Photo-induced Modulation of Ferroelectric Polarization in Multiferroic TbMnO$_3$

I.P. Handayani$^{+\dagger}$, N. Mufti*‡, A.A. Nugroho§, M.O. Tjia§, T.T.M. Palstra *, and P.H.M. van Loosdrecht *

*Zernike Institute for Advanced Material, University of Groningen, The Netherlands
$^+$Physics Engineering Department, ITTelkom Bandung, Indonesia
‡Physics Department, State University of Malang, Indonesia
§Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Indonesia

Keywords—multiferroics, photo-induced transient voltage, polarization modulation

Abstract—TbMnO$_3$ is a multiferroic material with a complex magnetic structure at low temperature, giving rise to spin ordering induced ferroelectricity. We show that this material exhibits a photo-induced transient current below the ferroelectric transition temperature. The result is interpreted in terms of a photo-induced polarization modulation generating the transient pyroelectric current detected by its associated transient voltage. The experiments demonstrate a relatively simple technique to study the ferroelectric polarization modulation in multiferroic materials.

I. INTRODUCTION

The ability to control different states of ferroelectric materials by optical means has important applications in device technology such as optically addressed ferroelectric memories [11][3] and optically driven mechanical actuators [4]. Among the most widely studied materials in this connection is the lead zirconate titanate (PZT). More recently, efforts have also been dedicated to develop new functional materials, often based on complex oxides [5], [6] exploiting their intricate interplay between the charge, lattice, and spin degrees of freedom in these materials. One of the strong driving forces behind this research is the need for new types of electronic devices and for lead-free non-toxic ferroelectric devices to be used in for instance biomedical applications.

This paper reports the results of a study of photo-induced ferroelectricity modulation in one of the complex oxides, namely the multiferroic material TbMnO$_3$. The interest in this compound derives from its complex magnetic structure which in the low temperature phase is known to display a magnetically driven spontaneous ferroelectric polarization [7]. Possessing a highly distorted orthorhombic crystal structure, TbMnO$_3$ exhibits frustrated magnetic interactions arising from the competition between ferromagnetic (FM) coupling of nearest neighbor and antiferromagnetic (AFM) coupling of next nearest neighbor manganese spins [8]. These competing magnetic interactions lead to the formation of a sinusoidal spin structure below 41K, and a spiral structure below 26K. The latter phase is the one which is responsible for the appearance of a spontaneous ferroelectric polarization.

One of the intriguing phenomena observed in normal ferroelectrics is the photo-excitation induced transient current [9][12]; a phenomenon which is sensitive to the polarization state of the material [10]. Several interpretations have been proposed to understand the origin of the induced transient current, including transient pyroelectric current [9], photovoltaic [10][11], and photo-strictive [12] effects. Here we demonstrate that light irradiation can also induce a transient pyroelectric current in the ferroelectric phase of a TbMnO$_3$ even though the static electric polarization is very small compared to that in conventional ferroelectric materials. We conclude that for TbMnO$_3$ the transient current is induced by a thermal modulation of the ferroelectric polarization.

II. MATERIAL CHARACTERIZATION AND EXPERIMENTS

The TbMnO$_3$ single crystal used in this study was grown using a traveling solvent floating zone method utilizing a four mirror furnace (Crystal System Corp., FZT-10000-H-VI-VP). The crystal structure was characterized by X-ray powder diffraction using a Bruker D8 diffractometer for room temperature measurements and a Huber G670 diffractometer for experiments at low temperatures. The diffraction experiments confirm a single crystalline phase with orthorhombic unit cell having Pbnm space group [13]. The lattice parameters at room temperature are $a = 5.29969(9)\,\text{Å}$, $b = 5.84236(9)\,\text{Å}$ and $c = 7.40147(12)\,\text{Å}$.

The magnetization of our sample was measured using a Quantum Design MPMS-7 SQUID magnetometer in an applied magnetic field of 0.5T. To show that our sample is indeed multiferroic, we performed a pyroelectric current experiment. For this we used a Keithley 387 voltage source to pole the sample in a field of 150 V/mm while cooling it below the ferroelectric phase transition at 26 K. After removing the poling voltage, we measured the pyroelectric current using a Keithley 6517A electrometer while heating up the sample. The electric polarization was then determined by integrating the detected pyroelectric current.

Having been assured of the multiferroic nature of the sample, we investigated the ferroelectricity modulation by measuring the transient voltage following laser illumination of the sample. The electronic circuit and sample orientation are schematically depicted in Fig. 1. For this experiment, two gold pads of 1 mm2 were deposited on the a-c plane of the sample with 2 mm spacing in the c direction. Platinum wires were used to connect these gold electrodes to the terminals of a chip carrier. The sample was mounted on the cold finger.
of a He flow cryostat. A 110 V external voltage from a Keithley 236 was used to pole the sample during cooling and was disconnected during measurement of the induced transient voltage along the \(c\) axis (\(V_c\)). The photo-induced voltage was measured by illuminating the sample in the \(ac\) plane with a 532 nm continuous wave laser modulated by a 100 Hz chopper and recording the resulting amplitude of the transient voltage across the sample using a SR-830 lock-in amplifier synchronized to the chopper frequency from 10K up to 35K.

In order to get insight into thermal effects on transient voltage, a separate transient voltage measurement was performed using a heat pulse generated by Philips PM 5712 pulse generator with 1 kHz frequency and output energy of 1 \(\mu\)J/pulse. The transient signal was measured with the same setup as for photo-induced transient voltage measurement.

III. Results

The magnetic susceptibility (\(\chi\)) observed along the \(c\) axis direction is shown in Fig. 2. The magnetic susceptibility is dominated by the response of the \(\text{Tb}^{3+}\) sublattice, which shows the typical paramagnetic \(1/T\) dependence and antiferromagnetic ordering below 7 K. The inset of Fig. 2 shows the temperature derivative of the susceptibility to highlight the changes occurring at the temperatures where the Mn sublattice orders. These phase transitions are clearly marked by abrupt changes at 41K and 26K, associated with the occurrence of the sinusoidal AFM and the spiral spin structures, respectively.

The spiral spin transition coincides with the appearance of spontaneous polarization along the \(c\) axis, as indicated in Fig. 3, evidencing the multiferroicity of the sample. It is shown that the polarization sets in at 26 K and reaches a maximum of about 600 \(\mu\)C/cm\(^2\), consistent with earlier reports [7]. This spontaneous polarization is about 1000 times smaller than the polarization observed in PZT [14]. The enhancement observed below 7K, a phenomenon not observed in conventional ferroelectric materials, coincides with the formation of AFM ordering in the \(\text{Tb}\) sublattice. Supposedly, it is due to the magnetic coupling between the \(\text{Tb}\) and Mn spins that leads to the observed enhancement of the electric polarization as proposed previously [15], [16].

Having presented the results of those initial characterization experiments, we now turn to the photo-induced pyroelec-
Fig. 4. The temperature dependent transient voltage induced by 532 nm laser light of power density varying from 0.15 up to 21 W/cm2. The inset shows a typical curve of the transient voltage induced by heat pulse.

The inset of Fig. 4 shows the similarity between temperature dependent photo-induced transient voltage and a typical result obtained using the heat pulse method. This similarity indicates that the observed transient voltage has its origin in the pyroelectric current produced most likely by thermally modulating ferroelectric polarization.

IV. DISCUSSION

The observed pyroelectric current (I) is induced by the time variation of the ferroelectric polarization (P) [17]:

$$I = A \frac{dP}{dt} = A \frac{dP}{dT} \frac{dT}{dt}$$

(1)

where A is the electrode area. In static experiments, one keeps the rate of change of temperature constant over a wide temperature range. Hence the electric polarization can be approximated as the integral of current over temperature (T), or alternatively over time (t):

$$P = \int A \frac{dT}{dt} \frac{1}{dT} dT = \int A \frac{I}{dT} dt$$

(2)

This formula is used to obtain the electric polarization as presented in Fig. 3.

As discussed above, we interpret the appearance of the observed transient voltage as due to a modulation of the temperature, and hence of the polarization, induced by the modulated laser irradiation. To find the connection between the transient voltage and the temperature modulation we consider a simplified situation where the temperature variation is modeled by a sinusoidal modulation at the frequency ω of the optical chopper:

$$T(t) = T_0 + \Delta T_{av} + \Delta T_m \sin(\omega t)$$

(3)

where T_0 and T_{av} are the temperature without laser illumination, and the laser induced average temperature rise, respectively. The third term represents the temperature modulation due to the chopped laser which induces the polarization modulation. Substituting Eq. 3 into Eq. 1 yields the pyroelectric current modulation

$$I(T) = A \Delta T_m \omega \cos(\omega t) \frac{dP}{dT}$$

(4)

Therefore, assuming small modulations such that dP/dT can be taken as constant, the root mean square (rms) transient voltage measured by the lock-in amplifier can be expressed as

$$V_{rms} = RI_{rms} = RA \Delta T_m \omega \cos(\omega t) \frac{dP}{dT} \sqrt{2}$$

(5)

where R is the total resistance in the electronic circuit and dP/dT is the derivative of the curve in Fig. 3.

Though the approximations made above are not always fully justified, in particular the assumption of constant dP/dT at high laser powers, the simplified model does show a fairly good agreement between the temperature dependence of the measured transient voltage and derivative of Fig. 3 (scaled by a constant α), as shown in Fig. 5.

V. CONCLUSION

We have shown that the ferroelectric nature of the multiferroic complex oxide TbMnO$_3$ can be studied by means of laser induced pyroelectric current modulation experiments. Even though the electric polarization in this system is very small in comparison to those of conventional ferroelectric systems, the polarization modulation is readily observed in our experiment and is interpreted in terms of a temperature modulation of the ferroelectric polarization on the basis of rms response. It would be interesting to extend this method into the time domain in order to elucidate the dynamical properties of the polarization modulation in multiferroic oxides and their potential in fast switching applications.
ACKNOWLEDGMENT

We gratefully acknowledge Dr. D.A. Mazurenko for discussions and his help in conducting the photo-induced transient voltage experiments. IPH gratefully acknowledges the financial support by Schlumberger Faculty For Future Program and Netherland Fellowship Program. This work has been supported by the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).

REFERENCES