lac permease mutated at each of the 8 cysteiny1 residues in the molecule was solubilized from the membrane, purified, and reconstituted into proteoliposomes. The transport activity of proteoliposomes reconstituted with each mutant permease relative to the wild-type is virtually identical with that reported for intact cells and/or right-side-out membrane vesicles. Moreover, a double mutant containing Ser in place of both Cys14' and Cys154 exhibits significant ability to catalyze active lactose transport. The results provide strong confirmation for the contention that cysteiny1 residues in lac permease do not play an important role in the transport mechanism. The effect of sulfhydryl oxidant 5-hydroxy-2-methyl-1,4-naphthaquinone on lactose transport in proteoliposomes reconstituted with wild-type or mutant permeases was also investigated, and the results indicate that inactivation is probably due to formation of a covalent adduct with Cys14' and/or Cys154 rather than disulfide formation. Thus, it seems unlikely that sulfhydryl-disulfide interconversion functions to regulate permease activity.

The lactose (lac) permease of Escherichia coli is a hydrophobic polytopic cytoplasmic membrane protein that catalyzes concomitant translocation of β-galactosides and H⁺ with a stoichiometry of 1:1 (i.e. lactose/H⁺ cotransport or symport) (cf. Refs. 1–4 for reviews). Encoded by the lacY gene that has been cloned and sequenced, this prototype membrane transmembrane, purified, and reconstituted into proteoliposomes. The transport activity of proteoliposomes reconstituted with each mutant permease relative to the wild-type is virtually identical with that reported for intact cells and/or right-side-out membrane vesicles. Moreover, a double mutant containing Ser in place of both Cys14' and Cys154 exhibits significant ability to catalyze active lactose transport. The results provide strong confirmation for the contention that cysteiny1 residues in lac permease do not play an important role in the transport mechanism. The effect of sulfhydryl oxidant 5-hydroxy-2-methyl-1,4-naphthaquinone on lactose transport in proteoliposomes reconstituted with wild-type or mutant permeases was also investigated, and the results indicate that inactivation is probably due to formation of a covalent adduct with Cys14' and/or Cys154 rather than disulfide formation. Thus, it seems unlikely that sulfhydryl-disulfide interconversion functions to regulate permease activity.

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1754 solely to indicate this fact.

† Present address: Cardiology Division, Dept. of Medicine, and the Gazes Cardiac Research Institute, Medical University of South Carolina, 171 Ashley Ave., Charleston, SC 29425.

‡ To whom correspondence should be addressed.
or replacement of Cys148 with Gly leads to inactivation. Furthermore, Cys148 and Cys154 are both located in putative transmembrane helix V (Fig. 1) and are predicted to be on the same face. Therefore, an attractive explanation for inactivation by sulfhydryl oxidants is catalysis of disulfide formation between these 2 residues. In order to test this possibility, we have solubilized and purified each site-directed Cys mutant in the permease, as well as a double mutant containing Ser in place of both Cys148 and Cys154, and studied transport activity and inactivation by plumbagin in reconstituted proteoliposomes. The results indicate that permease inactivation by the sulfhydryl oxidant results from formation of a covalent adduct with either Cys148 or Cys154 and not from disulfide formation.

EXPERIMENTAL PROCEDURES

Materials

[\textsuperscript{1-14C}]Lactose (57 mCi/mmol) was obtained from Amersham (Buckinghamshire, U. K.). All other reagents were obtained as described (32, 33) and were reagent grade.

Methods

Bacterial Strains and Plasmids—E. coli T206, E. coli T184, and plasmid pGM21 encoding wild-type lac-Y (34) or lac-Y with site-directed mutants in single Cys codons (25-31) have been described.

Construction of C148S/C154S Double Mutant—Starting with the M13 mp18 (lac-Y) DNA containing a Ser codon at position 148 (25), the double mutant containing C148S/C154S was constructed as described by Menick et al. (29). Subsequently, mutations were confirmed by sequencing the entire lac-Y gene in single-stranded M13 mp18 DNA and the region containing the mutations in plasmid pGM21. In both cases, with the exception of the mutations described, the remainder of the lac-Y sequence was identical with that reported by Biechel et al. (35).

Cell Growth—E. coli T184 transformed with a given plasmid was grown and induced with isopropyl-1-thio-\(\beta\)-D-galactopyranoside as described by Teather et al. (34), with the exception that 0.2–0.5% casamino acid was used in place of methionine and threonine in the growth medium (38).

Purification and Reconstitution of lac Permease—Wild-type and mutant lac permeases were solubilized, purified, and reconstituted into proteoliposomes as described (32), except that the C148S and C148G permeases were reconstituted into proteoliposomes by overnight dialysis instead of detergent dilution. In addition, after freeze-thawing, the proteoliposomes were not sonified, but extruded through polycarbonate filters of 100-nm pore size, using an extrusion device (Lipex Biomembranes, Vancouver). This procedure yields proteoliposomes of a relatively uniform size distribution (37). The final preparations contained proteoliposomes at 37.5 mg of E. coli phospholipids/ml and 40–90 pg/ml of protein, as indicated, in 50 mM KP\textsubscript{s} at pH 7.5, 1.0 mM DTT.

Transport Assays—Membrane potential (\(\Delta\psi\))-driven lactose transport in proteoliposomes reconstituted with purified permeases was assayed in the presence of a potassium diffusion potential (interior negative) as described (32).

Protein Determinations—Protein was determined by the method of Schaffer and Weissmann (38).

RESULTS

\(\Delta\psi\)-Driven Lactose Accumulation—As demonstrated previously (39–42), proteoliposomes reconstituted with purified lac permease rapidly accumulate lactose against a concentration gradient in the presence of the potassium diffusion gradient (\(K_{\text{on}} \rightarrow K_{\text{om}}\)) and the ionophore valinomycin (Fig. 2). Under identical conditions, proteoliposomes reconstituted with purified C117S, C148S, C176S, C234S, C333S, or C353S/C355S transport lactose at initial rates to steady-state levels of accumulation that are comparable with proteoliposomes reconstituted with wild-type permease (cf. Table I for quantitation of initial rates relative to wild-type). In contrast, proteoliposomes reconstituted with C148G, C154S, or C154V transport lactose at initial rates that are about 15, 10, and 35% respectively, of wild-type proteoliposomes (Fig. 2 and Table I). In each instance, the level of accumulation continues to increase as the time course of the experiments is extended (Fig. 2; data not shown). Finally, proteoliposomes reconstituted with C148S/C154S permease transport at about 5% the rate of wild-type but continue to accumulate the disaccharide with time, whereas proteoliposomes reconstituted with C154G...
Cysteine Mutants of *lac* Permease

Fig. 2. Membrane potential (ΔΨ)-driven lactose transport in proteoliposomes reconstituted with purified wild-type (○), C148G (□), C154G (△), C154S (■), C154V (□) or C148S/C154S (▼) *lac* permease. *lac* permease was purified from membranes of *E. coli* T206 or T184 transformed with the appropriate plasmid and reconstituted into proteoliposomes at a protein concentration of 85 µg/ml (wild-type), 75 µg/ml (C148G), 45 µg/ml (C154G), 70 µg/ml (C154S), 65 µg/ml (C154V), or 40 µg/ml (C148S/C154S). Lactose transport was measured as described (32) by diluting 1 µl of proteoliposomes containing 20 µM valinomycin into 200 µl of 50 mM sodium phosphate (pH 7.5) containing 35 µM [1-14C] lactose (57 mCi/mmol). Control experiments (▲) were performed by diluting 1 µl of proteoliposomes into 50 mM potassium phosphate (pH 7.5).

TABLE I

<table>
<thead>
<tr>
<th>Permease</th>
<th>Initial rate of transport</th>
<th>% of wild-type activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>C117S</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>C148S</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>C148G</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>C154S</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>C154G</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>C154V</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>C148S/C154S</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>C176S</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>C234S</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>C333S</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>C353S/C355S</td>
<td>61</td>
<td>61</td>
</tr>
</tbody>
</table>

* Initial rates of transport were calculated from the initial linear portion of transport curves (cf. Fig. 2).

Fig. 3. Titration of lactose transport with plumbagin in proteoliposomes reconstituted with purified wild-type *lac* permease. Proteoliposomes were incubated at room temperature for 30 min with different concentrations of plumbagin. Subsequently, the initial rate of ΔΨ-driven lactose transport was measured as in Table I.

Fig. 4. Effect of 0.5 mM plumbagin and 10 mM DTT on lactose transport in proteoliposomes reconstituted with purified wild-type *lac* permease (A) or C148S/C154S permease (B). Proteoliposomes were incubated at room temperature for 30 min with or without 0.5 mM plumbagin and then incubated for 30 min with or without 10 mM DTT as indicated. Subsequently, ΔΨ-driven lactose transport was measured as in Fig. 2 with an external concentration of 35 µM [1-14C] lactose (57 mCi/mmol). ○, plumbagin; ■, plumbagin followed by DTT; ●, 10 mM DTT; ○, no additions; ▲, control experiments, performed by diluting 1 µl of proteoliposomes into 50 mM potassium phosphate (pH 7.5).

permease are essentially devoid of transport activity (Fig. 2; Table I).

Effect of Plumbagin—Treatment of right-side-out membrane vesicles with the sulfhydryl oxidant plumbagin at a concentration of 0.5 mM leads to complete inactivation of lactose transport in a manner that can be restored by 10 mM DTT (22). Similar phenomena are observed in proteoliposomes reconstituted with purified *lac* permease. Thus, ΔΨ-driven lactose transport is progressively inactivated by relatively low concentrations of plumbagin, and maximal inactivation is observed at about 0.5 mM (Figs. 3 and 4A). Moreover, when 10 mM DTT is added after treatment of the proteoliposomes with plumbagin, transport is restored to a great extent (Fig. 4A; Table II). Parenthetically, when the proteoliposomes are washed and resuspended in buffer without addition of DTT, *lac* permease is apparently slightly inactivated by air oxidation, as evidenced by the observation that addition of DTT by itself causes a small stimulation of transport activity.

Results of similar experiments carried out on proteoliposomes reconstituted with each mutant permease are summarized in Table II. The initial rate of ΔΨ-driven lactose transport in proteoliposomes reconstituted with C117S, C148S, C154V, C176S, C234S, C333S, or C353S/C355S is essentially completely inactivated by treatment with 0.5 mM plumbagin, and activity is restored by addition of 10 mM DTT in each instance. In contrast, C148G or C154S permease is inactivated by only about 50%, and strikingly, C148S/C154S permease
Cysteine Mutants of lac Permease

Inhibition of the initial rate of ΔΨ-driven lactose transport with 0.5 mM plumbagin in proteoliposomes reconstituted with mutant permeases and the restoration of activity by DTT

Initial rates of lactose transport were measured as in Table I. Proteoliposomes were treated with plumbagin and DTT as described in the legend to Fig. 4.

<table>
<thead>
<tr>
<th>Permease</th>
<th>Residual activity after plumbagin inhibition</th>
<th>Restoration of activity by DTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>0%</td>
<td>90%</td>
</tr>
<tr>
<td>C117S</td>
<td>8%</td>
<td>85%</td>
</tr>
<tr>
<td>C148S</td>
<td>0%</td>
<td>95%</td>
</tr>
<tr>
<td>C148G</td>
<td>48%</td>
<td>70%</td>
</tr>
<tr>
<td>C154S</td>
<td>50%</td>
<td>80%</td>
</tr>
<tr>
<td>C154V</td>
<td>7%</td>
<td>100%</td>
</tr>
<tr>
<td>C148S/C154S</td>
<td>80%</td>
<td>100%</td>
</tr>
<tr>
<td>C176S</td>
<td>0%</td>
<td>90%</td>
</tr>
<tr>
<td>C234S</td>
<td>0%</td>
<td>85%</td>
</tr>
<tr>
<td>C333S</td>
<td>0%</td>
<td>78%</td>
</tr>
<tr>
<td>C353S/C355S</td>
<td>0%</td>
<td>100%</td>
</tr>
</tbody>
</table>

DISCUSSION

The data presented in this paper provide strong confirmation of the conclusion that cysteine residues in lac permease do not play a direct role in the mechanism of lactose/H+ symport (2, 25–31). Proteoliposomes reconstituted with purified permease molecules containing mutations at each individual cysteinyI residue exhibit transport activities relative to wild-type proteoliposomes that are virtually identical with those reported for intact cells and/or right-side-out membrane vesicles. Specifically, purified permease with C117S, C148S, C176S, C234S, C333S, or C353S/C355S exhibits small if any defects in ΔΨ-driven lactose accumulation, permease with C148G, C154S, or C154V exhibits reduced rates of lactose uptake, and C154G permease is devoid of transport activity. Importantly, the double mutant C148S/C154S exhibits low but significant activity. Clearly, therefore, although Cys\(^{148}\) is important for substrate protection against N-ethylmaleimide inactivation (18, 20), Cys\(^{154}\) is the only cysteinyI residue in the permease that is important for activity; but even this residue is not obligatory.

Although cysteinyI residues do not play a direct role in the mechanism of lac permease, based on the observation that sulfhydryl oxidants reversibly inactivate lactose/H\(^+\) symport, it was suggested that sulfhydryl-disulfide interconversion may have a regulatory function (22). Since alkylation of Cys\(^{148}\) or replacement of Cys\(^{148}\) with Gly leads to inactivation and these residues should be on the same face of putative helix V, the effect of the sulfhydryl oxidant plumbagin on lactose transport by proteoliposomes reconstituted with site-directed Cys mutant was investigated. As discussed, one possible mechanism of inactivation is that the sulfhydryl oxidant catalyzes disulfide formation between Cys\(^{148}\) and Cys\(^{154}\). Alternatively, since modification of either Cys\(^{148}\) or Cys\(^{154}\) alone can lead to inactivation, it is possible that disulfide formation between either of these residues and another cysteinyI residue in the permease causes inactivation. Finally, sulfhydryl oxidants may undergo “half-reactions” with cysteinyI residues (21, 43, 44), thereby forming sulfhydryl adducts without catalyzing disulfide formation. Our results favor the last possibility for the following reasons. (i) Plumbagin treatment leads to a marked inactivation of C117S, C176S, C234S, C333S, or C353S/C355S permease, suggesting that none of these cysteinyl residues is involved in the phenomenon. Consequently, it is unlikely that mixed disulfide formation between Cys\(^{148}\) and Cys\(^{154}\) and any of the other cysteinyI residues in the permease is responsible for inactivation. (ii) The double mutant C148S/C154S, which has a low but significant activity, is resistant to inactivation by plumbagin, thereby demonstrating directly that Cys\(^{148}\) and/or Cys\(^{154}\) are the residues involved. (iii) The single mutants C148S and C154V are essentially completely inactivated by the sulfhydryl oxidant, whereas C148G or C154S permease are partially inactivated. Thus, a single cysteinyI residue at either of these positions is sufficient for inactivation by plumbagin, a result not expected if disulfide formation between the residues is required for inactivation. In conclusion, since it is unlikely that permease inactivation by sulfhydryl oxidants involves the formation of disulfide bonds, sulfhydryl-disulfide interconversion probably does not have a regulatory function in the activity of this transport protein.

Acknowledgments—We wish to thank Dr. J. S. Lolkema and Dr. M. G. P. Page for helpful discussions and M. Y. D. van Iwaarden for typing the manuscript.

REFERENCES

Cysteine Mutants of lac Permease