nevertheless absent, at least to one-loop order, in massive supersymmetric quantum electrodynamics (SQED) in $d=2$ and $d=3$.

In this letter we will concentrate on SQED$_3$. As is well known, in ordinary QED$_3$ it is possible to have, besides the mass of the charged matter fields, m, a gauge invariant mass for the photon, μ [2,3]. (This mass term can be generalized to the non-abelian case, where it takes the form of a Chern–Simons term. In this letter we will limit ourselves to abelian gauge theories.) Both mass terms allow a supersymmetric extension. The absence of mass renormalisation occurs for the special choice $\mu = -2m$.

SQED$_3$ can be conveniently described by a Majorana superfield $V,(x, \theta)$, which contains as physical fields the photon γ, and a Majorana spinor λ, and by a complex scalar superfield $q(x, \theta)$, with charged physical spin-0 and spin-$\frac{1}{2}$ fields. The action

$$S = \int d^3x \, d^2\theta \left[\frac{1}{2} \overline{V} \Phi \Phi + \frac{1}{4} m \Phi \Phi + \frac{1}{2} \overline{\lambda} (\slashed{\partial} - \mu) V \right], \quad (1)$$

where we have introduced the gauge covariant derivative

$$D_\alpha \Phi = \partial_\alpha \Phi + i e V_\alpha \Phi, \quad D_\alpha = \frac{\partial}{\partial \theta^\alpha} - (\partial \theta)^\alpha. \quad (2)$$

Infinitesimal local gauge transformations are of the form $\delta \Phi = -i e A \Phi$, $\delta V = D A$, where $A(x, \theta)$ is a real scalar superfield. In (1) we have chosen a generalisation of the Feynman gauge. The general form of the V kinetic term reads in an arbitrary covariant gauge with gauge parameters a and a':

$$\frac{1}{16} \left(F F - 2 \mu \overline{\Phi} V - a D V D D V + 2 a' \mu \overline{D} V D V \right), \quad (3)$$

where $F_\alpha = \overline{D}_\mu D_\mu V_\alpha$ is the gauge invariant field strength. Note that F satisfies the Bianchi identity $\overline{D} F = 0$. The choice $a = a' = 1$ leads, after some straightforward algebra, to the kinetic term in (1).

The superspace Feynman rules can be derived from (1) and (3). In a general covariant gauge the bare superpropagator of the gauge multiplet takes on the form

0370-2693/88/$03.50 \textcopyright$ Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)
\[
\Delta_{\alpha\beta}(k; \theta_1, \theta_2) = \frac{1}{2} \left(\frac{i k + \mu}{k^2 (k^2 + \mu^2)} \right) \left[\bar{\mathcal{D}}(k, \theta_1) + 2i k \right] \delta_{12} C^{-1}
\]
\[
\quad - \frac{i a k + a' \mu}{k^2 (a^2 k^2 + a^2 \mu^2)} \left[\bar{\mathcal{D}}(k, \theta_1) - 2i k \right] \delta_{12} C^{-1}
\]
(\delta_{12} is the \(\delta\)-function for the Grassmann-variables \(\theta_1\) and \(\theta_2\), while the bare matter propagator is)
\[
\Delta(p; \theta_1, \theta_2) = \frac{1}{2} \left[\bar{\mathcal{D}}(p, \theta_1) + 2m \right] \delta_{12}.
\]
(4)

The three- and four-point interaction vertices are
\[
\Gamma^{(3)}_{\alpha}(p, p-k; \theta_1, \theta_2, \theta_3) = -\frac{1}{4} i e \left[\delta_{13} \bar{\mathcal{D}}_\alpha(p, \theta_1) \delta_{12} - \delta_{12} \bar{\mathcal{D}}_\alpha(k-p, \theta_1) \delta_{13} \right],
\]
\[
\Gamma^{(4)}_{\alpha\beta}(p, k, p'; k'; \theta_1, \theta_2, \theta_3, \theta_4) = \frac{1}{2} e^2 \delta_{12} \delta_{13} \delta_{14} \delta_{\alpha\beta}.
\]
(6)

The quantum corrections to the two-point functions can most easily be expressed in terms of corrections to the inverse propagators. From (4) and (5) we find that in lowest order they take the form
\[
\Gamma^{(2)}(k; \theta_1, \theta_2) = \frac{1}{2} \left[\bar{\mathcal{D}}(k, \theta_1) + 2i k \right] \delta_{12} \left(i k + a' \mu \right) \delta_{12} C^{-1}
\]
\[
\Gamma^{(2)}(p; \theta_1, \theta_2) = -\frac{1}{4} \left[\bar{\mathcal{D}}(p, \theta_1) - 2m \right] \delta_{12}.
\]
(7)

We have calculated the one-loop quantum corrections to (8) and (9), using standard supergraph techniques [4]. The resulting vacuum polarisation, the order-\(e^2\) correction to the inverse gauge superpropagator, reads
\[
\Pi_{\alpha\beta}(k; \theta_1, \theta_2) = \frac{1}{4} i e^2 \left[\bar{\mathcal{D}}(k, \theta_1) + 2i k \right] \delta_{12} \left(i k + 2m \right) \delta_{12} I(k^2, m^2, m^2),
\]
(10)

where the function \(I\) is the usual one-loop integral
\[
I(p^2, m_1^2, m_2^2) = \int \frac{d^3q}{(2\pi)^3} \frac{1}{[(p-q)^2 + m_1^2] (q^2 + m_2^2)}.
\]
(11)

In the Feynman gauge the one-loop matter self-energy, the order-\(e^2\) correction to the inverse matter propagator, is
\[
\Sigma(p; \theta_1, \theta_2) = \frac{1}{4} i e^2 \left[\bar{\mathcal{D}}(p, \theta_1) + 2(m + \mu) \right] \delta_{12} I(p^2, m^2, m^2).
\]
(12)

Note that in (10) only the gauge invariant part of the gauge propagator is affected by quantum corrections. Clearly, for \(\mu = -2m\) the vacuum polarisation has the same structure as the bare inverse propagator, up to the wavefunction renormalisation. From (12) we see that the same holds for the inverse matter propagator. Thus the choice \(\mu = -2m\) implies that there is no one-loop correction to the value of the mass parameters of the theory. In the remainder of this letter we will elaborate on this statement. Note that the result requires supersymmetry: in ordinary massive QED3 there is a one-loop correction to both masses for any non-zero value of the bare parameters [5]. On the other hand, it has been shown in ref. [6] that in a quite general class of abelian gauge theories in \(d = 3\), which includes SQED3, the mass of the photon, \(\mu\), is not affected by higher (\(> 1\) loop) order quantum corrections. Therefore for \(\mu = -2m\) the photon mass in SQED3, and by supersymmetry the mass of the whole vector multiplet, is not renormalised at all.

The action of SQED2 [7] in the Feynman gauge takes on the same form as (1), but the gauge transformations now contain \(\gamma_5 = \gamma_0 \gamma_i\); \(\delta \Phi = -ie \alpha \Phi, \delta V = \gamma_5 D \alpha\). This means that the covariant derivative (2) also contains \(\gamma_5\). Except for this modification, the perturbative calculation proceeds in exactly the same way as in three dimensions, with the result that now the absence of mass renormalisation holds for \(\mu = 2m\). The two-dimensional case
was treated in more detail in ref. [8]. There we found that also in a non-perturbative approach the choice $\mu = 2m$
leads to considerable simplification of the full propagators.

We have checked explicitly that the absence of mass renormalisation holds in arbitrary covariant gauges. We
have also verified that in the Wess–Zumino gauge a component calculation of Feynman diagrams leads to the
same one-loop result for the masses.

Our result can be trivially extended to the case where the gauge multiplet is coupled to an arbitrary number N
of scalar multiplets, all with mass m. The only modification is that in (10) the vacuum polarisation should be
multiplied by a factor N, which affects only the wavefunction renormalisation constant of the gauge multiplet.

At the level of the action (1), the choice $\mu = -2m$ does not appear to give rise to any new symmetries. In
particular, there is no additional supersymmetry connecting the gauge and matter multiplets, since this would
imply that their masses are equal. Note, that for $\mu = -2m$ the threshold for producing particle–antiparticle pairs
coincides with the pole at $k^2 = \mu^2$ in the gauge propagator. This suggests that an explanation of our result might
require a description of these models in terms of bound states.

In this letter we have not considered higher order corrections to the matter propagator. The gauge multiplet
mass is, in higher orders, protected by gauge invariance [6]. It would be interesting to see, if for $\mu = -2m$, higher
order corrections to the mass of the matter multiplet also vanish. Furthermore, it is important to establish
whether or not our result extends to the non-abelian analogues of the models considered here.

This research is supported by the Stichting voor Fundamental Onderzoek der Materie (FOM).

References