Experimental determination of the J^π components of the spin-dipole resonance in ^{12}B
This work has been performed as part of the research program of the “Stichting voor Fundamenteel Onderzoek der Materie” (FOM), which is financially supported by the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek” (NWO).

Experimental determination of the J^π
components of the spin-dipole resonance in
^{12}B

Proefschrift

ter verkrijging van het doctoraat in de
Wiskunde en Natuurwetenschappen
aan de Rijksuniversiteit Groningen
op gezag van de
Rector Magnificus, dr. F. Zwarts,
in het openbaar te verdedigen op
vrijdag 16 januari 2004
om 16.00 uur

doors

Marc Alexander de Huu
genomen op 26 april 1974
te Schlieren, Zwitserland
Promotor: Prof. dr. M.N. Harakeh
Co-promotores: Dr. A.M. van den Berg
 Dr. H.J. Wörtche

Beoordelingscommissie: Prof. dr. M. Fujiwara
 Prof. dr. S. Galès
 Prof. dr. C. Wilkin
Contents

1 Introduction .. 1

2 Polarisation formalism .. 5
 2.1 The density matrix ... 5
 2.2 Representation in spherical tensors 6
 2.3 Rotation of the density matrix 7
 2.4 Coordinate systems ... 9
 2.5 The scattering matrix ... 10
 2.6 Polarisation observables for the A(\bar{a},b)B reaction 10
 2.7 Measurement of analysing powers 11

3 Theory ... 15
 3.1 The effective nucleon interaction 15
 3.2 Spin-isospin excitations ... 17
 3.3 The spin-dipole resonance (SDR) 20
 3.3.1 Status of the SDR search 20
 3.4 The (d,\bar{2}\text{He}) reaction 22
 3.4.1 (n-p)-type reactions 22
 3.4.2 Measuring the (d,\bar{2}\text{He}) reaction 23
 3.4.3 Selectivity of the reaction 23
 3.4.4 DWBA treatment of the reaction 23
 3.4.5 Symmetry of the transition amplitude 26
 3.4.6 Polarisation observables 26

4 Experimental method .. 29
 4.1 Beam production .. 29
 4.1.1 The polarised-ion source 30
 4.2 The in-beam polarimeter ... 32
4.2.1 Formulae to determine the polarisation of a beam of spin-1 particles ... 34
4.2.2 The beam polarisation 36
4.3 The Big-Bite Spectrometer 37
 4.3.1 Ray-tracing ... 39
 4.3.2 Recoil corrections 40
 4.3.3 Sieve-slit measurements 40
4.4 Detector systems ... 44
 4.4.1 Focal-plane detection system 44
 4.4.2 Focal-plane polarimeter 46
 4.4.3 Scintillators ... 47
 4.4.4 Neutron detectors (EDEN) 47
4.5 Electronics .. 49
 4.5.1 Front-end electronics 50
 4.5.2 Trigger logic .. 50
 4.5.3 Online event processing 53
 4.5.4 Data acquisition 54
 4.5.5 Online analysis and visualisation 54

5 Analysis .. 57
 5.1 Experimental procedure 57
 5.2 FPDS analysis ... 58
 5.2.1 Focal-plane coordinates 58
 5.2.2 Target coordinates 58
 5.2.3 3He variables 59
 5.2.4 Background subtraction 59
 5.2.5 Energy calibration 61
 5.3 EDEN analysis ... 62
 5.3.1 Kinetic energy determination 62
 5.3.2 Prompt-random subtraction 63
 5.3.3 Detection efficiency 63
 5.3.4 Final-state spectrum 65
 5.4 3He-acceptance correction 66
 5.4.1 Simulation procedure 66
 5.4.2 Reliability and accuracy 68
 5.5 Cross sections and tensor-analysing powers 69
6 Results
6.1 General aspects of the data .. 75
 6.1.1 Quasi-free background .. 76
 6.1.2 Singles data .. 78
 6.1.3 Coincidence data ... 81
6.2 Low-lying strength .. 85
 6.2.1 Peak-fitting procedure .. 85
 6.2.2 Semi-microscopic calculations 87
 6.2.3 Cross sections and tensor-analysing powers 88
 6.2.4 Bin-wise analysis ... 92
6.3 High-lying strength .. 94
 6.3.1 Singles data .. 94
 6.3.2 Coincidence data ... 95
6.4 Decomposition of the SDR .. 98

7 Conclusions and outlook ... 101

A Relation between spherical and cartesian tensors 103
 A.1 Spin-1 angular momentum operators 103
 A.2 Spherical tensors .. 103
 A.2.1 Tensor of order 0 ... 104
 A.2.2 Tensor of order 1 ... 104
 A.2.3 Tensor of order 2 ... 105
 A.3 Cartesian tensors .. 105

B Detailed trigger scheme ... 109

Bibliography .. 111

Samenvatting ... 119

Dankwoord .. 123