The development and implementation of a high-throughput phenotyping platform for identification of a new mouse models of cardiovascular disease
Svenson, Karen Louise

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Chapter 6

A new mouse mutant for the LDL receptor identified using ENU mutagenesis

Karen L. Svenson, Nadav Ahituv, Rebecca S. Durgin, Holly Savage, Phyllis A. Magnani, Oded Foreman, Beverly Paigen, and Luanne L. Peters

Journal of Lipid Research, in press
M800303 e-publication July 15, 2008
Abstract

In an effort to discover new mouse models of cardiovascular disease using ENU mutagenesis followed by high-throughput phenotyping, we have identified a new mouse mutation, C699Y, in the LDL receptor (*Ldlr*), named Wicked High Cholesterol (WHC). When WHC was compared to the widely used *Ldlr* knockout (KO) mouse, notable phenotypic differences between strains were observed, such as accelerated atherosclerotic lesion formation and reduced hepatosteatosis in the ENU mutant after a short exposure to an atherogenic diet. This loss of function mouse model carries a single base mutation in the *Ldlr* gene on an otherwise pure C57BL/6J (B6) genetic background, making it a useful new tool for understanding the pathophysiology of atherosclerosis and for evaluating additional genetic modifiers regulating hyperlipidemia and atherogenesis. Further investigation of genomic differences between the ENU mutant and KO strains may reveal previously unappreciated sequence functionality.

Keywords: atherosclerosis, hyperlipidemia, high-throughput phenotyping
Introduction

The incidence and progression of atherosclerosis remains a challenge for public health intervention and medical research strategies. Mouse models have been of great utility in meeting this challenge and have enabled systematic evaluation of genetic and environmental influences on the pathogenesis of this disease. Lipoproteins and their receptors play crucial roles in cholesterol homeostasis and, when functionally impaired, can accelerate atherogenesis. Mice with targeted mutations resulting in loss of function and those engineered for overexpression of apolipoproteins, their receptors, and key enzymes in lipid metabolism have been used extensively to investigate the complex etiology of atherosclerosis and to develop effective approaches to treatment (1-6). In addition to genetically engineered mouse models, chemical mutagenesis using N-ethyl-N-nitrosourea (ENU), which causes primarily single nucleotide mutations, has produced numerous new mouse models for studying human disease. Many of these mutants carry a novel functional mutation in a known gene (7-11). For known genes, having multiple models with a variety of unique mutations allows a survey of phenotypic differences and functional annotation of genes and their products. Causative mutations in numerous ENU mutants identified from large-scale mutagenesis programs worldwide, collectively representing a broad spectrum of disease-related phenotypes, have yet to be identified, and still hold promise of revealing novel genes.

Here we describe the identification and initial characterization of a new mouse model of high cholesterol and atherosclerosis generated using ENU mutagenesis and high-throughput phenotyping. Candidate gene sequencing identified a point mutation in the low-density lipoprotein receptor (Ldlr) gene. Comparison of this mutant to the well-characterized Ldlr-knockout (KO) mouse model reveals certain phenotypic differences and supports it as a new tool for the study of familial hypercholesterolemia (FH) and atherosclerosis.

Methods

Mice and husbandry: Non-mutagenized C57BL/6J (B6) mice were obtained from The Jackson Laboratory (Bar Harbor, Maine). Mice were generated as part of a large-scale mutagenesis effort using high-throughput phenotyping to identify new mouse models of complex heart, lung, blood and sleep disorders. Detailed protocols for generating and phenotyping these ENU cohorts have been described elsewhere (12) and are also available from http://pga.jax.org. Males of inbred mouse strain B6 were treated with ENU in three consecutive weekly doses of 80mg/kg body weight, using a previously developed protocol (13, 14). A three-generation (G3) mating scheme obtained both dominant and recessive mutations among the progeny. Apolipoprotein E (Apoe) and Ldlr knockout (KO) mice used were Jackson Laboratory stock numbers 2052 and 2207, respectively (http://jaxmice.jax.org/index.html).

Mice were housed in a specific pathogen-free (SPF) facility and maintained on a 12h:12h light:dark cycle (lights on at 6:00 am). Mice were housed in pressurized, individually ventilated duplex cages (Maxi-Miser PIV; Thoren Caging Systems, Hazelton, PA) with shaved pine bedding (Crobb Box, Ellsworth, ME) and had free access to acidified water and food, unless otherwise indicated as described below. The Animal Care and Use Committee at The Jackson Laboratory approved all procedures, and research was conducted in conformity with the Public Health Service (PHS) Policy on Humane Care and Use of Laboratory Animals.

Diets and Phenotyping: Each G3 animal was subjected to a 7-wk battery of tests starting at six weeks of age, while consuming standard rodent chow containing 6% fat by weight (LabDiet 5K52; LabDiet, Scott Distributing, Hudson, NH). Only details of the phenotyping protocol relevant to the
identification of the mutant featured in this report are described here. At eight weeks of age, animals were food-deprived for four hours in the morning and blood was collected via the retroorbital sinus through heparin-coated capillary tubes into 1.5 ml Eppendorf tubes containing heparin. Plasma was separated by centrifugation (14,000 rpm for 10 minutes) and analyzed to determine baseline values of total cholesterol, HDL cholesterol, and triglycerides using a Beckman Coulter Synchron CX®5 Delta autoanalyzer. After blood collection, mice were placed in a clean cage and given an atherogenic (ATH) diet containing (by weight) 15% dairy fat (30% caloric content), 50% sucrose, 1% cholesterol, and 0.5% cholic acid (15). Mice consumed this diet for five weeks, at which time another blood sample was collected to assess the effect of the ATH diet. After blood was collected, mice were returned to the standard chow diet to complete the phenotyping protocol. Phenotypic deviants for plasma lipids were identified based on a value exceeding 3.0 standard deviation units from the non-mutagenized B6 control group (n=15) for each sex and each diet condition.

For assessment of atherosclerotic lesion development, female and male WHC mice were provided with three different diets: the standard chow diet, a “Western” type diet containing 21% fat (by weight), 34% sucrose, 0.15% cholesterol, and no cholic acid, and the ATH diet described above. For comparison, Ldlr KO mice were fed the chow and ATH diets. Baseline lipids were measured at eight weeks of age, after which mice were fed a test diet for five weeks. Plasma lipids were measured at the end of the diet period, when mice were 13 weeks old. Mice were then fed chow until necropsy at 16-18 weeks of age. Hearts were harvested for qualitative or quantitative histological analysis. Livers were harvested for qualitative analysis.

Heritability testing, colony development and genetic mapping: To test for heritability of the high cholesterol trait, phenotypic deviant G3 females were mated to non-mutagenized B6 males, and the progeny, generation N3F1, were intercrossed without phenotyping. The mode of inheritance (recessive or dominant) was assessed by phenotyping additional N3F1 progeny. Progeny consumed chow from wean until 8 weeks of age and were then fed the ATH diet for five weeks, until age 13 weeks. Affected animals were identified based on 13-wk total plasma cholesterol progeny using the same criteria used to identify G3 phenotypic deviants. Affected mice were mated to each other to establish a homozygous colony. Prior to identification of the ENU mutation, homozygosity was presumed for animals with total plasma cholesterol values greater than 1000 mg/dL after ATH diet feeding. Once a genotype assay was developed, animals were routinely genotyped without completing the five-week ATH diet protocol. Presumed homozygotes were confirmed by PCR, as described below.

To map the trait, one affected male from the N3F3 generation was bred to DBA2/J (D2) females and F1 progeny were interbred to produce 100 F2 intercross individuals, which were phenotyped using the five-week ATH diet protocol. DNA was prepared from tails of 17 affected and 17 unaffected F2 animals and used for genotyping with SSLP DNA markers at an average genome density of 15 cM. Selective pooling of DNA from affected and unaffected F2 animals (16) was used to identify suggestive loci, namely those that are enriched for the B6 allele in the affected pool. Individual samples were amplified with additional markers adjacent to suggestive loci to further evaluate linkage and identify a single best candidate locus.

Sequencing and PCR assay for genotyping mutants: Primers flanking mouse Ldlr splice sites (Table 1) were designed using Primer3 (http://frodo.wi.mit.edu/) to give a maximum product size of 500 base pairs (bp) and a minimum of 40 bp into the intron, so that the splice sites were included. Bidirectional sequencing was carried out using the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA; ABI) and run on a 3730xl DNA Analyzer (ABI). Once the mutation was discovered, a genotyping assay was developed using Exon 14 primers (Table 1). The 325 bp amplification product was digested for two hours with restriction endonuclease BglI. Wild-
type (B6) animals produce a 256 bp and a 69 bp product, and animals homozygous for the mutation produce a single 325 bp product.

<table>
<thead>
<tr>
<th>Exon</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>gattgcacgcaggagaaccc</td>
<td>ttctgcaccaaaaataaaaacca</td>
</tr>
<tr>
<td>2</td>
<td>tgggtacttgctacattgtctgt</td>
<td>aggttctctcacaaccccccaacca</td>
</tr>
<tr>
<td>3</td>
<td>atggacctgctgccgagacacc</td>
<td>caacacacacagctcctgctt</td>
</tr>
<tr>
<td>4</td>
<td>gatggacctgctgccgagacacc</td>
<td>caacacacacagctcctgctt</td>
</tr>
<tr>
<td>5</td>
<td>tgggtacttgctacattgtctgt</td>
<td>aggttctctcacaaccccccaacca</td>
</tr>
<tr>
<td>6</td>
<td>atggacctgctgccgagacacc</td>
<td>caacacacacagctcctgctt</td>
</tr>
<tr>
<td>7</td>
<td>tgggtacttgctacattgtctgt</td>
<td>aggttctctcacaaccccccaacca</td>
</tr>
<tr>
<td>8</td>
<td>gatggacctgctgccgagacacc</td>
<td>caacacacacagctcctgctt</td>
</tr>
<tr>
<td>9</td>
<td>atggacctgctgccgagacacc</td>
<td>caacacacacagctcctgctt</td>
</tr>
<tr>
<td>10</td>
<td>atggacctgctgccgagacacc</td>
<td>caacacacacagctcctgctt</td>
</tr>
<tr>
<td>11</td>
<td>atggacctgctgccgagacacc</td>
<td>caacacacacagctcctgctt</td>
</tr>
<tr>
<td>12</td>
<td>atggacctgctgccgagacacc</td>
<td>caacacacacagctcctgctt</td>
</tr>
<tr>
<td>13</td>
<td>atggacctgctgccgagacacc</td>
<td>caacacacacagctcctgctt</td>
</tr>
<tr>
<td>14</td>
<td>atggacctgctgccgagacacc</td>
<td>caacacacacagctcctgctt</td>
</tr>
<tr>
<td>15</td>
<td>atggacctgctgccgagacacc</td>
<td>caacacacacagctcctgctt</td>
</tr>
<tr>
<td>16</td>
<td>atggacctgctgccgagacacc</td>
<td>caacacacacagctcctgctt</td>
</tr>
<tr>
<td>17</td>
<td>atggacctgctgccgagacacc</td>
<td>caacacacacagctcctgctt</td>
</tr>
</tbody>
</table>

Table 1. Ldlr primers used for mutation detection.

Histology: Animals were euthanized by CO₂ asphyxiation for collection of tissues for histological analysis. For qualitative assessment, tissues were fixed in Bouin’s fixative, embedded in paraffin, and 3-5μm sections were prepared and stained with hematoxylin and eosin (H&E). Further analysis was done on liver sections stained with periodic acid-Schiff (PAS) and on aortic sections stained with Masson’s trichrome. For quantitative assessment of aortic atherosclerosis, hearts were dissected and sections stained with oil red-0 as previously described (17).

Statistical analyses: Statistical analyses (averages, standard deviations, standard errors, student’s t-test, Tukey’s post hoc test) were performed using JMP version 7.0 (SAS Institute, Cary, NC). Threshold for significance was set at p ≤ 0.05. For comparison of lipids between WHC heterozygotes and homozygotes, and for comparison of lesion size between WHC and KO, data was log-transformed.

Nomenclature and registration of the mutant: This mutation has been registered with Mouse Genome Informatics (MGI; http://www.informatics.jax.org) and has been assigned allele symbol Ldlr^{Hlb301}. The MGI accession number is MGI:2683091. The strain is identified in the JAX Mice Database (http://jaxmice.jax.org) as stock number 5061 with the name C57BL/6J-Ldlr^{Hlb301}/J.

Results

Identification of the mutant: Four of 13 G3 mice that shared a common G1 founder had elevated total plasma cholesterol levels compared to B6 controls after consuming the ATH diet for five weeks (Fig 1; Table 2). Total cholesterol for these four G3 mice were somewhat elevated when mice were fed chow (130%) and were significantly elevated (210%) when fed the ATH diet. HDL and triglycerides were unremarkable in the affected G3 animals. The phenotypic deviants were
Fig. 1. Identification of G3 phenotypic deviants based on comparison of total plasma cholesterol values to B6 controls after consuming the ATH diet for five weeks. Shaded areas show 3.0 standard deviation range from average control values.

Table 2. Identification of phenotypic deviants with elevated plasma total cholesterol after feeding an atherogenic (ATH) diet. Plasma was analyzed from 4-hour fasted animals before (chow) and after (ATH) consuming the ATH diet for five weeks. B6 = C57BL/6J controls (n = 15); G3 = original ENU phenotypic deviant; F = Female; CHOL = total cholesterol; HDL = HDL cholesterol; TG = triglycerides. Values are in mg/dL. Control values are average and (standard error) for each parameter.

<table>
<thead>
<tr>
<th></th>
<th>CHOL chow</th>
<th>CHOL ATH</th>
<th>HDL chow</th>
<th>HDL ATH</th>
<th>TG chow</th>
<th>TG ATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>B6 F controls</td>
<td>69 (2)</td>
<td>200 (5)</td>
<td>54 (4)</td>
<td>64 (3)</td>
<td>84 (4)</td>
<td>44 (3)</td>
</tr>
<tr>
<td>G3 35363 F</td>
<td>94</td>
<td>359</td>
<td>63</td>
<td>46</td>
<td>103</td>
<td>55</td>
</tr>
<tr>
<td>G3 35364 F</td>
<td>89</td>
<td>399</td>
<td>49</td>
<td>41</td>
<td>135</td>
<td>57</td>
</tr>
<tr>
<td>G3 35367 F</td>
<td>88</td>
<td>377</td>
<td>55</td>
<td>49</td>
<td>85</td>
<td>51</td>
</tr>
<tr>
<td>G3 32776 F</td>
<td>87</td>
<td>505</td>
<td>63</td>
<td>54</td>
<td>94</td>
<td>50</td>
</tr>
</tbody>
</table>

Complementation testing: Because the WHC mutant phenotype resembled the phenotype of the Apoe and Ldlr KO models of hypercholesterolemia, we carried out a complementation test by mating the homozygous WHC mutant to each of these KO strains to observe whether progeny retained the hypercholesterolemia or if the phenotype was normalized. If the WHC mutation were in either of these genes, progeny would be expected to show an increase in total plasma cholesterol in response to the ATH diet comparable to that of the homozygous KO parent strain because they would carry one mutant allele from WHC and one from the KO. If the WHC mutation were not in these genes, and WHC carried normal Apoe or Ldlr genes, less of an increase in total cholesterol would be expected, because progeny would harbor only a single copy of the respective mutation causing hypercholesterolemia. Mating WHC to Apoe KO showed that this was not the gene, because cholesterol levels in progeny were only in the 300-500 mg/dL range (data not shown). However,
progeny from the mating of WHC to Ldlr KO showed a response to ATH diet feeding comparable to the KO strain, indicating a failure to complement, providing evidence that the WHC mutation resides in the Ldlr gene (Figure 2).

<table>
<thead>
<tr>
<th>Strain</th>
<th>Diet</th>
<th>N (F, M)</th>
<th>Chol F</th>
<th>Chol M</th>
<th>HDL F</th>
<th>HDL M</th>
<th>TG F</th>
<th>TG M</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHC +/-</td>
<td>C</td>
<td>30, 25</td>
<td>126 (12)</td>
<td>155 (9)</td>
<td>80 (2)</td>
<td>114 (3)</td>
<td>100 (4)</td>
<td>121 (5)</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>4, 3</td>
<td>190 (17)</td>
<td>233 (14)</td>
<td>117 (11)</td>
<td>185 (14)</td>
<td>68 (3)</td>
<td>89 (11)</td>
</tr>
<tr>
<td></td>
<td>ATH</td>
<td>26, 22</td>
<td>413 (34)</td>
<td>445 (28)</td>
<td>91 (5)</td>
<td>119 (8)</td>
<td>74 (3)</td>
<td>65 (4)</td>
</tr>
<tr>
<td>WHC -/-</td>
<td>C</td>
<td>9, 9</td>
<td>248 (13)</td>
<td>278 (18)</td>
<td>116 (3)</td>
<td>172 (19)</td>
<td>140 (12)</td>
<td>201 (24)</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>4, 8</td>
<td>914 (5)</td>
<td>1000 (69)</td>
<td>224 (5)</td>
<td>327 (12)</td>
<td>228 (5)</td>
<td>210 (25)</td>
</tr>
<tr>
<td></td>
<td>ATH</td>
<td>7, 10</td>
<td>1221 (26)</td>
<td>1444 (118)</td>
<td>567 (57)</td>
<td>469 (23)</td>
<td>692 (149)</td>
<td>786 (111)</td>
</tr>
</tbody>
</table>

Table 3. Plasma lipids in WHC heterozygotes and homozygotes before and after consuming test diets for five weeks. WHC = Wicked High Cholesterol ENU mutant strain; +/- = heterozygote; -/- = homozygote; C = chow diet, age eight weeks; W = Western diet, age 13 weeks; ATH = atherogenic diet, age 13 weeks; N = number of animals tested per genotype and diet; F = female; M = male; Chol = total plasma cholesterol; HDL = HDL cholesterol; TG = triglycerides. Values are averages (standard error) in mg/dL. 1 For both sexes and in each diet condition, lipid values in homozygous animals were significantly greater than in heterozygous animals. 2 Values for males within genotypes and under the same diet condition were significantly greater than female values.

Figure 2. Complementation testing of WHC. Homozygous WHC was mated to homozygous Ldlr KO for comparison of lipids in F1 progeny to Ldlr KO. F=Female; M=Male. White bars = total plasma cholesterol; black bars = HDL; stippled bars = triglycerides. Values from animals at eight weeks of age, consuming chow, are shown on the left half of the graph; values from animals after consuming the ATH diet for five weeks (age 13 weeks) are shown on the right half of the graph. The number of animals tested is shown in parentheses below each group. Values are in mg/dL. Error bars are standard error.

Mapping and identification of the mutation: At the same time the complementation test was being carried out, we mapped WHC by mating it to DBA/2J (D2), a mouse strain that has only a slight increase in plasma lipids when fed the ATH diet (18). Mapping localized the mutation to mouse chromosome 9 at the region containing the obvious candidate Ldlr. Sequencing Ldlr from WHC revealed a G to A transition mutation at nucleotide 2096 in exon 14, a region containing six highly conserved cysteine residues (I-VI; Figure 3A). This missense mutation, changing cysteine V at amino acid residue 699 to a tyrosine (C699Y), occurs within the EGF-precursor homology domain of the protein (Figure 3B). The WHC mutation abolishes a BglII restriction site, an observation that facilitated development of a PCR-based assay for identifying heterozygous and homozygous WHC animals (Figure 3C). Genotyping the original four G3 phenotypic deviants revealed that each was heterozygous for the mutation. This heterozygosity explains our failure to identify the G3 mice as
deviant in the baseline lipid measurement (eight weeks of age, consuming chow), because values did not exceed 3.0 standard deviation units from the mean of B6 controls for total plasma cholesterol.

Fig. 3. The WHC mutation. A) Sequence surrounding and including the WHC mutation in exon 14 of the mouse Ldlr gene. Boxed area shows the G to A base change at nucleotide 2096 and change of cysteine to tyrosine at amino acid 699. Nucleotide and amino acid changes due to the mutation are circled. The six highly conserved cysteines (C) within this region of the gene are underlined. Arrows show location and orientation of PCR primer sequences. B) Graphic representation of LDLR molecule showing location of WHC mutation. Functional domains are identified on the right. C) PCR genotyping assay for the WHC mutation includes restriction digest with BglI. After digestion, WHC homozygotes (lane 2) show a single 325 bp product; WHC heterozygotes (lane 3) show 325, 256, and 69 bp products; wild-type B6 (WT; lane 1) show 256 and 69 bp products.
Response of WHC to different diets: Heterozygous and homozygous WHC females and males were analyzed for plasma lipids and atherosclerotic lesions after feeding three diets: standard chow, “Western” diet, or ATH diet. Table 3 shows plasma lipid values for both WHC genotypes in response to consuming these different diets. For both sexes and in each diet condition, all lipid values were greater in homozygous WHC animals than in heterozygotes. However, the following significant sex differences were found among genotypes within the same diet group. In heterozygotes consuming chow, all lipid values were greater in males than in females. In homozygotes consuming chow, males had greater triglyceride and HDL values, while total cholesterol did not differ between sexes. On the Western diet, males of each genotype had higher HDL than female counterparts, whereas other lipid values did not differ. After ATH diet feeding, the only sex difference observed among genotypes was a greater HDL value in homozygous males than in heterozygous females. Sexes did not differ in total cholesterol or triglycerides among either genotype in response to the ATH diet.

The size of aortic atherosclerotic lesions in WHC mice was influenced by diet and genotype with some lesions forming in chow-fed mice, larger lesions in Western diet-fed mice and the largest lesions in ATH diet-fed mice (Figure 4). No difference was observed in lesion size between sexes of WHC for any diet condition or genotype, hence values for WHC females and males were combined. Lesion area was significantly greater in WHC homozygotes than heterozygotes after Western and ATH diet feeding. Heterozygous WHC animals did not develop lesions on the Western diet, and showed relatively moderate lesions on the ATH diet. No significant difference in lesion area was observed between genotypes in response to chow feeding.

Comparison of WHC homozygotes to Ldlr knockout strain: Homozygous (-/-) WHC mutants and Ldlr KO animals were compared for plasma lipids and atherosclerotic lesions after feeding standard chow or the ATH diet. Figure 5 shows plasma lipid values for females and males of these strains after consuming the different diets. After consuming the chow diet, lipid values for female WHC were not different from those of female KO, nor did male values differ between the strains. In the KO strain, HDL levels were significantly greater in males than in females after chow feeding, as was also observed in WHC. In response to ATH diet feeding, KO animals had significantly higher total plasma cholesterol levels than WHC for both sexes. Additionally, KO males had significantly higher total
Fig. 5. Comparison of lipids in homozygous WHC and Ldlr KO strains before and after consuming the atherogenic diet for five weeks. White bars = WHC; black bars = Ldlr KO; F = female; M = male. Chow = standard chow diet, age eight weeks; ATH = atherogenic fat diet, age 13 weeks. Values are mean ± standard error in mg/dL. A) Total plasma cholesterol; number of animals tested in each group is shown in parentheses and is the same for panels B and C; B) HDL cholesterol; C) Triglycerides. * indicates significant difference between WHC and KO of same sex under same diet condition (p≤0.05). ** indicates significant difference between sexes of same strain under same diet condition (p≤0.05).

cholesterol after ATH diet feeding than KO females, a sex difference not observed in WHC. After ATH diet feeding, HDL and triglycerides, while not significantly different between sexes for either strain, were significantly greater in WHC than in KO animals for both sexes. Therefore, the lipid profile predicts that the KO, with greater total cholesterol and lower HDL, should have larger atherosclerotic lesions than WHC.

Atherosclerotic lesions were significantly larger in WHC mice than Ldlr KO after five weeks consuming the ATH diet (Table 4). As was observed in WHC, no significant difference was found in lesion size between sexes in the KO for any diet condition, hence, lesion sizes shown in Table 4 are combined for KO females and males. In addition to quantitative differences in lesion development in response to the ATH diet, lesions in WHC mice were qualitatively different than lesions in Ldlr KO mice (Figure 6). Trichrome staining
of aortic lesions in WHC (Figure 6B) revealed collagen (blue staining) within plaque areas. Early lesions, marked by subendothelial deposition of lipid-laden macrophages, were observed in coronary and pulmonary arteries of WHC mice and not seen in KO mice (Figure 6, C-D).

Fig. 6. Histological assessment of atherosclerosis in WHC. A) H&E staining of aortic valve shows subendothelial accumulation of acicular to poorly defined cholesterol clefts surrounded by a rim of foamy macrophages; 100x magnification. B) Aortic valve stained with Masson’s trichrome; 100x. Larger arrow shows subendothelial collagen deposition (blue) within the valve. Smaller arrow shows increased collagen deposition between surrounding cardiac myocytes. C) H&E-stained coronary artery, 600x, shows reduced lumen diameter with almost complete occlusion of the coronary artery due to subendothelial deposition of foamy macrophages. D) H&E-stained pulmonary artery, 400x, shows accumulation of lipid-loaded macrophages.

Histological analysis of livers (Figure 7) suggests that KO mice are prone to earlier fatty changes than WHC when challenged with the ATH diet. The KO mice on ATH diet (Figure 7C) have diffuse microvesicular hepatocellular vacuolation that was not observed in B6 (Figure 7A) or WHC (Figure 7B) after consuming the ATH diet for the same period of time. Direct staining for lipid to confirm steatosis was not possible on these paraffin-embedded tissues. However, by staining additional KO liver sections with Periodic acid-Schiff, we were able to rule out the presence of glycogen in the microvesicles (not shown).
Figure 7. Fatty liver changes observed in Ldlr KO and not in B6 or WHC after five weeks of ATH diet feeding. All samples are from 18-week old males. A) B6; B) WHC homozygote; C) KO homozygote. To standardize comparisons, liver centrolobular vein is shown for each strain. All sections stained with H&E, 400x magnification.

Additional phenotypic observations in WHC: We bred the WHC mutant to homozygosity and established a line. The WHC strain is viable and fertile in the homozygous state, as is the KO. Two small cohorts of WHC were fed chow or ATH diet until 42 weeks of age. Average lipid levels for each cohort are shown in Figure 8A. Mutant mice fed the ATH diet developed multiple cutaneous xanthomas in the distal limbs and in the skin overlying the mandibular salivary glands (Figure 8B), and in perineal skin. The skin was often alopecic but there were no epidermal ulcers or excoriations due to pruritis. Histological analysis shows the dermis is expanded by acicular cholesterol clefts and numerous Langhans-type multinucleated giant cells (Figure 8C). The renal capsule, mesentery, and other serosal surfaces are diffusely expanded by acicular cholesterol clefts and multinucleated giant cells (Figure 8D). Coronal sectioning of the brain (Figure 8E) revealed multifocal to coalescing aggregates of foamy macrophages admixed with acicular cholesterol clefts and rare multinucleated giant cells. These aggregates often extend from the choroids plexi in the lateral and third ventricles and the dense sheets of foamy macrophages efface and replace the neural parenchyma (Figure 8F). Affected animals appeared otherwise normal in gait and home cage behavior. No xanthomas were observed in similarly aged WHC mice fed chow.

Discussion

An important and widely used knockout for the mouse Ldlr was created 15 years ago (2). In addition to its use as a model of human familial hypercholesterolemia, this strain has been used to develop numerous double mutants, which carry an additional mutation in one of many other key genes involved in atherosclerosis. Using ENU mutagenesis, we have created a new Ldlr loss of function mutant with phenomic and genomic features that distinguish it from the KO, making it a valuable addition to the current repertoire of hyperlipidemic mouse models.

Differences in phenotype between the KO and ENU Ldlr models warrant further investigation into their genomic differences. The KO carries a targeted mutation in exon four of the Ldlr and produces a truncated receptor, which lacks the membrane spanning segment and cannot bind LDL. The mutation was created in embryonic stem cells derived from inbred mouse strain
Fig. 8. Phenotypes of 42-week old homozygous WHC mice. A) Average lipid levels after being maintained on chow (white bars; n=6) or after ATH diet feeding for 34 weeks (black bars; n=5). Female and male values were not significantly different and were combined for each diet condition. B) ATH-fed WHC mouse, age 42 weeks. Arrows indicate cutaneous xanthomas in distal forelimbs and skin overlying mandibular salivary glands. C) Skin section from forelimb xanthoma showing cholesterol cleft accumulation; H&E stain; 200x magnification. D) Kidney, H&E-stained; 200x. Bar defines renal capsule expanded by cholesterol clefts and Langhans-type multinucleated giant cells (small arrow). Inset shows age-matched B6 control kidney; H&E stain. E) Brain; coronal section at the hippocampal level; left arrow points to hippocampus and shows large coalescing areas of encephalomalacia and partial effacement of the hippocampus and the thalamic nuclei; right arrow points to putamen and globus pallidus nuclei, showing extensive loss of brain parenchyma and replacement by acicular cholesterol clefts and dense sheets of foamy macrophages; lesion extends into thalamic nuclei; H&E stain, 20x. F) Enlargement of boxed area in (D); H&E stain; 200x.

129S7/SvEvBrd (129) and made congenic on background strain B6. Hence, this mouse retains
sequences adjacent to the \textit{Ldlr} from the 129 strain. In contrast, the ENU-generated WHC \textit{Ldlr} mouse offers a coisogenic, single nucleotide \textit{Ldlr} mutation on an otherwise pure B6 genetic background. The genetic differences between these models may account for the phenotypic differences observed in WHC, namely accelerated atherosclerosis and delayed steatosis in response to consuming an atherogenic diet for a relatively short period. We also observed foam cell accumulation in coronary and pulmonary arteries of WHC mice after the short exposure to the ATH diet, in contrast to other hyperlipidemic models. Even though total plasma cholesterol was lower and HDL cholesterol and triglycerides were higher in WHC compared to \textit{Ldlr} KO after ATH diet feeding, advanced lesion formation persisted in WHC. Furthermore, lesion size in WHC homozygous mice fed the Western diet was the same as KO mice fed the ATH diet. Differences described in this report between the ENU mutant and the KO in response to the ATH diet may be attributable to residual 129 sequences in the \textit{Ldlr} harboring a “passenger gene” effect (19). Restriction-fragment length variation within the \textit{Ldlr} gene between different inbred mouse strains has also been described. However, strains 129 and B6 share a common RFLP haplotype for \textit{Ldlr} (20).

We localized the WHC mutation to exon 14 of the \textit{Ldlr}, within the EGF-precursor repeat domain. Hobbs (21) has described mutations in this domain as Class 2 LDLR mutations, which are transport defects resulting in complete loss of receptor function, and comprise the most common human FH mutations. We therefore predict that the WHC mutation causes improper folding of the receptor, resulting in failure of the protein to be transported from the endoplasmic reticulum to the golgi for processing to the cell surface. In humans, the comparable WHC mutation (C677Y), also a G to A transition at conserved cysteine V, rare among exon 14 mutations, has been reported in three patients with familial hyperlipidemia (FH) (22-24). In an analysis of human \textit{Ldlr} mutations by Salazar and colleagues, missense mutations were associated with higher HDL levels in heterozygous FH patients than frameshift or nonsense mutations (23). We observed higher HDL in the missense mutant WHC mice than in the \textit{Ldlr} KO. It is notable when comparing the mouse to human FH phenotypes that, in general, patients heterozygous for \textit{Ldlr} mutations present severe phenotypes as a result of hyperlipidemia, while WHC and \textit{Ldlr} KO mice require homozygosity to more closely mimic the human disease.

High-throughput phenotyping of mouse ENU mutants has revealed novel, single base mutations in disease-related genes and produced numerous robust models of human disorders (25-32). These ENU mutants are otherwise genetically identical to their non-mutagenized inbred strain counterparts, allowing highly specific analyses of the functional consequence of a single base change, and often produce distinctly different phenotypes from those observed in analogous knockout models. This collection of mutants allows important refinement of gene function and biological pathways, leading to better models of human disease.

\textbf{Acknowledgements}

The authors thank Cynthia McFarland for quantitative analysis of atherosclerotic lesions, Roderick Bronson for evaluation of histologic specimens, and Weidong Zhang for help with statistical analyses. The Jackson Laboratory Scientific Services department provided assistance in genetic mapping, histology, and graphic services. This work was supported by NHLBI Programs for Genomic Applications grant HL66611.
References
