The interpolation theorem in fragments of logics

by G.R. Renardel de Lavalette

Mathematisch Instituut, Universiteit van Amsterdam, Postbus 20239,
1000 HE Amsterdam, the Netherlands

Communicated by Prof. A.S. Troelstra at the meeting of April 26, 1980

ABSTRACT

In the first part of this paper, we prove that there are continuously many fragments of intuitionistic propositional calculus (IpC) which fail to have the interpolation property, thereby extending a result of J.I. Zucker. Our proof makes use of the Rieger-Nishimura lattice. The second part is devoted to transferring this result to fragments of classical predicate calculus (CPC): this is done by giving a translation \(T \) of fragments of IpC in fragments of CPC which preserves the interpolation property.

1. INTRODUCTION

The Interpolation Theorem for CPC (classical predicate calculus) has been stated and proved for the first time by Craig [Cr]. Schütte [Sch] gives a proof for IPC (intuitionistic predicate calculus). Since then, the Interpolation Theorem (IT for short) has been shown to hold or to fail in quite a lot of logics (modal, higher-order, many-sorted, etc). There is an extensive literature on the subject which we shall not attempt to survey here.

In this paper, we are only interested in the IT in fragments of propositional and predicate logic. Ville proved that the IT holds in any fragment of CpC (p for propositional); see [K & K], Chapter 1, Exercises. Zucker [Z] gives an example of a fragment of IpC for which interpolation fails; this was the starting-point for our investigations which led to the present paper.

In Section 2 we extend Zucker’s result in that we give a set of \(2^{\aleph_0} \) fragments of IpC for which the IT fails. Section 3 is devoted to transferring this to fragments...
CPC: we define a translation T which maps every fragment of IpC on one of CPC, preserving the IT in both directions.

I wish to thank Prof. Troelstra and Jeff Zucker for interesting me in this subject and for their comments on earlier versions of this paper.

2. 2^{ω_0} FRAGMENTS OF INTUITIONISTIC PROPOSITIONAL LOGIC FOR WHICH INTERPOLATION FAILS

2.1. We start introducing some notation for this and the next section. For propositional logic, we use the language L_0, containing the connectives \land, \lor, \rightarrow, the propositional constants \bot and \top, and $V = \{p_1, p_2, \ldots\}$, the set of propositional variables; p, q, r, q_1, \ldots are metavariables for elements of V.

Formulas are defined as usual. Form is the set of all formulae of L_0. $\vdash_c (\vdash_i)$ denote classical (intuitionistic) derivability, \equiv_c and \equiv_i are used for derivable equivalence; we drop the subscript if that causes no confusion.

If A is a formula of some logic, then $PV(A)$ is the set of predicate or propositional variables occurring in A; similar for FV (free individual variables) and BV (bound individual variables).

$A[B/C]$ stands for the formula A' which is formed by substituting B for every occurrence of C in A.

2.2. DEFINITION. i) If $A \in \text{Form}$, $PV(A) \subseteq \{q_1, \ldots, q_n\}$, $n \geq 0$, q_1, \ldots, q_n all different, then $\lambda q_1 \cdots q_n * A$ is a propositional (n-ary) connective abstracted from A.

ii) $\text{Con} (\text{Con}^n)$ is the set of (n-ary) connectives.

iii) If $c \in \text{Con}^n$, $c = \lambda q_1 \cdots q_n * A$ and $B_1, \ldots, B_n \in \text{Form}$, then

$$c(B_1, \ldots, B_n) \overset{\text{def}}{=} A[B_1, \ldots, B_n/q_1, \ldots, q_n].$$

2.3. DEFINITION. i) Let $C \subseteq \text{Con}$. We define the propositional fragment $[C]$ as the smallest subset of Form satisfying:

a) $V \subseteq [C]$, and

b) if $c \in C \cap \text{Con}^n$ and $A_1, \ldots, A_n \in [C]$, then $c(A_1, \ldots, A_n) \in [C]$.

We shall often write $[c_1, \ldots, c_n]$ for $\{[c_1, \ldots, c_n]\}$.

ii) Frag is the set of propositional fragments.

iii) If $f, g \in \text{Frag}$ then f and g are called equivalent ($f \equiv g$) iff $\forall A \in f \exists B \in g A \equiv B$ and $\forall B \in g \exists A \in f B \equiv A$.

As a simple consequence of the Interpolation Theorem for IpC, we see that the following holds:

2.4. THEOREM. Let $A, B \in \{\land, \lor, \rightarrow, \bot\}$, $PV(A) \cap PV(B) \neq \emptyset$, $\vdash \rightarrow B$. Then there is an $I \in \{\land, \lor, \rightarrow, \bot\}$ such that:

i) $\vdash A \rightarrow I$, $I \rightarrow B$;

ii) $PV(I) \subseteq PV(A) \cap PV(B)$.

Briefly: interpolation holds for $[\land, \lor, \rightarrow, \bot]$.

More generally, we say that interpolation holds for some fragment $f \in \text{Frag}$ iff Theorem 2.4 holds when $[\land, \lor, \rightarrow, \bot]$ is replaced by f. 72
REMARK. Theorem 2.4 remains true if we skip the condition $PV(A) \cap \cap PV(B) \neq \emptyset$. The reason we added it lies in the fact that in fragments without nullary connectives, formulae A with $PV(A) = \emptyset$ do not exist.

2.5. Zucker [Z] shows that interpolation fails for $[\delta, \land, \to, \bot]$, where $\delta = \lambda pqr. (p \lor \neg p) \land (p \to q) \land (\neg p \to r)$. He gives two proofs, the first one being syntactical, the second one (due to A.S. Troelstra) using the theory of (finite) Heyting algebras. We shall generalize the method of this second proof to obtain the result mentioned in the title of this section. For information about Heyting algebras we refer to Dummett [D, 5.2].

REMARK. We use the same names for the operators of a Heyting algebra as for the connectives they correspond with: however, it will always be clear from the context which meaning of \land, \lor, \to is intended; idem for \bot and T. As to newly defined connectives, we suppose corresponding operators for Heyting algebras to be defined, too.

2.6. We now sketch Troelstra's proof of Zucker's theorem.

We have

$$\exists p \delta(p, q_1, q_2) \Rightarrow q_1 \lor q_2 = \lor((q_1 \to r) \land (q_2 \to r)) \to r;$$

hence

$$1 \Rightarrow \delta(p, q_1, q_2) \rightarrow (((q_1 \to r) \land (q_2 \to r)) \to r),$$

and if $I = I(q_1, q_2)$ is an interpolant for (1), then $I \cong q_1 \lor q_2$, so it suffices to demonstrate the undefinability of \lor in $[\delta, \land, \to, \bot]$.

Consider the following Heyting algebra, given as a partially ordered system:

$$\bot < a \land b < a, b < a \lor b < T.$$

The set $\{ \bot, a \land b, a, b, T \}$ is closed under δ, \land and \to, so \lor is not definable in $[\delta, \land, \to, \bot]$.

2.7. For the generalization, we shall make use of the Rieger-Nishimura lattice: this is the Heyting algebra H_R with $X_R = \{ \bot = a_0, a_1, \ldots, b_0, b_1, \ldots, T \}$ as set of elements, where

$$a_n = a_{n-1} \lor b_{n-1}, \quad n = 1, 2, \ldots,$$

$$b_n = a_n \to a_{n-1}, \quad n = 0, 1, 2, \ldots.$$

Rieger [R] was the first one to describe H_R; better accessible and more informative is Nishimura [N].

H_R is the free Heyting algebra over one generator: this means that if $A(p), B(p)$ are propositional formulae in one variable, then

$$A(p) \equiv B(p) \Rightarrow A(a_0) = B(a_0).$$

For a proof, see [N]; there one can also find a list of all equalities of the form $a \land b = c, a \lor b = c$ and $a \to b = c$ which hold in H_R.

73
We introduce the connectives
\[
\pi_{-1} = \lambda p \cdot \bot; \quad \pi_0 = \lambda p \cdot p; \\
\pi_{n+1} = \lambda p \cdot \pi_n(p) \lor (\pi_n(p) \rightarrow \pi_{n-1}(p)), \quad n = 0, 1, 2, \ldots
\]

2.8. **Lemma.** Let \(m \in \mathbb{N} \). Then:

i) \(\pi_m(a_n) = a_n \) if \(m = 1 \) and \(n \geq 1 \)
\[
= a_m \text{ if } n = 0 \\
= T \text{ if } n = -1 \text{ or } (m \geq 2 \text{ and } n \geq 1);
\]

ii) \(\pi_m(b_n) = a_2 \) if \((m = 1 \text{ or } m = 2) \) and \((n = 0 \text{ or } n = 1) \)
\[
= b_n \text{ if } m = 1 \text{ and } n \geq 2 \\
= T \text{ if } m \geq 3 \text{ or } (m = 2 \text{ and } n \geq 3);
\]

iii) \(\pi_m(T) = T \).

Proof. We only prove (i); (ii) can be done the same way, and (iii) is trivial.

\(m = 1 \) and \(n \geq 1 \):
\[
\pi_1(a_n) = a_n \lor (a_n \rightarrow a_{n-1}) = a_n \lor a_{n-1} = a_n \lor \bot = a_n.
\]

\(n = 0 \):
\[
\pi_0(a_0) = a_0, \quad \pi_1(a_0) = a_0 \lor (a_0 \rightarrow a_{-1}) = a_1;
\]

\(\pi_{m+1}(a_0) = \pi_m(a_0) \lor (\pi_m(a_0) \rightarrow \pi_{m-1}(a_0)) \), so if \(\pi_m(a_0) = a_m \),
\[
\pi_{m+1}(a_0) = a_{m-1}, \text{ then } \pi_{m+1}(a_0) = a_m \lor (a_m \rightarrow a_{m-1}) = a_{m+1}; \text{ with}
\]

induction, we now get \(\pi_m(a_0) = a_m \).

\(n = -1 \):
\[
\pi_1(a_{-1}) = \bot \lor (\bot \rightarrow \bot) = T;
\]

\(\pi_{m+1}(a_{-1}) = \pi_m(a_{-1}) \lor (\pi_m(a_{-1}) \rightarrow \pi_{m-1}(a_{-1})) \), so if \(\pi_m(a_{-1}) = T \),
\[
\text{then } \pi_{m+1}(a_{-1}) = T; \text{ with induction, we get } \pi_m(a_{-1}) = T.
\]

\(m \geq 2 \) and \(n \geq 1 \):
\[
\pi_2(a_n) = \pi_1(a_n) \lor (\pi_1(a_n) \rightarrow \pi_0(a_n)) = a_n \lor (a_n \rightarrow a_n) = T;
\]

as before, we have by induction \(\pi_m(a_n) = T \).

2.9. **Lemma.** Suppose \(a, b, c \in X_R \), \(c \notin \{a, b, T\} \). Then \(a \land b = c, \quad a \rightarrow b = c \) or \(\pi_n(a) = c \) only in the following cases:

i) \(b_n = a_n \rightarrow a_{n-1} \),
\[
\begin{align*}
b_n &= b_{n-1} \rightarrow a_{n-1} \\
b_n &= b_{n-1} \rightarrow a_{n-2} \\
b_n &= b_{n-1} \rightarrow a_{n-1};
\end{align*}
\]

ii) \(a_n = a_{n+1} \land b_{n+1} \),
\[
\begin{align*}
a_n &= a_{n+1} \land b_{n+1} \\
a_n &= a_{n+1} \land b_{n+2};
\end{align*}
\]

iii) \(a_n = \pi_n(a_0) \),
\[
\begin{align*}
a_n &= \pi_1(b_0) \\
a_n &= \pi_1(b_1); \\
a_n &= \pi_2(b_0); \\
a_n &= \pi_2(b_1).
\end{align*}
\]

Proof. Straightforward.

From now on, we consider in this section only \(C \in \text{Con} \) of the form
\(C_f = \{\land, \rightarrow, \bot\} \cup \{\pi_n: n \in \mathbb{N}\} \), where \(\mathbb{L} \subseteq \mathbb{N} \). We shall prove that there are many non-equivalent fragments of the form \([C_f]_f \).

2.10. **Definition.** Let \(C \in \text{Con}, H \) a Heyting algebra, \(S \subseteq X_R \). Then \(S^C \), the \(C \)

*closure of \(S \) in \(H \), is the smallest set containing \(S \) and closed w.r.t. the

connectives of \(C \).

For \(\{a_0\}^C \) we shall write \(H_R(C) \).
2.11. LEMMA. Define $l(n) = \mathbb{N} - \{n, n+1\}$, $n = 1, 2, \ldots$ Then

i) $H_R(C_i(n)) = X_R$ if $n = 2$,

$= X_R - \{a_n, a_{n+1}, b_{n+2}\}$ if $n \neq 2$.

ii) $H_R(C_{-1(1,2,3)}) = X_R - \{a_1, a_2, a_3, b_3, b_4\}$.

PROOF. (i) \supseteq: If $i \neq n, n+1$, then $a_i = \pi_i(a_0) \in H_R(C_i(n))$; if $i = n, n+1, n+2$, then $a_i = a_i - a_{i-1} \in H_R(C_{i(n)})$; idem for $b_n (-= b_{n-1} \rightarrow a_{n-1})$ and $b_{n+1} (= b_n \rightarrow a_{n-1})$. If $n = 2$, then $a_2 = \pi_1(b_0) \in H_R(C_{(2)})$; idem for $b_4 = b_3 \rightarrow a_2$ and $a_3 = b_4 \land a_4$.

\subseteq: Let, for $x \in X_R$, $d(x)$ be the minimal number of connectives needed to define x (using only a_0 and elements of $C_{(i)}$) if that is possible, else ∞. We observe that $a_n = a_{n+1} \land b_{n+1} = b_{n+1} \land b_{n+2}$, so we only have to prove $d(a_n) = \infty$ if $n \neq 2$.

Suppose $d(a_n) < \infty, n \neq 2$. By Lemma 2.9, a_n can only be obtained from b_{n+1} and $(a_{n+1} \lor b_{n+2})$, so

(1) $d(a_{n+1}) < d(a_n)$ or $d(b_{n+2}) < d(a_n)$.

To obtain a_{n+1}, we need (at least) b_{n+2}, hence

(2) $d(b_{n+2}) < d(a_{n+1})$;

finally, a_{n+1} or a_n is required for b_{n+2}, so

(3) $d(a_n) < d(b_{n+2})$ or $d(a_{n+1}) < d(b_{n+2})$.

Now (1), (2) and (3) give contradiction, so $d(a_n) = \infty$.

(ii): analogous.

The following lemma is quite trivial:

2.12. LEMMA. If $\mathbb{I} \subseteq \mathbb{I}$, then $H_R(C_1) \subseteq H_R(C_2)$. \square

The last two lemmata can be combined to get

2.13. LEMMA. Define

$$\mathbb{I} = \{\mathbb{I} \subseteq \mathbb{I} : 1 \in \mathbb{I} \land 2 \in \mathbb{I} \land \forall n \in \mathbb{N} \ (n \notin \mathbb{I} \Rightarrow (n-1 \notin \mathbb{I} \lor n+1 \notin \mathbb{I}))\}.$$ Then $\forall \mathbb{I} \in \mathbb{I} \forall n \in \mathbb{N} \ (n \in \mathbb{I} \Leftrightarrow a_n \in H_R(C_i))$.

PROOF. \Rightarrow: trivial.

\Leftarrow: Suppose $n \notin \mathbb{I}$. Now $n+1 \notin \mathbb{I}$ or $n-1 \notin \mathbb{I}$, so $\mathbb{I} \subseteq \mathbb{N} - \{k, k+1\}$ with $k = n-1$ or $k = n$. We distinguish two cases:

i) $k = 2$. Then, because of $1 \notin \mathbb{I} \land 2 \notin \mathbb{I}$, even $\mathbb{I} \subseteq \mathbb{N} - \{1, 2, 3\}$, so (applying Lemma 2.11(ii) and Lemma 2.12) $a_n \notin H_R(C_1)$.

ii) $k \neq 2$. Now $a_n \in H_R(C_1)$ be Lemma 2.11(i) and Lemma 2.12. \square
COROLLARY. If $I, J \in \mathcal{S}$, $I \neq J$, then $[C_I] \neq [C_J]$.

We take a subset of \mathcal{S}:

$$\mathcal{S}' = \{ l \in \mathcal{S} : \exists n \in \mathbb{N}, n, n+1, n+2 \in I \},$$

and show that interpolation fails for all fragments corresponding with elements of \mathcal{S}'; to do this, we need the next lemma.

2.14. LEMMA. Let $X = \{ \bot, a_n, a_{n+1}, b_{n+1}, b_{n+2}, b_{n+3}, T \}, n \in \mathbb{N}$. Then $X^{C_I} = X$ for all $I \subset \mathbb{N}$.

PROOF. Simple, using Lemma 2.9. \(\Box \)

2.15. THEOREM. If $I \in \mathcal{S}'$, then interpolation fails for $[C_I]$.

PROOF. Let $I \in \mathcal{S}'$, $n \in \mathbb{N}$, $n, n+1, n+2 \in I$. Define

$$\delta_n(p, q_1, q_2) = \pi_{n+2}(p) \land (\pi_{n+1}(p) \rightarrow q_1) \land ((\pi_{n+1}(p) \rightarrow \pi_n(p)) \rightarrow q_2),$$

$$g(q_1, q_2, r) = ((q_1 \rightarrow r) \land (q_2 \rightarrow r)) \rightarrow r.$$

Now

$$\vdash \delta_n(p, q_1, q_2) \rightarrow q_1 \lor q_2,$$

because $\pi_{n+2}(p) = \pi_{n+1}(p) \lor (\pi_{n+1}(p) \rightarrow \pi_n(p))$, and

$$\vdash q_1 \lor q_2 \rightarrow g(q_1, q_2, r),$$

so we have

(1) \(\vdash \delta_n(p, q_1, q_2) \rightarrow g(q_1, q_2, r). \)

Suppose $\iota(q_1, q_2)$ is an interpolant for (1). We shall show that $\iota(q_1, q_2)$ cannot be in $[C_I]$, by considering H_R with the valuation Val_H, (partially) defined by:

\begin{align*}
Val_H(p) &= a_0, \\
Val_H(q_2) &= b_{n+1}, \\
Val_H(q_1) &= a_{n+1}, \\
Val_H(r) &= a_{n+2}.
\end{align*}

This gives

\begin{align*}
Val_H(\delta_n(p, q_1, q_2)) &= \delta_n(a_0, a_{n+1}, b_{n+1}) = \pi_{n+2}(a_0) \land (\pi_{n+1}(a_0) \rightarrow a_{n+1}) \land \\
& \land ((\pi_{n+1}(a_0) \rightarrow \pi_n(a_0)) \rightarrow b_{n+1}) = a_{n+2} \land (a_{n+1} \rightarrow a_{n+1}) \land \\
& \land (b_{n+1} \rightarrow b_{n+1}) = a_{n+2} \land T \land T = a_{n+2}, \\
Val_H(g(q_1, q_2, r)) &= g(a_{n+1}, b_{n+1}, a_{n+2}) = ((a_{n+1} \rightarrow a_{n+2}) \land \\
& \land (b_{n+1} \rightarrow a_{n+2})) \rightarrow a_{n+2} = (T \land T) \rightarrow a_{n+2} = a_{n+2};
\end{align*}

hence $Val_I(\iota(q_1, q_2)) = \iota(a_{n+1}, b_{n+1}) = a_{n+2}$, which, together with Lemma 2.14, gives $\iota(q_1, q_2) \notin [C_I]$. \(\Box \)
COROLLARY. There are 2^{k_0} non-equivalent fragments of \mathbf{IpC} for which interpolation fails.

PROOF. \exists' = 2^{k_0}, for $\{\{1, 2, 3\} \cup \{n + 3 : n \in \mathbb{N}\} : \mathbb{N} \subset \mathbb{N}\} \subset \exists'$. □

REMARK. All fragments considered here have the definability property, which states that implicit definability implies explicit definability. This follows from Kreisel's [Kr] and the fact that $T(= \bot \rightarrow \bot)$ is definable in our fragments.

3. INTERPOLATION IN FRAGMENTS OF CLASSICAL PREDICATE LOGIC

3.1. First some preliminaries, extending those of 2.1 for predicate logic. L_1 is a language for predicate logic, containing \land, \lor, \rightarrow, \forall, \exists, \bot, T, the individual variables x_1, x_2, \ldots (metavariables $X, Y, z, y, z_1, y_1, \ldots$) and predicate variables P_1, P_2, \ldots (metavariables $P, Q, R, Q_1, Q_2, \ldots$); *P is the 'arity' of P. If we write $P_{y_1} \ldots y_n$, we suppose $^*P = n$.

Formulae are defined as usual; together they form the set \textsc{form}.

For convenience, we shall suppose \textsc{form} to contain only formulae A for which $\textsc{fv}(A) \cap \textsc{bv}(A) = \emptyset$.

I When writing $A[B/C]$, we presume $\textsc{fv}(B) \cap \textsc{bv}(A) \subset \textsc{fv}(C)$.

If $x \in \textsc{bv}(A)$ (so $x \notin \textsc{fv}(A)$), $y \notin \textsc{bv}(A) \cup \textsc{fv}(A)$, then we consider $A[y/x]$ to be equal to A. We shall use this convention when, in manipulating with formulae and variables, a formulae A with $x \in \textsc{bv}(A)$ comes into the scope of a quantor $\forall x$, or is subjected to the substitution $[x/y]$; then we tacitly take $A[z/x]$ ($z \notin \textsc{bv}(A) \cup \textsc{fv}(A)$) instead of A.

3.2. DEFINITION. i) If $A \in \textsc{form}$, $\textsc{pv}(A) \subset \{y_1, \ldots, y_n\}$, $n \geq 0$, y_1, \ldots, y_n all different, then $\lambda y_1 \ldots y_n \cdot A$ is an n-ary predicate abstracted from A.

ii) \textsc{pr}^n is the set of n-ary predicates. If $B \in \textsc{pr}^n$, then $^*B = \text{def} n$.

iii) If $\lambda y_1 \ldots y_n \cdot A \in \textsc{pr}^n$, then

$$\lambda y_1 \ldots y_n \cdot A(z_1, \ldots, z_n) = \text{def} A[z_i/y_i]_{i=1, \ldots, n}.$$

When P is an n-ary predicate variable we identify P and $\lambda x_1 \ldots x_n \cdot Px_1 \ldots x_n$. We shall use the notation $A[B/C]$ also for substitution of the n-ary predicate B for the n-ary predicate C in A.

3.3. DEFINITION. i) To every $A \in \textsc{form}$, $\textsc{pv}(A) \subset \{Q_1, \ldots, Q_k\}$, $\textsc{fv}(A) \subset \{y_1, \ldots, y_n\}$, $k, n \geq 0$ and $Q_1, \ldots, Q_k, y_1, \ldots, y_n$ all different, then $\lambda Q_1 \cdots Q_k y_1 \cdots y_n \cdot A$ is a predicate operator of type $(k, ^*Q_1, \ldots, ^*Q_k, n)$ obtained from A.

ii) \textsc{pro} is the set of predicate operators.

iii) If $c = \lambda Q_1 \cdots Q_k y_1 \cdots y_n \cdot A \in \textsc{pro}$, $B_i \in \textsc{pr}^n$ $(i = 1, \ldots, k)$, then

$$c(B_1, \ldots, B_k, z_1, \ldots, z_n) = \text{def} A[B_1, \ldots, B_k/Q_1, \ldots, Q_k][z_i/y_i]_{i=1, \ldots, n}.$$

3.4. DEFINITION. i) To every $A \in \textsc{form}$, we associate the predicate $\bar{A} = \text{def} \lambda y_1 \ldots y_n \cdot A$, where $\{y_1, \ldots, y_n\} = \textsc{fv}(A)$, y_1, \ldots, y_n are all different and ordered according to their leftmost occurrence in A.

77
ii) To every \(A \in \text{FORM} \), we associate the predicate operator \(A = \text{def} \lambda Q_1 \cdots Q_k y_1 \cdots y_n \cdot A \), where \(\{Q_1, \ldots, Q_k\} = PV(A) \), \(\{y_1, \ldots, y_n\} = FV(A) \), \(Q_1, \ldots, Q_k \) resp. \(y_1, \ldots, y_n \) are all different and ordered according to their leftmost occurrence in \(A \).

From now on, we suppose every connective or predicate operator \(c \) to be equivalent (disregarding the order of abstracted variables) to \(\lambda \) for some formulae \(A \) (unless \(c \) has type \((k, 0, \ldots, 0, n)\) with \(n \neq 0 \)). An example may justify this: if \(A = \lambda Q_1 \cdots Q_k y_1 \cdots y_n \cdot A \), then \(\lambda Q_1 \cdots Q_k Q_{i+1} \cdots Q_k y_1 \cdots y_n \cdot A = A' \), where \(A' \) is obtained from \(A \) by replacing the leftmost occurrence of \(Q_i \) by \(Q_i \land \forall x(Qx \cdots x \rightarrow Qx \cdots x) \).

3.5. DEFINITION. Let \(C \subseteq \text{Con} \cup \text{PRO} \). We define the fragment \([C]\) as the minimal set of \(\text{FORM} \) satisfying:

a) if \(P \) is a predicate variable, \(P = n \), then \(P y_1 \cdots y_n \in [C] \);

b) if \(c \in C \cap \text{Con}^n \) and \(A_1, \ldots, A_n \in [C] \), then \(c(A_1, \ldots, A_n) \in [C] \);

c) if \(A_1, \ldots, A_k \) are predicates abstracted from formulae of \([C]\) and if \(c \in C \cap \text{PRO} \) is a predicate operator of type \((k, \#A_1, \ldots, \#A_k, n)\), then \(c(A_1, \ldots, A_k, y_1, \ldots, y_n) \in [C] \).

If necessary, we make distinction between fragments of propositional and predicate logic by writing \([]_p\) and \([]_p\), respectively.

FRAG is the set of fragments of predicate logic.

REMARK. It is possible to give a more general definition of fragments of predicate logic, namely by dropping the condition \(FV(A) \subseteq \{y_1, \ldots, y_n\} \) in the definition of predicates (Definition 3.2). With such a definition, we get

\[
\text{FORM} = \{ \neg, \wedge, \lambda P \cdot \forall x P x \};
\]

in the present situation, however, the right-hand side of (1) only contains those closed formulae in which no nested quantification occurs; but we do have

\[
\text{FORM} = \{ \neg, \wedge \} \cup \{ \lambda P_n x_1 \cdots x_{n-1} \cdot \forall x_n P_n x_1 \cdots x_n : n \in \mathbb{N} \}.
\]

See also the remark after Definition 3.13.

For some proofs which proceed by formula induction, we need a measure for the complexity of a formula in a fragment.

3.6. DEFINITION. Let \(f \) be some fragment, \(f = [C] \).

We define \(\delta_f : f \to \mathbb{N} \cup \{0\} \) as follows:

a) \(\delta_f(A) = 0 \) if \(A \) atomic;

b) if \(c \in C \), then \(\delta_f(c(A_1, \ldots, A_k, y_1, \ldots, y_n)) = \max \{ \delta_f(A_1), \ldots, \delta_f(A_k) \} + 1 \).

CONVENTION. We write \(\delta \) for \(\delta_f \) if this can give no confusion; ditto for \(q_f \) and \(\sigma_f \), to be defined later.
3.7. DEFINITION. Let $F \in \text{FRAG}$. We say that interpolation holds in F iff:

$\begin{align*}
A, B \in F \\
\vdash C \rightarrow A \rightarrow B \\
PV(A) \cap PV(B) \neq \emptyset \\
FV(A) \cap FV(B) \neq \emptyset
\end{align*}$

$\vdash \exists I \in F$ with $\begin{align*}
PV(I) \subset PV(A) \cap PV(B) \\
FV(I) \subset FV(A) \cap FV(B)
\end{align*}$

REMARK. For the reason why we added the condition $FV(A) \cap FV(B) \neq \emptyset$ in the premiss, see the remark at the end of 2.4.

3.8. Now we set out to define the translation T.

T works roughly as follows: if $f \in \text{Frag}$, then $Tf \in \text{FRAG}$, and there are functions $\varphi : f \rightarrow Tf$ and $\sigma : Tf \rightarrow f$ satisfying

$\begin{align*}
(3) & \quad A, B \in f, \quad \vdash_c A \rightarrow B \Rightarrow \vdash \varphi A \rightarrow \varphi B, \\
(4) & \quad A, B \in Tf, \quad \vdash_c A \rightarrow B \Rightarrow \vdash \sigma A \rightarrow \sigma B.
\end{align*}$

To accomplish this, we need a function $\kappa : \text{Form} \rightarrow \text{FORM}$. A well-known candidate which appears to be fit for our purpose is defined by

$\begin{align*}
\kappa(p_i) = Vx_i(Rx_1x_2 \rightarrow P_ix_2), & \quad i = 1, 2, \ldots; \quad \kappa \bot = \bot ; \quad \kappa \top = \top; \\
\kappa(A \land B) = \kappa A \land \kappa B; & \quad \kappa(A \lor B) = \kappa A \lor \kappa B; \\
\kappa(A \rightarrow B) = Vx_n(Rx_1x_n \rightarrow (\kappa A \rightarrow \kappa B)(x_n/x_1)), & \quad \text{where } n \text{ is the smallest index (of } x) > 1 \text{ not occurring in } \kappa A \rightarrow \kappa B.
\end{align*}$

κ translates every formula A of IpC into a formula κA, containing unary predicate variables P_i for every p_i in A, one binary predicate variable R and one free variable x_1; κA expresses that, if R is reflexive and transitive, then A is forced in node x_1 of the Kripke model $K = \langle U, R, \vdash \rangle$, where U is the universe over which our individual variables range and the forcing relation \vdash is determined by

$x \vdash_p i = P_i x, \quad i = 1, 2, \ldots.$

See Kripke [K] for more information. In the same article, IpC is proved to be complete w.r.t. reflexive and transitive Kripke models, which implies

$\begin{align*}
(5) & \quad \vdash I \rightarrow A \rightarrow B \Rightarrow \vdash_c VxRx \land Vxyz(Rxy \land Ryz \rightarrow Rxz) \rightarrow (\kappa A \rightarrow \kappa B),
\end{align*}$

so we are well on our way to (3) and (4).

Two obstacles are still before us:

1) the condition upon R in the right-hand side of (5); this will be eliminated by putting it in the translation φ;

2) κ creates two new parameters for which there is no equivalent in the argument, viz. x_1 and R. R in particular causes a lot of trouble in the fragment Tf; to cope with it, we have to extend the condition $Adm(R)$ on R in φ, and to
build up a machinery of definitions and lemmata before we can prove the desired result.

First we need a sentence $Adm(R)$, R a binary predicate, satisfying:

(6) \textbf{Ipc} is complete w.r.t. the class of Kripke frames $K = \langle U, R \rangle$
which satisfy $Adm(R);$

(7) $Adm(\lambda xy \cdot Px) = Adm(\lambda xy \cdot Py) = \bot;$

(8) $Adm(R) \land Adm(\bar{R}) \equiv \bot (\bar{R} = \lambda xy \cdot Ryx).$

Remark. The reasons we want $Adm(R)$ to satisfy (6), (7), (8) are the following. We use Adm in the predicate operators of the fragments Tf to enforce reflexiveness and transitivity of some binary predicate S. Now, if S is not essentially binary (i.e. S is obtained by vacuous abstraction), then (7) will cause formulae in which S is substituted in Adm to collapse. It will appear that R and \bar{R} are the only essentially binary predicates in Tf; (8) reduces formulae in which R and \bar{R} both are substituted in (different instances of) Adm to simpler ones.

3.9. Definition.

i) $Adm(R) =_{\text{def}} VxRxx \land Vxyz(Rxy \land Ryz \rightarrow Rxz) \land \exists xVyRx \land \forall x \exists y \neg Ryx.$

ii) $A =_{S} B =_{\text{def}} \forall \epsilon_1 Adm(S) \rightarrow (A \leftrightarrow B), \ S \text{ a binary predicate}.$

3.10. Lemma. (6), (7), (8) hold for $Adm(R).$

Proof. (7), (8) are easily seen to hold.

Ad (6): If $Adm(R)$, then R is reflexive and transitive, hence $\langle U, R \rangle$ is a Kripke frame for $\textbf{Ipc};$ on the other hand, \textbf{Ipc} is complete w.r.t. the class of finite Kripke trees (for a proof see [K]), and these are quickly transformed in structures with an order relation R satisfying $Adm(R);$ just add branches, if necessary. Conclusion: $Adm(R)$ satisfies (6). □

Corollary. If $A,B \in \textbf{Form},$ then

$\vdash_{\epsilon_1} A \rightarrow B \leftrightarrow \vdash_{\epsilon_1} Adm(R) \rightarrow (\kappa A \rightarrow \kappa B).$

3.11. Lemma. If $A \in \textbf{Form},$ then $\kappa A \equiv_R \forall y Rx_1 y \rightarrow \kappa A[y/x_1].$

Proof. An immediate consequence of the following property of Kripke models for $\textbf{Ipc}:$

$k \models A \text{ and } Rkk' = k' \models A,$

which is proved by induction over the complexity of A. □

From the substitution property of \textbf{CPC} follows:

3.12. Lemma. $A =_{S} B \Rightarrow C =_{S} C[A/B].$ □
Now we know enough about κ to define the translation T and the functions φ and σ between f and Tf, and to prove their characteristics.

IMPORTANT CONVENTION. From now on, our language L_1 is supposed to contain as predicate variables only P_1, P_2, \ldots (all unary) and R (binary).

3.13. **DEFINITION.** i) The function $\tau : \text{Con} \rightarrow \text{PRO}$ is defined by:

$$\tau A = \kappa A \wedge \text{Adm}(R).$$

ii) We define $T : \text{Frag} \rightarrow \text{FRAG}$ as follows:

$$T([C]_p) = \{(\tau c : c \in C) \cup \{\square\}\}_p,$$

where

$$\square = \tau(\lambda p \cdot p) = \lambda PRx \cdot V y (Rxy \rightarrow Py) \wedge \text{Adm}(R)).$$

REMARK. It is obvious that all predicate operators of a fragment Tf, $f \in \text{Frag}$, are of type $(n+1,1,\ldots,1,2,1)$, i.e. look like $\lambda P_1 \cdots P_nRx_1 \cdot A$, A some formula; a direct consequence of this, and of the condition $FV(A) \subseteq \{y_1, \ldots, y_n\}$ in the definition of predicates, is: all non-atomic formulae in Tf have at most one free variable, so R and \bar{R} are the only essentially binary predicates in Tf (as was announced in the remark at the end of 3.8). Without the condition on $FV(A)$, this would not be the case; also the next lemma, which is crucial for the rest of our argument, would vanish.

CONVENTION. $A = A(S)$ and $A = A(S,x_i)$, where $S \in PR^2$ and $A \in Tf$ for some $f \in \text{Frag}$, mean: A is not atomic and of the form $c(A_1, \ldots, A_n, S, x_i)$.

It is clear that we have:

$$A \in Tf, A = A(S) \Rightarrow \vdash A \rightarrow \text{Adm}(S).$$

3.14. **LEMMA.** If $A, B \in Tf$, $A = A(S_1)$, $B = B(S_2)$, then

$$\vdash A \rightarrow B \Rightarrow A = \bot \text{ or } S_1 = S_2 = R \text{ or } S_1 = S_2 = \bar{R}.$$

PROOF. R and \bar{R} are the only binary predicates in Tf without vacuous abstraction, so with Lemma 3.10 we have $R \neq S_1 \neq \bar{R} \Rightarrow A(S_1) = \bot$.

Now let $A \neq \bot$, then $S_1 = R$ or $S_1 = \bar{R}$. By (9), we have $\vdash A \rightarrow \text{Adm}(S_1) \wedge \text{Adm}(S_2)$; together with Lemma 3.1 and $A \neq \bot$ this gives $S_1 = S_2$. □

3.15. **LEMMA.** If $A \in Tf$, then

$$A = A(S, x_i) \Rightarrow A = \tau c (\bar{A}, S, x_i).$$

PROOF. By Lemma 3.14, we only have to consider $S = R$ or $S = \bar{R}$. We treat $S = R$; $S = \bar{R}$ goes analogous. First we observe

$$\vdash A' = \vdash A'[\bar{B}/P], \text{ P a predicate variable, } ^*\bar{B} = ^*P.$$
Now

$$A = \kappa B[A_1, \ldots, A_n, R/P_1, \ldots, P_n, R][x_i/x_1] \land Adm(R)$$

$$\equiv_R \kappa B[A_1, \ldots, A_n/P_1, \ldots, P_n][x_i/x_1]$$

$$\equiv_R \forall y R x_1 y \rightarrow (\kappa B[A_1, \ldots, A_n/P_1, \ldots, P_n][y/x_1])$$

(by Lemma 3.11 and (10))

$$\equiv_R \Box (\bar{A}, R, x_1);$$

since $\vdash A \rightarrow Adm(R)$, $\vdash \Box (\bar{A}, R, x_1) \rightarrow Adm(R)$, we have $A = \Box (\bar{A}, R, x_1)$. □

3.16. DEFINITION. Let $f = [C] \in \text{Frag}$. We define the function $\varphi_f : f \rightarrow TF$ as follows:

i) $\varphi_f(p_i) = \Box (P_i, R, x_1);

ii) if $c \in C \cap \text{Con}^n$, $B_1, \ldots, B_n \in f$, then

$$\varphi_f(c(B_1, \ldots, B_n)) = (\tau c)(\varphi_f B_1, \ldots, \varphi_f B_n, R, x_1).$$

The following lemma characterizes φ:

3.17. LEMMA. $A \in [C] \Rightarrow \kappa A \equiv_R \varphi A$.

PROOF. Induction over δA:

i) $\delta A = 0$. Then $A = p_i$ for some $i : \kappa A \equiv_R \kappa p_i \land Adm(R) = \varphi A$.

ii) $\delta A > 0$. Suppose $A = B(B_1, \ldots, B_n)$, $B = \lambda p_1 \ldots p_n B \in C$, $B_1, \ldots, B_n \in [C]_p$, $\delta B_1, \ldots, \delta B_n < \delta A$. Induction hypothesis: $\kappa B_i \equiv_R \varphi B_i$, $i = 1, \ldots, n$. For simplicity we suppose $n = 1$. Now

$$\varphi A = (\tau B)(\varphi B_1, R, x_1)$$

(def. of φ)

$$= \kappa B \land Adm(R)(\varphi B_1, R, x_1)$$

(def. of τ)

$$\equiv_R \kappa B(\varphi B_1, R, x_1)$$

(def. of \equiv_R)

$$= \kappa B[\varphi B_1/P_1]$$

(def. of connective)

$$\equiv_R \kappa B[\kappa B_1/P_1]$$

(ind. hyp.)

$$= \kappa B[\forall x_2 R x_1 x_2 \rightarrow B_1[x_2/x_1]/\forall x_2 R x_1 x_2 \rightarrow P_1 x_2]$$

(by definition of κ, P_1 occurs only in subformulae of the form $\forall x_2 R x_1 x_2 \rightarrow P_1 x_2$)

$$\equiv_R \kappa B[\kappa B_1/\forall x_2 R x_1 x_2 \rightarrow P_1 x_2]$$

(Lemma 3.11, 3.12)

$$= \kappa B[B_1/P_1])$$

(def. of κ)

$$= \kappa B(B_1)) = \kappa A. □$$

Now we simply prove the property of φ which was mentioned in (3):

3.18. LEMMA. If $A, B \in f$, then

$$\vdash c A \rightarrow B \Rightarrow \vdash c \varphi A \rightarrow \varphi B.$$
PROOF. \(\vdash \neg \Gamma \rightarrow B \Rightarrow \neg \lambda \lambda A \rightarrow \lambda \lambda B \) (Lemma 3.12)
\[\Rightarrow \neg \lambda \lambda A \rightarrow \lambda \lambda B \) (Lemma 3.17)
\[\Rightarrow \neg \lambda \lambda \lambda A \rightarrow \lambda \lambda B \] (because of (9)). \(\square \)

3.19. DEFINITION. Let \(f = \{ C \} \in \text{Frag} \).

We define \(\sigma_i: \Gamma \rightarrow \{ Rx_i: i \neq j \} \rightarrow \{ C \cup \{ \bot, T \} \} \) as follows:

i) \(\sigma_i x_i = p_i \);

ii) \(\sigma Rx_i = T \);

iii) \(\sigma((\lambda B, S, x_j)) = \lambda B \) if \(B \) atomic and \((S = R \text{ or } S = \bar{R}) \)
or if \(B = B(R) \text{ and } S = R \)
or if \(B = B(\bar{R}) \text{ and } S = R \),
\[= \bot \] otherwise;

iv) \(\sigma((\lambda \lambda B_1, \ldots, B_n, S, x_j)) = \lambda (A_1, \ldots, A_n) \) if \(S = R \text{ or } S = \bar{R} \)
or if \(B_1 \) atomic or \(B_1 = B(S) \)
or if \(B_1 = \lambda (B_1, S, x_1) \)
\[= \bot \] otherwise, \(i = 1, \ldots, n \).

A direct consequence of Definition 3.16 and 3.19 is

3.20. LEMMA. \(A \in f \Rightarrow \sigma \lambda A = A \).

PROOF. Simple induction over \(\delta A; \)

i) \(A \) atomic: \(\sigma \lambda A = \sigma \lambda p_i = \sigma(\square(P_i, R, x_1)) = \sigma(P_i, x_1) = p_i = A \).

ii) \(A = \lambda (A_1, \ldots, A_n) \): \(\sigma \lambda A = \sigma((\lambda \lambda B_1, \ldots, \lambda \lambda A_n, R, x_1)) = \lambda (\sigma \lambda A_1, \ldots, \sigma \lambda A_n) = \lambda (A_1, \ldots, A_n) = A \) (the third equality is a consequence of the induction hypothesis). \(\square \)

So \(\sigma \) is a left inverse of \(\lambda \). At the same time, it nearly is a right inverse:

3.21. LEMMA. Let \(A = A(S, x_1) \in \Gamma \). Then

i) \(S = R \Rightarrow \sigma \lambda A \equiv A \);

ii) \(S = \bar{R} \Rightarrow (\sigma \lambda A)[\bar{R}/R] \equiv A \);

iii) \(R \neq S \neq \bar{R} \Rightarrow \sigma \lambda A \equiv A \equiv \bot \).

PROOF. Induction over \(\delta A; A = A(S) \), so \(\delta A > 0 \). We only prove (i); (ii) goes analogous, and (iii) is trivial, for then \(\lambda \lambda \lambda A \equiv \bot \).

We distinguish two cases:

a) \(A = \square(B, R, x_1) \).

a.1) \(B = P_i x_1 \): then \(\sigma \lambda A = \sigma \lambda p_i = \square(P_i, R, x_1) = A \).

a.2) \(B = Rx x_1 \): then \(\sigma \lambda A = \sigma T = \forall y (Rxy \rightarrow T) \land \lambda \lambda \lambda A \equiv \lambda \lambda \lambda A \), and \(A = \lambda \lambda \lambda y (Rxy \rightarrow Ryy) \land \lambda \lambda \lambda A \equiv T \land \lambda \lambda \lambda A \), for \(\vdash \lambda \lambda \lambda A \equiv \lambda \lambda \lambda A \), so \(\sigma \lambda A \equiv \lambda \lambda \lambda A \).

a.3) \(B = B(R) \): then, by induction hypothesis, \(\lambda \lambda \lambda B \equiv B \); also (from the definition of \(\sigma \)) \(\sigma \lambda A \equiv \lambda B \). So \(B = \sigma \lambda A \); because of Lemma 3.15, \(B = \square(\lambda B, R, x_1) = A \), so \(\sigma \lambda A = A \).
a.4) \(B = B(S', y), S' \neq R \), so \(B = B' \wedge Adm(S') \); now
\[
A = Vx_2(Rx_1x_2 \rightarrow (B' \wedge Adm(S'))[x_2/y]) \wedge Adm(R)
\]
\[
= Vx_2(Rx_1x_2 \rightarrow (B'[x_2/y] \wedge Adm(S') \wedge Adm(R))) \wedge Adm(R)
\]
\[
= Vx_2(Rx_1x_2 \rightarrow \bot) \wedge Adm(R) \quad \text{(by Lemma 3.10)}
\]
\[
= \neg \exists x_2Rx_1x_2 \wedge Adm(R) = \bot, \quad \text{for } \neg Adm(R) \rightarrow Vx_1 \exists x_2 Rx_1x_2;
\]
also \(\sigma A = \sigma \bot = \bot \), so \(\sigma A = A \).

b) \(A = (\tau c)(\bar{B}_1, \ldots, \bar{B}_n, R, x_1) \). Without loss of generality, we suppose that \(n = 3 \), \(\bar{B}_1 \) is atomic, \(\bar{B}_2 = B_2(R) \) and \(\bar{B}_3 = B_3(S') \) with \(S' \neq R \). Now
\[
A = (\tau c)(\bar{B}_1, \bar{B}_2, \bar{B}_3 \wedge Adm(S'), R, x_1) \wedge Adm(R)
\]
\[
= (\tau c)(\bar{B}_1, \bar{B}_2, \bot, R, x_1) \wedge Adm(R) \quad \text{(here } \bot = \lambda x \cdot \bot \text{)}
\]
and
\[
\sigma A = \sigma (c(\sigma B_1, \sigma B_2, \bot))
\]
\[
= \sigma (c(p, \sigma B_2, \bot)) \quad (p = p_i \text{ if } B_1 = P_i(x) \text{ or } T(\text{if } B_1 = Rxx))
\]
\[
= (\tau c)(\overline{\sigma p}, \overline{\sigma B_2}, \overline{\sigma \bot}, R, x_1)
\]
\[
= (\tau c)(\bar{B}_1, \bar{B}_2, \bot, R, x_1) \quad \text{(ind. hyp. and def. of } \sigma \text{)},
\]
so \(\sigma A = A \). \(\square \)

Now it is simple to prove the desired property of \(\sigma \):

3.22. LEMMA. If \(f \in \text{Frag} \), \(A, B \in Tf \), \(A = A(R, x_1) \), \(B = B(R, x_1) \), then:
\[
\vdash \sigma A \rightarrow B = \vdash \sigma A \rightarrow \sigma B.
\]

PROOF.
\[
\vdash \sigma A \rightarrow B = \vdash \sigma A \rightarrow \sigma B \quad \text{(Lemma 3.21)}
\]
\[
= \vdash \sigma A \rightarrow (\kappa \sigma A \rightarrow \kappa \sigma B) \quad \text{(Lemma 3.17)}
\]
\[
= \vdash \sigma A \rightarrow \sigma B \quad \text{(corollary of Lemma 3.10)}. \quad \square
\]

Finally, we can prove the theorem we did all the work for:

3.23. THEOREM. Let \(f = [C]_p \in \text{Frag} \). Then
i) interpolation holds in \(f = \) interpolation holds in \(Tf \);
ii) interpolation holds in \(Tf = \) interpolation holds in \([C \cup \{ \top, \bot \}]_p \).

PROOF. i) Suppose \(A, B \in Tf \), \(\vdash A \rightarrow B \), \(PV(A) \cap PV(B) \neq \emptyset \neq FV(A) \cap FV(B) \).

Case 1. \(A \) is atomic. Then \(B \) is atomic, for \(B \) not atomic implies \(B = B \wedge \wedge Adm(S) \) for some \(S \in \text{PR}^2 \), and then \(\vdash A \rightarrow Adm(S) \) which, together with \(A \) atomic, yields \(A = \bot \), so \(PV(A) = \emptyset \). From \(A, B \) atomic and \(\vdash A \rightarrow B \) follows \(A = B \), so \(A \) is interpolant.
Case 2. \(B \) is atomic, \(A \) not. We have the following subcases:

a) \(B = P_{xj} \) or \(B = R_{x;xi} \). Then \(B \) is interpolant.

b) \(B = R_{x;xi}, \ i \neq j \).

b.1) \(A = A(R, xj) \). Then \(\vdash A \rightarrow \forall y \forall x R_{xy} \). But \(A = A \land A dm(R) \), so \(\vdash A \rightarrow \forall y \exists x \neg R_{xy} \); hence \(A = \bot \). \(A \) is not atomic, so \(A = c(A_1, \ldots, A_n, R, xj) \) for some \(c \in C \). Now

\[
A_0 = c(R_{xx}, \ldots, R_{xx}, \lambda xy \cdot R_{x;xi}, xj)
\]

is an interpolant, for \(A_0 = A dm(\lambda xy \cdot R_{x;xi}) = \bot \).

b.2) \(A = A(R, xi) \). Then \(\vdash A \rightarrow \forall y R_{xi} y \). Together with \(\vdash A \rightarrow (\forall y R_{xi} y \rightarrow A[y/xj]) \) (a consequence of Lemma 3.15), this gives \(\vdash A \rightarrow \forall x_i A \), which yields even \(\vdash A \rightarrow \forall x_i y R_{x;yi} \); since \(A = A \land A dm(R) \) and \(\vdash A dm(R) \rightarrow \forall x_i y \neg R_{xy} \), we now get \(A = \bot \), and \(A_0 \) is interpolant.

b.3) \(A = A(\tilde{R}, xj) \). Analogous to (b.2).

b.4) \(A = A(\tilde{R}, xi) \). Analogous to (b.1).

b.5) \(A = A(R, xi) \). \(R \neq S \neq \tilde{R} \). Then \(A = \bot \) and \(A_0 \) is interpolant.

Case 3. \(A = A(S_1, xi) \), \(B = B(S_2, xi) \). According to Lemma 3.14, there are three possibilities:

a) \(S_1 = S_2 = R \). We take for simplicity \(i = 1 \) (\(i \neq 1 \) requires some substitution).

\(\vdash c A \rightarrow B \), hence, with Lemma 3.22, \(\vdash c \sigma A \rightarrow \sigma B \). Let \(I \in \mathfrak{f} \) be an interpolant of this last implication. Then (Lemma 3.18) \(\vdash c \sigma I \rightarrow aI \) and \(\vdash c I \rightarrow aI \). Now Lemma 3.21 says \(q \sigma I = A, q \sigma B = B \), so \(qI \) is interpolant for \(\vdash c A \rightarrow B \).

b) \(S_1 = S_2 = \tilde{R} \). Analogous to (a).

c) \(A = \bot \). Then \(A_0 \) is interpolant.

ii) Suppose \(A, B \in [C \cup \{ \top, \bot \}] \), \(\vdash c A \rightarrow B \), \(PV(A) \cap PV(B) \neq \emptyset \).

Case 1. \(A \) (or \(B \)) is atomic. Then \(A \) (or \(B \)) is interpolant.

Case 2. \(A \) nor \(B \) is atomic. By Lemma 3.18, \(\vdash c q A \rightarrow q B \). Let \(I \in \mathfrak{T} \) be an interpolant of this last implication. Then \(I = \bot \) (\(\bot \) is interpolant for \(A \rightarrow B \)), or \(I \) is not atomic (for \(\vdash c I \rightarrow q B \), so \(\vdash c I \rightarrow A dm(R) \)). In this last case, \(\vdash c q A \rightarrow c I \) and \(\vdash c I \rightarrow q B \), because of Lemma 3.22. But (Lemma 3.20) \(q A = A, q B = B \), hence \(c I \) is interpolant for \(A \rightarrow B \).

Corollary. There are \(2^{k_0} \) fragments of \(\text{CPC} \) for which interpolation fails.

Proof. Follows immediately from Theorem 2.18 and 3.23(ii).

References

