Platinum catalysed hydrolytic amidation of unactivated nitriles
Cobley, Christopher J.; Heuvel, Marco van den; Abbadi, Abdelilah; Vries, Johannes G. de

Published in:
Tetrahedron Letters

DOI:
10.1016/S0040-4039(00)00181-7

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2000

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 31-08-2019
Platinum catalysed hydrolytic amidation of unactivated nitriles

Christopher J. Cobley, Marco van den Heuvel, Abdelilah Abbadi *,† and
Johannes G. de Vries *

DSM-Research, Department of Fine Chemicals, PO Box 18, 6160 MD Geleen, The Netherlands

Received 5 January 2000; accepted 25 January 2000

Abstract

The platinum(II) complex, [(Me₂PO··H··OPMe₂)PtH(PMe₂OH)], efficiently catalyses the direct conversion of unactivated nitriles to N-substituted amides with both primary and secondary amines. Possible mechanisms for this reaction are discussed and evidence for initial amidine formation is reported. Isolated yields vary from 51–89%.

© 2000 Elsevier Science Ltd. All rights reserved.

Keywords: homogeneous catalysis; nitriles; amides; platinum compounds.

The preparation of amides is one of the most important synthetic transformations in organic synthesis. Most syntheses are based on the reaction between an activated carboxylic acid and an amine or ammonia.¹–³ So far, few methods have been found to make the amide bond catalytically without the aid of stoichiometric activating agents.⁴,⁵ For this reason we have turned our attention to the use of nitriles as they are intrinsically more reactive than carboxylic acids. We were triggered by the work of Ghaffar and Parkins who used tris-dimethylphosphinito platinum hydride (1) as a catalyst for the selective hydration of nitriles to the amides (Scheme 1).⁶ Most impressive are the high turnover numbers (up to 50 000) and the rate of the reaction (1 485 mol/mol.h) achieved for the hydrolysis of acrylonitrile.

Scheme 1.

* Corresponding author. Fax: +31-46-4767604; e-mail: arachem@worldonline.nl (A. Abbadi), hans-jg.vries-de@dsm-group.com (J. G. de Vries)

0040-4039/00/$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved.

P11: S0040-4039(00)00181-7

tetl 16461
It occurred to us that in view of the fact that the reaction is not retarded by the presence of pyridines, use of nucleophiles other than water, such as amines, should proceed equally well (Scheme 2). \(N\)-Substituted amides have previously been prepared from nitriles and amines, however these methods lack generality and require severe reaction conditions such as extremely high temperatures\(^7\) or catalysts such as strong acids\(^8\) and strong bases.\(^9\) Hence, the reaction of acetonitrile with propylamine and water in DME at 160\(^\circ\)C in an autoclave, catalysed by 0.1 mol\% of tris-dimethylphosphinite platinum hydride (I), gave the amide in 57\% isolated yield after 24 h. The reaction is very fast initially and could also be performed with catalyst amounts as low as 0.02 mol\%. However, build-up of ammonia pressure occurs and this may well be the reason that the reaction slows down appreciably afterwards. In addition, some black material precipitates at the end of the reaction which suggests that catalyst decomposition also plays a role.

![Scheme 2](image)

We investigated the scope of this new reaction to some extent (Table 1) and found it to work equally well for both primary and secondary amines. All experiments were performed with unactivated alkynitriles; benzonitrile gave only benzamide in these reactions. In the case of succinonitrile, the use of two equivalents of primary amine (entries 11 and 12) resulted in the formation of bisamides.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Nitrile</th>
<th>Amine</th>
<th>Time (h)</th>
<th>Isolated Yield of (N)-subst. Amide (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH(_3)CN</td>
<td>(n)-Pr-NH(_2)</td>
<td>24</td>
<td>57</td>
</tr>
<tr>
<td>2</td>
<td>CH(_3)CN</td>
<td>C(_6)H(_5)CH(_2)NH(_2)</td>
<td>24</td>
<td>73</td>
</tr>
<tr>
<td>3</td>
<td>CH(_3)CN</td>
<td>C(_6)H(_5)NH(_2)</td>
<td>70</td>
<td>63</td>
</tr>
<tr>
<td>4(^a)</td>
<td>CH(_3)CN</td>
<td>Pyrrolidine</td>
<td>39</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>CH(_3)CN</td>
<td>Piperidine</td>
<td>24</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>CH(_3)CN</td>
<td>Morpholine</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>C(_6)H(_5)CN</td>
<td>(n)-Pr-NH(_2)</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>(n)-Hex-CN</td>
<td>(n)-Pr-NH(_2)</td>
<td>18</td>
<td>63</td>
</tr>
<tr>
<td>9</td>
<td>(n)-Hex-CN</td>
<td>C(_6)H(_5)CH(_2)NH(_2)</td>
<td>18</td>
<td>83</td>
</tr>
<tr>
<td>10</td>
<td>(n)-Hex-CN</td>
<td>Pyrrolidine</td>
<td>18</td>
<td>71</td>
</tr>
<tr>
<td>11</td>
<td>Succinonitrile</td>
<td>(n)-Pr-NH(_2)</td>
<td>18</td>
<td>51(^b)</td>
</tr>
<tr>
<td>12</td>
<td>Succinonitrile</td>
<td>C(_6)H(_5)CH(_2)NH(_2)</td>
<td>18</td>
<td>61(^b)</td>
</tr>
<tr>
<td>13</td>
<td>Succinonitrile</td>
<td>Pyrrolidine</td>
<td>18</td>
<td>89(^b)</td>
</tr>
</tbody>
</table>

\(^a\) This experiment was performed using only 0.023 mol\% of catalyst I.

\(^b\) Resulted in the formation of the \(N\)-substituted bisamide.

The mechanism of the reaction is still unclear (Scheme 3). It is possible that the nitrile is rapidly hydrolysed to the amide, which then goes on to react further with the alkylamines. Indeed, in each case, the only observable side product was the unsubstituted amide, the result of nitrile hydrolysis. However,
it is also conceivable that the substituted amines react initially with the nitrile to form amidines, which then further hydrolyse to the amides.

Metal-catalysed formation of amidines10 from the reaction between nitriles and amines has previously been reported and indeed, for reactions performed in the absence of water, amidines have been detected. Specifically, when \textit{n}-propylamine is reacted with acetonitrile the major products formed are the mono- and bisamidines, 2 and 3 (Scheme 4).11 This seems to strongly support the latter mechanism.

An interesting extension to this finding results when 2-amino-ethanol is reacted with propionitrile. The initial formation of amidine 4 occurs,11 which subsequently undergoes ring-closure to form the final product, 2-ethyl-2-oxazoline 5; no other products being visible by GC analysis (Scheme 5).

In summary, we have found that the platinum(II) complex 1 acts as an efficient homogeneous catalyst for the direct conversion of nitriles to \textit{N}-substituted amides.

\textit{Typical experimental procedure}: the amine (0.110 mol), nitrile (0.121 mol) and water (0.220 mol) were dissolved in 10 ml of dimethoxyethane in an autoclave. Catalyst 1 (0.110 mmol, 0.1 mol\%) was added and the mixture was heated under \textit{N}_2 for the time given in Table 1. After cooling, the mixture was dried over \textit{Na}_2\textit{SO}_4 and concentrated by rotary evaporation. The crude product was purified by spinning band distillation for acetamides or by column chromatography (\textit{CH}_2\textit{Cl}_2/2\% \textit{MeOH}/1\% \textit{NEt}_3) for the remainder.12
References

2. For a review of peptide synthesis with coupling agents, see: Klausner, Y. S.; Bodansky, M. Synthesis 1972, 453.
3. For a list of reagents with references, see: Larock, R. C. Comprehensive Organic Transformations; VCH: New York, 1989; p. 972.
8. (a) Takahashi, Y.; Fukuoka, Y. Jpn. Tokkyo Koho 7019882, 7021805, 7035283; (b) Takahashi, Y.; Fukuoka, Y. US Patent 3985805.
11. Observed by GC–MS analysis using a Cp sil 8 CB-MS, 30 m×0.25 mm Df=1.0 μm, injection temp.: 250°C, column temperature program: 5 min at 50°C (rate 7.5°C/min) 28 min at 250°C (rate 25°C/min) 30 min at 280°C, split: 1:50, flow: He 1.2 ml/min, injection volume: 1.0 μl.
12. All products are known compounds that show satisfactory GC–MS and NMR spectral data.