MONTE CARLO SIMULATION OF A KINETIC ISING MODEL OF THE GLASS TRANSITION

E. Leutheusser
Technische Universität München, D-8046 Garching, West Germany
and
Hans De Raedt*
Max-Planck-Institut für Physik und Astrophysik, D-8000 München, West Germany

(Received 3 September 1985 by B. Mühlschlegel)

Results of Monte Carlo experiments for the two-spin facilitated kinetic Ising model on a cubic lattice are presented and compared with a theoretical prediction.

IN A RECENT LETTER Fredrickson and Andersen [1] introduced a special kinetic Ising model as a model for structural relaxation in dense liquids and glasses. The Hamiltonian is the usual Ising one with ferromagnetic coupling J between nearest neighbor spins in a magnetic field H which tends to align the spins downwards. As in the Glauber model [2] the dynamics is described by a master equation with transition probabilities satisfying the detailed balance principle. In a special version, the two-spin facilitated model, the down-flip rate of a particular spin σ_j is chosen as

$$w_{j, \text{down}}(\sigma_j) \propto \alpha m_j(m_j - 1)/2,$$

where m_j is the number of nearest neighbor up-spins of spin σ_j, α sets the time scale and the up-flip rate $w_{j, \text{up}}(\sigma_j)$ is chosen to satisfy the detailed balance condition. Thus the spin flip rate is zero unless σ_j has at least two neighboring up-spins which can facilitate the flipping of σ_j. Fredrickson and Andersen [4] presented arguments, but could not prove, that the Markov chain corresponding to the master equation dynamics is irreducible [3]. If the Markov process is irreducible this model has the same equilibrium properties as the Ising model so that any phase transition in a nonzero magnetic field must be of dynamical origin [1].

Fredrickson and Anderson [1, 4] developed a diagrammatic perturbation theory for this model and by resuming diagrams of leading order in the small concentration c of up-spins, they derived a self-consistent equation for the equilibrium single-spin autocorrelation function

$$C(t) = \langle \sigma_i(t)\sigma_i(0) \rangle - \langle \sigma_i \rangle^2 / [1 - \langle \sigma_i \rangle^2].$$

In particular they predict that by lowering the concentration c of up-spins the relaxation time τ increases and diverges at a critical value c^* below which spin fluctuations are frozen as is manifested in $C(t)$ decaying to a nonzero value $f(f^* < f < 1$ for $c^* > c > 0)$ in the infinite time limit.

In order to test these theoretical predictions we have performed Monte Carlo experiments [5] for the two-spin facilitated kinetic Ising model with $N = 16^3$ spins on a cubic lattice. To test the size dependence runs were made also for $N = 32^3$, but no significant changes were observed. We chose $J = 0$ since for non-interacting spins equilibrium configurations at a given temperature T and magnetic field H with a concentration of up-spins $c = [1 + \exp(2H/k_BT)]^{-1}$ can be established efficiently. This means that the initial configuration of up- and down spins is random with given concentration c. Furthermore some approximations of the theory [4] become exact in this limit.

The Monte Carlo runs were performed up to 10^4

![Fig. 1. Relaxation time τ and exponent β versus fraction of up-spins c determined by Monte Carlo simulation compared with theory [1, 4] (full line).](image-url)
Monte Carlo steps (MCS). We find that $C(t)$ can reasonably well be approximated by a Kohlrausch law [6] $\Phi(t) = \exp(-t/\tau)^\beta$ in the time regime $6 < t < 60$ (α is chosen so that 100 MCS correspond to 6 time units of $\{1, 4\}$) with $\beta = \beta(c)$ as shown in Fig. 1. The fitted τ is expected to show the same qualitative behavior as the one defined by the time integral of $C(t)$. In qualitative agreement with the theory we find that τ increases when the temperature is lowered, as is shown in Fig. 1. However, the relaxation time does not diverge at the predicted value $c^* = 0.0904$, where $f^* = 2/3$. It is interesting to note that an improvement of the theory [4] yields a lower value $c^* = 0.0681$, where $f^* = 0.71$. Our results, however, show no indication of a divergency at this concentration either. In order to locate the experimental value of c^* runs were performed for $c = 0.0474$ and $c = 0.0266$ for times up to $t = 6000$, but even in this time regime $C(t)$ did not settle to a constant nonzero value f.

Summarizing our results we find that the relaxation time increases with decreasing c but we do not find a diverging τ in the regime predicted by theory $[1, 4]$, a divergency at lower values of c cannot be ruled out, however. If a nonzero value of c^* exists, it is at least three times smaller than predicted by the theory $[1, 4]$.

Acknowledgements — We are pleased to thank Fredrickson and Andersen for sending us preprints prior to publication. One of us (H.D.R.) thanks the National Fund of Scientific Research, Belgium, for financial support.

REFERENCES