This remark describes an extension of the visible surface plotting program, ACM Algorithm 475. This program turns out to result in a long plotting time when one is using CALCOMP plot routines. The long plotting time is mainly caused by numerous idle pen movements which are inherent to the structure of the algorithm. Essentially the algorithm does the following: the three-dimensional surface is cut in slices. The slices are separated and then searched in order to produce a perspective image of that slice and to remove the hidden lines; therefore, the algorithm generates a large number of small segments in the search direction. In general, however, the search direction does not coincide with the contour direction. When one is using CALCOMP subroutines there are a lot of idle pen movements due to the fact that the segments are not in an appropriate order. In Figure 1(a) it is shown that numerous idle pen movements are necessary to plot a disklike form. In the improved version only one idle pen movement is made (see Figure 1(b)).

The extension consists of two subroutines: SDLINE and PLTOUT. In the original subroutine DANDR we have to add five statements: Insert

![Diagram](image)

Fig. 1 (a) The pen movements generated by the original version of the plotting program. The idle pen movements are dashed lines. (b) Output of the improved plotting program showing one idle pen movement (dashed line)
COMMON/TOM1/NSEQ, SS; SS ffi 0.04, NSEQ ffi 0
before the statement
SLOPE = DX/DY
which initializes
SDLINE; CALL SDLINE(X1, Y1, X2, Y2)
instead of
LINE(X1, Y1, X2, Y2)
which builds up the sequences and
CALL PLTOUT
after the statement
130 CONTINUE
in DANDR which plots the sequences. The subroutine SDLINE(X1, Y1, X2, Y2)
temporarily stores the segments in order to construct the sequences. This is done
by comparing the last point of each sequence with the endpoints of a segment.
The criterion for the continuation of a sequence is that one of the endpoints of
the segment lies within a square with edges of 2SS around the last point of a
sequence. The value of SS depends on the plotter precision and it is taken to be
equal to 0.04. If there is no continuation point of any sequence a new sequence is
started through the segment.

In the present version the length of the sequences is equal to 80 and the number
is equal to 20. If a sequence has been filled up completely a new sequence is
created. If one needs more than 20 sequences intermediate plotting takes place
by calling PLTOUT.

The subroutine PLTOUT plots the sequences taking into account the minimum
distance between starting points and ends of sequences. This is done by ordering
the sequences in an appropriate way and by indicating whether they should be
processed in normal or reversed order.

Finally we give some test results of the revised program compared with the old
version. The core size, execution time, and CALCOMP plotting time are compared
in the case of the second example (Figure 5) in Algorithm 475. Although this type
of surface is not the one that results in the greatest reduction, the saving of
plotting time is significant (see Table I). In Table I the time spent in DANDR
but not the time spent in PLTOUT is listed. The space of INIT3D + P +
DANDR (old version) and of INIT3D + P + DANDR + SDLINE + PLTOUT
+ TOM are also given in Table I.

<table>
<thead>
<tr>
<th>CYBER 74-16</th>
<th>Space</th>
<th>Time</th>
<th>CALCOMP plotting time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old version</td>
<td>1277a</td>
<td>5.012</td>
<td>31</td>
</tr>
<tr>
<td>Revised version</td>
<td>10544a</td>
<td>5.621</td>
<td>8</td>
</tr>
</tbody>
</table>

ACM Transactions on Mathematical Software, Vol. 5, No 4, December 1979
REVISED ALGORITHM

[Summary information of the revised listing is given here. The complete revised
listing is available from the ACM Algorithms Distribution Service (see inside
back cover for order form), or may be found in "Collected Algorithms from
ACM."]

NAME(n): indicates a Fortran module with n records
NAMET(n): indicates "NAME" is included for testing purposes
Contents: CONES(59), INIT3D(122), P(9), DANDR(157), AND(7), OR(7),
SDLINE(75), PLTOUT(79), ARCCOS(10)

ACM Transactions on Mathematical Software, Vol. 5, No. 4, December 1979