Multiple electron capture spectroscopy
Unipan, Mirko

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
LIST OF FIGURES

2.1 Classical screening of a charge in front of a conductor 6
2.2 The potential V for a doubly-charged ion at a distance in front of
the surface of 10 a.u. (solid line) and 5 a.u. (dashed line). 7
2.3 Schematic depiction of one-electron resonant transitions. 9
2.4 Schematic representation of the Auger neutralization process (AN). 10
2.5 Schematic representation of the Auto-ionization process (AI). ... 11
2.6 Schematic depiction of the Auger de-excitation process (AD). ... 12
2.7 Schematic representation of a radiative transition. 12
2.8 Schematic representation of a collective excitation. 13
2.9 Atomic level shifts and kinematically-shifted DOS 16

3.1 Drawing of the ECRIS. .. 20
3.2 Sketch of the Surphyn’ set-up. 21
3.3 Sketch of the four-element electrostatic lens system 22
3.4 Lens system, sample and ESA 23
3.5 Hard-sphere elastic scattering. 30
3.6 LEIS spectra from an oxidized (solid line) and clean (dotted line)
Fe(110) surface. .. 31

4.1 Optical transitions from a 1D to a 1P state 34
4.2 Illustration of the shift in the population of M_f sub-states due to
spin-orbit coupling. Thin line centered at $M_f = -1$, unpolarized
electron spin, filled curve if all electron spins are aligned in the $-z$
direction. ... 35
4.3 Preferential orientation of the total orbital angular momentum .. 36
4.4 Light intensity as function of the rotation angle of the $\lambda/4$-plate
for 20 keV He$^+$ ions incident under 5° on a Fe(110) surface 38
4.5 The degree of circular polarization from He$^+$ ions scattering off Fe(110) and Ni(110), HeI 3D line, 5° incidence .. 39
4.6 The calculated density of states for bulk Fe and Ni 40
4.7 The degree of circular polarization from He$^+$ and He$^{2+}$ ions scattering off Ni(110) and Fe(110), HeI 3D line, 5° incidence 41

5.1 KLL Auger electron spectrum from 20 eV He$^{2+}$ ions incident under 20° on Ni(110) ... 45
5.2 KLL Auger electron spectrum from 250 eV N$^{6+}$ ions incident under 5° on Fe(110) .. 46
5.3 KLL Auger electron spectra for 20 eV He$^{2+}$ ions impinging on Ni(110) under 20° incidence for different temperatures of the target 48
5.4 Temperature dependence of the intensity ratio of the KLL Auger peaks ... 49
5.5 KLL Auger electron spectra from 60 eV N$^{6+}$ ions impact on Ni(110) under 20° incidence, for different temperatures of the target crystal 51

6.1 Illustration of the different level shifts for the (2l$^2l'$) states in He** compared to the (1s) state in He$^+$. .. 56
6.2 Fractions decayed by AI for the four relevant (2l$^2l'$) states in He** 57
6.3 Triplet-to-singlet peak ratio for an unpolarized surface. 58
6.4 Normalized KLL Auger electron spectra from He$^{2+}$ ions incident on Ni(110) for a crystal temperature of 650 K. 59
6.5 Calculated spectra for 20 eV He$^{2+}$ on Ni(110) under 15° incidence, for different degrees of polarization of the target 60
6.6 KLL Auger electron spectra for 20 eV and 50 eV He$^{2+}$ ions impinging on Ni(110) under 15° incidence, for different temperatures of the target .. 61
6.7 Dependence of the surface spin polarization on the Ni(110) temperature, for 20 eV, 50 eV, and 100 eV, 15° incidence He$^{2+}$ ions 63
6.8 Schematic depiction of trajectory effects induced by the charge-image charge interaction ... 64
6.9 Room temperature (R.T.) polarization of Ni(110) from MECS as function of the distance along the surface between the first and the second electron capture (according to COB model). 65
6.10 Not normalized KLL Auger electron spectra from 20 eV He$^{2+}$ on Ni(110) under 15° incidence ... 66
6.11 Polarization dependency of the total intensity of auto-ionization electrons from 20 eV, 50 eV and 100 eV, 15° incidence He$^{2+}$ ions on Ni(110) .. 67
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>KLL Auger spectra from 100 eV He(^{2+}) ions impinging on Fe(110) under 20° incidence, for different temperatures of the target.</td>
<td>71</td>
</tr>
<tr>
<td>7.2</td>
<td>Surface spin polarization of Fe(110), obtained from 20 eV, 50 eV and 100 eV He(^{2+}) ions under 20° incidence</td>
<td>72</td>
</tr>
<tr>
<td>7.3</td>
<td>Side-view and top-view of the Fe(_3)O(_4) crystallographic structure</td>
<td>74</td>
</tr>
<tr>
<td>7.4</td>
<td>Topographical and spectroscopical map of a Fe(_3)O(_4)(111) film</td>
<td>75</td>
</tr>
<tr>
<td>7.5</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>7.6</td>
<td>Schematic representation of the DOS of Fe(_3)O(_4).</td>
<td>76</td>
</tr>
<tr>
<td>7.7</td>
<td>Spin polarization of Fe(_3)O(_4)(111) obtained with 20 eV, 50 eV and 100 eV He(^{2+}) ions</td>
<td>77</td>
</tr>
<tr>
<td>7.8</td>
<td>Room-temperature spin polarization of Fe(_3)O(_4)(111) as function of the distance along the surface between the first and second electron capture.</td>
<td>78</td>
</tr>
<tr>
<td>7.9</td>
<td>Thermal behaviour of iron oxides as obtained by Auger spectroscopy</td>
<td>79</td>
</tr>
<tr>
<td>7.10</td>
<td>Transformation of Fe(_3)O(_4)(111) grown on Fe(110) single crystal into FeO</td>
<td>80</td>
</tr>
</tbody>
</table>