Algebraic subgroups of $GL_2(\mathbb{C})$

by K.A. Nguyen, M. van der Put and J. Top

Department of Mathematics, University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

Communicated by Prof. M.S. Keane

ABSTRACT

In this note we classify, up to conjugation, all algebraic subgroups of $GL_2(\mathbb{C})$.

1. INTRODUCTION

Although the classification, up to conjugation, of the algebraic subgroups of $SL_2(\mathbb{C})$ ([3, Theorem 4.12], [6, Theorem 4.29]), and the classification of subgroups of GL_2 over a finite field ([11], [8, Theorem 6.17]) are well known, it seems that the determination of all algebraic subgroups of $GL_2(\mathbb{C})$ is not presented well in the literature. In this paper we give this classification, including full proofs. The final result is Theorem 4. We note that \mathbb{C} can be replaced everywhere by any algebraically closed field of characteristic zero.

Notation. $\mu_n \subset \mathbb{C}^*$ denotes the nth roots of unity and ζ_n denotes a primitive nth root of unity. Let $\beta : GL_2(\mathbb{C}) \to PGL_2(\mathbb{C}) = PSL_2(\mathbb{C})$, $\gamma : SL_2(\mathbb{C}) \to PSL_2(\mathbb{C})$ denote the canonical projections. For any algebraic subgroup $H \subset PSL_2(\mathbb{C})$ we write $H_{SL_2} = \gamma^{-1}(H) \subset SL_2(\mathbb{C})$. Further

$$B := \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mid a \in \mathbb{C}^*, b \in \mathbb{C} \right\}$$
and
\[D_\infty := \left\{ \begin{pmatrix} c & 0 \\ 0 & c^{-1} \end{pmatrix} \middle| c \in \mathbb{C}^* \right\} \cup \left\{ \begin{pmatrix} 0 & -d \\ d & 0 \end{pmatrix} \middle| d \in \mathbb{C}^* \right\} \]
are the Borel subgroup and the infinite dihedral subgroup of \(\text{SL}_2(\mathbb{C}) \).

We first recall the classification of all algebraic subgroups of \(\text{PGL}_2(\mathbb{C}) \).

Theorem 1. Let \(H \) be an algebraic subgroup of \(\text{PGL}_2(\mathbb{C}) \). Then, up to conjugation, one of the following cases occurs:

1. \(H = \text{PGL}_2(\mathbb{C}) \);
2. \(H \) is a subgroup of the group \(\gamma(B) \);
3. \(H = \gamma(D_\infty) \);
4. \(H = D_n \) (the dihedral group of order \(2n \)), \(A_4 \) (the tetrahedral group), \(S_4 \) (the octahedral group), or \(A_5 \) (the icosahedral group).

The above theorem reduces the problem to describing the algebraic groups in \(\text{GL}_2(\mathbb{C}) \) mapping to a given subgroup \(G \subset \text{PGL}_2(\mathbb{C}) \). Each example is therefore a central extension of \(G \) and corresponds to an element in \(H^2(G, \mu) \), where \(\mu \) is either \(\mathbb{C}^* \) or a finite cyclic subgroup of \(\mathbb{C}^* \). The first case defines the Schur multiplier of \(G \). In the interesting cases, \(\mu \) is a finite group and the Schur multiplier does not provide information because the canonical map \(H^2(G, \mu) \to H^2(G, \mathbb{C}^*) \) is not injective (see also Remark 3).

We note that Theorem 1 is a corollary of the following two well-known theorems.

Theorem 2 (Klein [4]). A finite subgroup of \(\text{PGL}_2(\mathbb{C}) \) is isomorphic to one of the following polyhedral groups:

- a cyclic group \(C_n \);
- a dihedral group \(D_n \) of order \(2n \), \(n \geq 2 \);
- the tetrahedral group \(A_4 \) of order 12;
- the octahedral group \(S_4 \) of order 24;
- the icosahedral group \(A_5 \) of order 60.

Up to conjugation, all of these groups occur as subgroups of \(\text{PGL}_2(\mathbb{C}) \) exactly once.

In Theorem 1, the cyclic groups \(C_n \) happen to be subgroups of \(\gamma(B) \).

Theorem 3 ([3, Theorem 4.12]; [6, Theorem 4.29]). Suppose that \(G \) is an algebraic subgroup of \(\text{SL}_2(\mathbb{C}) \). Then, up to conjugation, one of the following cases occurs:

1. \(G = \text{SL}_2(\mathbb{C}) \);
2. \(G \) is a subgroup of the Borel group \(B \);

288
(3) \(G \) is not contained in the Borel group \(B \) and is a subgroup of the infinite dihedral group \(D_\infty \):

(4) \(G \) is one of the groups \(A_4^{SL_2}, S_4^{SL_2}, A_5^{SL_2} \).

2. ALGEBRAIC SUBGROUPS OF \(GL_2(\mathbb{C}) \)

Given a group \(H \subset PGL_2(\mathbb{C}) \) as in Theorem 1, we will determine all algebraic subgroups \(G \subset GL_2(\mathbb{C}) \) such that \(\beta(G) = H \). We first observe that there is only one maximal group with this property, namely \(H_{\text{max}} := \beta^{-1}(H) \). Any \(G \) with \(\beta(G) = H \) satisfies \(\mathbb{C}^* \cdot G = \mathbb{C}^* \cdot H \), \(SL_2 = H_{\text{max}} \).

By the Noetherian property, \(G \) contains a minimal algebraic subgroup with image \(H \). We will denote any such minimal subgroup by \(H_{\text{min}} \). Any \(G \) with \(\beta(G) = H \) has the form \(\mu_k \cdot H_{\text{min}} \) or \(\mathbb{C}^* \cdot H_{\text{min}} = H_{\text{max}} \). Our problem now remains to determine all minimal groups \(H_{\text{min}} \) (up to conjugation). We will proceed case by case based on Theorem 1.

2.1. \(H = PGL_2(\mathbb{C}) \)

Proposition 1. For \(H = PGL_2(\mathbb{C}) \) the only minimal group is \(SL_2(\mathbb{C}) \).

Proof. Clearly \(H_{\text{max}} = GL_2(\mathbb{C}) \). Let \(G \) be a minimal group with \(\beta(G) = PGL_2(\mathbb{C}) \). The latter group is equal to its commutator subgroup and therefore \(\beta([G, G]) = H \). Since \(G \) is minimal, one has \(G = [G, G] \) and \(G \subset SL_2(\mathbb{C}) \). By Theorem 3, \(G \) cannot be a proper subgroup of \(SL_2(\mathbb{C}) \). \(\square \)

2.2. \(H \) is a subgroup of the group \(\gamma(B) \)

Then \(H = \gamma(F) \) for some algebraic subgroup \(F \) of \(B \subset SL_2(\mathbb{C}) \). The algebraic subgroups of the Borel group \(B \subset SL_2(\mathbb{C}) \) are listed below:

\[
\begin{align*}
B; \quad G_m &= \left\{ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \middle| a \in \mathbb{C}^* \right\}; \\
G_a &= \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \middle| b \in \mathbb{C} \right\}; \\
F^k_1 &= \left\{ \begin{pmatrix} \xi & c \\ 0 & \xi^{-1} \end{pmatrix} \middle| \xi^k = 1, c \in \mathbb{C} \right\}, \quad \text{with } k \in \mathbb{Z}_{\geq 1}; \\
F^l_2 &= \left\{ \begin{pmatrix} \xi & 0 \\ 0 & \xi^{-l} \end{pmatrix} \middle| \xi^l = 1 \right\}, \quad \text{with } l \in \mathbb{Z}_{\geq 1}.
\end{align*}
\]

We note that \(\mu_l \cong F^l_2 \subset G_m \subset B \) and \(F^1_1 = G_a \subset F^k_1 \subset B \).

2.2.1. \(H = \gamma(B) \)

Proposition 2. For \(H = \gamma(B) \) the minimal groups are

\[
H_{k,l} = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a^k c^l = 1 \right\}
\]

with \(k, l \in \mathbb{Z} \) satisfying \(k + l \neq 0 \) and \(\gcd(k, l) = 1 \).
Proof. Let \(G \subset \text{H}_{\text{max}} = \{(a \ b) \mid a, b, c \in \mathbb{C}, \ ac \neq 0\} \) be minimal with \(\beta(G) = H \).

Then \(G \) contains an element of the form \(A = \alpha \cdot (\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}) \) with \(\alpha \in \mathbb{C}^{*} \). The unipotent component \(A_u = (\begin{smallmatrix} 1 \\ 0 \\ 1 \end{smallmatrix}) \) of the multiplicative Jordan decomposition of \(A \) belongs to \(G \). Then \(G \) contains the normal subgroup \(N := (\begin{smallmatrix} 1 \\ b \\ 1 \end{smallmatrix}) \mid b \in \mathbb{C} \) and \(G/N \) is a proper subgroup of \(\text{H}_{\text{max}}/N \cong \mathbb{C} \times \mathbb{C} \). It follows that \(G = (\begin{smallmatrix} a \\ 0 \\ c \end{smallmatrix}) \mid a^k c^l = 1 \) for a certain pair \((k, l) \neq (0, 0) \). This group has projective image \(\gamma(B) \) precisely when \(k + l \neq 0 \). By minimality \(\gcd(k, l) = 1 \). □

2.2.2. \(H = \gamma(\text{G}_m) \)

Proposition 3. In this case, the minimal groups are

\[
\left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \mid a^k b^l = 1 \right\}
\]

with \(k, l \in \mathbb{Z} \) satisfying \(k + l \neq 0 \) and \(\gcd(k, l) = 1 \).

Proof. A minimal subgroup \(G \) is a proper subgroup of \(\text{H}_{\text{max}} = \{(a \ 0) \mid a, b \in \mathbb{C}^{*}\} \) with image \(\text{G}_m \) in \(\text{PGL}_2(\mathbb{C}) \). Therefore it is of dimension one, hence it has the form \(\{(a \ 0) \mid a^k b^l = 1\} \) for some pair of integers \((k, l) \neq (0, 0) \). This group has image \(\text{G}_m \) in \(\text{PGL}_2(\mathbb{C}) \), if and only if \(k + l \neq 0 \). Since \(G \) is minimal one moreover has \(\gcd(k, l) = 1 \).

Remark 1. Two pairs \((k, l) \) and \((m, n) \) define conjugated minimal subgroups of \(\text{GL}_2(\mathbb{C}) \) for Proposition 2 if and only if \((k, l) = \pm (m, n) \). For Proposition 3 the two pairs define conjugated groups if and only if \((k, l) \in \{\pm (m, n), \pm (n, m)\} \).

2.2.3. \(H = \gamma(\text{G}_a) \)

In this case, we have \(H^{\text{SL}_2} = \{\pm 1\} \cdot \text{G}_a \) and \(\text{H}_{\text{max}} = \mathbb{C}^{*} \cdot \text{G}_a \).

Proposition 4. In this case, the only minimal group is \(\text{G}_a \).

Proof. Let \(G \) be minimal. Then \(G \) contains an element of the form \(A = \alpha \cdot (\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}) \) with \(\alpha \in \mathbb{C}^{*} \). The unipotent component \(A_u = (\begin{smallmatrix} 1 \\ 0 \\ 1 \end{smallmatrix}) \) of the multiplicative Jordan decomposition of \(A \) also belongs to \(G \) and thus \(G \supset \{(a \ b) \mid a \in \mathbb{C}\} = \text{G}_a \). By minimality \(G = \text{G}_a \).

2.2.4. \(H = \gamma(F_k^2) \)

The group \(H \) is topologically (for the Zariski topology) generated by the images of the elements \((\begin{smallmatrix} \zeta_k & 0 \\ 0 & 1 \end{smallmatrix}) \) and \((\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}) \) in \(\text{PGL}_2(\mathbb{C}) \) (where \(\zeta_k \) is a primitive \(k \)th root of the identity). Let \(G \) denote a minimal subgroup with \(\beta(G) = H \). As before one concludes that \(G \supset \{(a \ b) \mid a \in \mathbb{C}\} = \text{G}_a \). Moreover, \(G \) is (topologically) generated by \(\text{G}_a \) and an element of the form \(A := \alpha \cdot (\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}) \) with \(\alpha \in \mathbb{C}^{*} \). If \(\alpha \) is not a root of unity, then the group, topologically generated by \(A \) and \(\text{G}_a \), contains \(\mathbb{C}^{*} \) and is equal to \(\text{H}_{\text{max}} \). By the minimality of \(G \) we have that \(\alpha \) is some primitive \(n \)th root of
unity. We define s by $s = k/2$ if k is divisible by 2 and $s = k$ otherwise. For every prime number p, not dividing s, we may consider the subgroup of G generated by A^p and Ga. This group maps surjectively to H. Thus, by minimality, this group is equal to G and p does not divide the order n of α. We find that every prime divisor of n is also a prime divisor of s. Define, for any positive integer n with this property, and every primitive nth root of unity ζ_n, the group $H(\zeta_n)$ as generated by $\zeta_n \cdot \left(\begin{smallmatrix} a & 0 \\ 0 & 1 \end{smallmatrix}\right)$ and Ga. This group $H(\zeta_n)$ depends on the choice of the primitive nth root of unity ζ_n. Further $\beta(H(\zeta_n)) = H$. The group $H(\zeta_n)$ is minimal since any proper subgroup of $H(\zeta_n)$, containing Ga, is contained in the group generated by $(\zeta_n \cdot \left(\begin{smallmatrix} a & 0 \\ 0 & 1 \end{smallmatrix}\right))^p$ and Ga, where the prime p divides s. The latter group does not map surjectively to H. Moreover we found $G \supset H(\zeta_n)$ for some n. Thus we found all minimal groups, namely the groups $H(\zeta_n)$.

Proposition 5. For $H = \gamma(F^k_1)$ the minimal groups are the $H(\zeta_n)$, generated by $\zeta_n \cdot \left(\begin{smallmatrix} a & 0 \\ 0 & 1 \end{smallmatrix}\right)$ and $\left\{\left(\begin{smallmatrix} 1 & a \\ 0 & 1 \end{smallmatrix}\right) \mid a \in \mathbb{C}\right\} = Ga$, where every prime divisor of the positive integer n divides k if k is odd and divides $k/2$ if k is even.

Remark 2. One has $H(\zeta_n)^0 = Ga$ and the order of the cyclic group $H(\zeta_n)/H(\zeta_n)^0$ is the smallest common multiple of n and k (for k odd) and that of n and $k/2$ (if k is even). Moreover, if $H(\zeta_n)$ is conjugated to H_m, then $n = m$. However the converse is not true in general.

2.2.5. $H = \gamma(F^k_2)$

Similarly to Section 2.2.4 one finds the following proposition:

Proposition 6. For $H = \gamma(F^k_2)$ the minimal groups are the cyclic groups generated by $\zeta_n \cdot \left(\begin{smallmatrix} a & 0 \\ 0 & 1 \end{smallmatrix}\right)$ where n is a positive integer such that every prime divisor of n is a prime divisor of l if l is odd or of $l/2$ if l is even.

2.3. $H = \gamma(D_{\infty})$

Let G be minimal with $\beta(G) = H$. Then G is a proper subgroup of $H_{\max} = \mathbb{C}^* \cdot D_{\infty}$. The component of the identity $G^0 \subset G$ has the form $\left\{\left(\begin{smallmatrix} a & 0 \\ 0 & 1 \end{smallmatrix}\right) \mid a^k b^l = 1 \right\}$ for some (k, l) with $\gcd(k, l) = 1$. Consider an element $B \in G$ with image (the class of) $\left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}\right) \in H$. Thus $B = \beta \cdot \left(\begin{smallmatrix} a & b \\ 0 & 1 \end{smallmatrix}\right)$ for some $\beta \in \mathbb{C}^*$. From $BG^0 B^{-1} = G^0$ it follows that $k = l$ and thus $G^0 = \left\{\left(\begin{smallmatrix} a & 0 \\ 0 & b \end{smallmatrix}\right) \mid ab = 1 \right\}$. By the minimality of G one has that $B^2 = \beta^2$ is a root of unity. The subgroup of G, generated by G^0 and B^k, where k is any odd integer, is also mapped surjectively to H. The minimality of G implies that β^2 is a primitive 2^nth root of unity for some $n \geq 0$. Let H_n be the group generated by $\left\{\left(\begin{smallmatrix} a & 0 \\ 0 & b \end{smallmatrix}\right) \mid ab = 1 \right\}$ and $B_n := \zeta_{2n+1} \cdot \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}\right)$. This group does not depend on the choice of ζ_{2n+1} since one may replace B_n by any odd power of B_n. Further $G \subset H_n$ for some n. The group G must contain $\left\{\left(\begin{smallmatrix} a & 0 \\ 0 & b \end{smallmatrix}\right) \mid ab = 1 \right\}$ and some element $\lambda \cdot \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}\right)$. The latter element has the form $\left(\begin{smallmatrix} a & 0 \\ 0 & b \end{smallmatrix}\right) (\zeta_{2n+1} \cdot \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}\right))^p$ with $ab = 1$ and $p \in \mathbb{Z}$. One concludes that $a = b = \pm 1$ and p is odd. It follows that $G = H_n$ and we conclude: $\{H_n \mid n \geq 0\}$ is the collection of the minimal groups.
2.4. \(H = D_n, A_4, S_4 \) or \(A_5 \)

We first note that if \(H \subset \text{PGL}_2(\mathbb{C}) \) is a finite subgroup, then every \(H_{\text{min}} \subset \text{GL}_2(\mathbb{C}) \) is also finite. Indeed, it is clear that \(H_{\text{SL}_2} \) is finite. Because \(H_{\text{min}} \subset \mathbb{C}^* \cdot H_{\text{SL}_2} \), we see that \(H_{\text{min}} \) is finite.

2.4.1. \(H = D_n \)

We write \(D_n = \langle a, b \mid a^n = b^2 = 1, ba = a^{-1}b \rangle \subset \text{PGL}_2(\mathbb{C}) \).

(i) \(n \) odd and \(n \geq 3 \). In this case, we may choose for \(a \) and \(b \) the images in \(\text{PGL}_2(\mathbb{C}) \) of the matrices \(\begin{pmatrix} \zeta_n & 0 \\ 0 & \zeta_n^{-1} \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \), with \(\zeta \) a primitive \(n \)th root of unity.

Let \(G \) be a minimal group. As \(G \) is finite and generated by preimages of \(a, b \in D_n \), one has that

\[
G = \left\{ A = \lambda \begin{pmatrix} \zeta_n & 0 \\ 0 & \zeta_n^{-1} \end{pmatrix}, B = \mu \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}
\]

for certain roots of unity \(\lambda, \mu \). We have \(A^n = \lambda^n, B^2 = \mu^2, BA = \lambda^2 A^{-1} B \). Every element of \(G \) has the form \(t \lambda^k \), or \(t \lambda^k B, k = 0, 1, \ldots, n - 1 \), with \(t \in \langle \lambda^2, \lambda^n, \mu^2 \rangle = \langle \lambda, \mu^2 \rangle \). Hence \(G \cap \mathbb{C}^* = \langle \lambda, \mu^2 \rangle \). Since both \(\lambda \begin{pmatrix} \zeta_n & 0 \\ 0 & \zeta_n^{-1} \end{pmatrix} \in G \) and \(\lambda \in G \), we can write

\[
G = \left\{ A = \begin{pmatrix} \zeta_n & 0 \\ 0 & \zeta_n^{-1} \end{pmatrix}, B = \mu \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}
\]

The subgroup of \(G \) generated by \(A \) and \(B^m, \) where \(m \geq 1 \) is odd, also maps surjectively to \(D_n \). By the minimality of \(G \), this implies that the order of \(\mu \) is \(2^k \) for some \(k \geq 0 \). Now define

\[
H_k := \left\{ \begin{pmatrix} \zeta_n & 0 \\ 0 & \zeta_n^{-1} \end{pmatrix}, \zeta_2^k \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}
\]

for \(k \geq 0 \). This group \(H_k \) does not depend on the choice of the primitive \(2^k \)th root of unity because one can replace the second generator by any odd power of itself. The groups \(H_k \) are the only candidates for minimal groups.

We now show that \(H_k \) is indeed minimal. For \(k = 0, 1 \), the groups

\[
H_0 = \left\{ \begin{pmatrix} \zeta_n & 0 \\ 0 & \zeta_n^{-1} \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}, \quad H_1 = \left\{ \begin{pmatrix} \zeta_n & 0 \\ 0 & \zeta_n^{-1} \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\}
\]

are minimal since they have order \(2n \). The two groups are conjugated by the matrix \(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \). We note that \(H_2 = D_{2n}^{\text{SL}_2} \). For \(k \geq 2 \), we see that \(H_k \cap \mathbb{C}^* = \langle \zeta_2^2 \rangle \). Suppose that \(D \) is a subgroup of \(H_k \) which maps surjectively to \(D_n \), then

\[
D = \left\{ \begin{pmatrix} \zeta_n & 0 \\ 0 & \zeta_n^{-1} \end{pmatrix}, t \zeta_2^k \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}
\]

for some \(t \in \langle \zeta_2^k \rangle \). Since the order of \(t \zeta_2^k \) is also \(2^k \), one has \(D = H_k \) and thus \(H_k \) is minimal. For \(k \geq 1 \), the order of \(H_k \) is \(2^k \cdot n \). Thus two minimal groups \(H_k \) and \(H_l \) with \(k, l \geq 1 \) are conjugated only if \(k = l \).
(ii) \(n \) even and \(n > 2 \). A minimal \(G \) can be written as
\[G = \begin{pmatrix} A = \lambda \begin{pmatrix} \zeta_{2n} & 0 \\
0 & \zeta_{2n}^{-1} \end{pmatrix}, & B = \mu \begin{pmatrix} 0 & i \\
i & 0 \end{pmatrix} \end{pmatrix}, \]
for certain roots of unity \(\lambda, \mu \). We have
\[A^n = -\lambda^n, \quad B^2 = -\mu^2, \quad BA = \lambda^2 A^{-1} B. \]
As before, this implies that \(G \cap \mathbb{C}^* = \langle \lambda^2, -\lambda^n, -\mu^2 \rangle = \langle -1, \lambda^2, \mu^2 \rangle \). One can replace \(A \) and \(B \) by \(c_1 A \) and \(c_2 B \) with \(c_1, c_2 \in \langle -1, \lambda^2, \mu^2 \rangle \). For a good choice of \(c_1, c_2 \), the group \(\langle c_1 A, c_2 B \rangle \) will be a proper subgroup unless there exists an integer \(N \) with \(\lambda, \mu \in \mu_{2N} \). Thus the latter holds by the minimality of \(G \). Then \(\langle -1, \lambda, \mu \rangle = \mu_{2m+1} \) for some \(m \geq 0 \).
For \(m = 0 \), we have \(G \cap \mathbb{C}^* = \mu_2 \) and this leads to only one group, namely
\[\left(\begin{pmatrix} \zeta_{2n} & 0 \\
0 & \zeta_{2n}^{-1} \end{pmatrix}, \begin{pmatrix} 0 & i \\
i & 0 \end{pmatrix} \right) = D_{n}^{SL_2}. \]
This group is clearly minimal. For \(m \geq 1 \), one has \(G \cap \mathbb{C}^* = \mu_{2m} \) and this leads to the three groups given by the table:

<table>
<thead>
<tr>
<th></th>
<th>(\lambda)</th>
<th>(\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_{1,m})</td>
<td>(\zeta_{2m+1})</td>
<td>1</td>
</tr>
<tr>
<td>(H_{2,m})</td>
<td>(\zeta_{2m+1})</td>
<td>(\zeta_{2m+1})</td>
</tr>
<tr>
<td>(H_{3,m})</td>
<td>1</td>
<td>(\zeta_{2m+1})</td>
</tr>
</tbody>
</table>

They all are minimal and have order \(2^m \cdot 2n \). However \(H_{1,m} \) and \(H_{2,m} \) are conjugated. Indeed, \(\begin{pmatrix} \zeta_{2n} & 0 \\
0 & 1 \end{pmatrix} H_{1,m} \begin{pmatrix} \zeta_{2n}^{-1} & 0 \\
0 & 1 \end{pmatrix} = H_{2,m} \) because
\[\begin{pmatrix} \zeta_{2n} & 0 \\
0 & 1 \end{pmatrix} \begin{pmatrix} 0 & i \\
i & 0 \end{pmatrix} = \begin{pmatrix} 0 & i \\
i & 0 \end{pmatrix}, \quad \begin{pmatrix} \zeta_{2n} & 0 \\
0 & 1 \end{pmatrix} \begin{pmatrix} \zeta_{2n}^{-1} & 0 \\
0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & i \\
i & 0 \end{pmatrix}. \]

(iii) \(n = 2 \). As in (ii). In this case also \(H_{1,m} \) and \(H_{3,m} \) are also conjugated, namely by a matrix of the form \(\begin{pmatrix} 0 & a \\
a & -1 \end{pmatrix} \).

2.4.2. \(H = A_4 \)

Let \(G \subset H_{\text{max}} = \mathbb{C}^* \cdot A_4^{SL_2} \) be a minimal group. Consider \(G^+ \subset \mathbb{C}^* \times A_4^{SL_2} \), the preimage of \(G \) under the obvious map \(\alpha : \mathbb{C}^* \times A_4^{SL_2} \rightarrow \mathbb{C}^* \cdot A_4^{SL_2} \). We note that the kernel of \(\alpha \) is \(\{(1, 0), (-1, 0)\} \). Since \(\beta(G) = A_4 \), there exists for every \(a \in A_4^{SL_2} \) an element \((\lambda, a) \in G^+ \). Let \(\mu_k := \{\lambda \in \mathbb{C}^* \mid (\lambda, 1) \in G^+\} \). Then we obtain a homomorphism \(h : A_4^{SL_2} \rightarrow \mathbb{C}^*/\mu_k \) given by \(h(a) = \lambda \mod \mu_k \) if \((\lambda, a) \in G^+ \).
This homomorphism factors as $A_4^{SL_2} \to C_3 \xrightarrow{h_1} \mathbb{C}^* / \mu_k$, where $C_3 = \{1, \sigma, \sigma^2\}$ is the quotient of $A_3^{SL_2}$ by its commutator subgroup. If h_1 is trivial, then G^+ contains $\{(1,a) \mid a \in A_3^{SL_2}\}$ and by minimality $G = A_4^{SL_2}$. By Theorem 3, the latter group of order 24 is minimal.

Now we suppose that h_1 is not trivial. Write $k = 3^r \ell$ with $\gcd(\ell, 3) = 1$. For any $a \in A_4^{SL_2}$ there exists an element $(\lambda, a) \in G^+$ with $\lambda^3 \in \mu_3^\ell$ and λ can be multiplied by any element in μ_3^ℓ. Thus there exist a pair $(\lambda, a) \in G^+$ with $\lambda \in \mu_3^\ell$.

Now $G^+ \cap (\mu_3^{r+1} \times A_4^{SL_2})$ is a subgroup of G^+ mapping surjectively to A_4. The minimality of G implies that $\ell = 1$ and $G^+ \subset \mu_3^{r+1} \times A_4^{SL_2}$. Moreover, $\mu_3^r \subset G^+$ and the map $G^+ \to G$ is bijective. Then G has the form $\mu_3^r \cdot \{\delta(a)a \mid a \in A_4^{SL_2}\}$, where $\delta = A_4^{SL_2} \to C_3 \xrightarrow{\delta_1} \{1, \zeta_3^{r+1}, \zeta_3^{2r+1}\}$ for some map δ_1 which lifts the homomorphism $h_1 : C_3 \to \mu_3^{r+1}/\mu_3^r \subset \mathbb{C}^*/\mu_3^r$. There are two possibilities for nontrivial homomorphism h_1 (and thus for δ_1 and δ) and we find therefore two subgroups of $GL_2(\mathbb{C})$, lying in $\mu_3^{r+1} \cdot A_4^{SL_2}$. The last group is contained in $\mu_3^{r+1} \cdot \xi_4^{SL_2}$. Conjugation by an element $\tau \in S_4 \setminus A_4$ induced on $C_3 = A_4/[A_4, A_4]$ the only non trivial automorphism and permutes the two possibilities for h_1. One lifts τ to an element $\tau' \in S_4^{SL_2}$. Conjugation by τ' permutes the two possibilities for h_1 and therefore the above two groups are conjugated. It suffices to consider the group $H_r := \mu_3^r \cdot \{\delta(a)a \mid a \in A_4^{SL_2}\}$ with δ_1 given by $\delta_1(1) = 1$, $\delta_1(\sigma) = \zeta_3^{r+1}$, $\delta_1(\sigma^2) = \zeta_3^{2r+1}$. The order of H_r is $3^r \cdot 24$. The group H_0 is isomorphic to $A_4^{SL_2}$, but not conjugated to $A_4^{SL_2}$. The minimality of H_0 follows from the fact that A_4 does not have a faithful two-dimensional representation.

Finally, we will show that H_r is minimal for $r \geq 1$. Suppose that D is a subgroup of H_r with $\beta(D) = A_4$. Let $\tau \in A_4^{SL_2}$ be an element of order 3. Then D contains an element $d = \lambda \delta(\tau)\tau$ for some $\lambda \in \{1, 3\} \times \mu_3^r$. Now $\delta(\tau) \in \{\zeta_3^{r+1}, \zeta_3^{2r+1}\}$ and $d^3 \in D \cap \mathbb{C}^*$ has order 3^r or $2 \cdot 3^r$. Thus D contains μ_3^r and it follows that $D = H_r$. Thus we found:

There are two minimal groups for A_4 with order 24 and for every $r \geq 1$ there is one minimal group of order $3^r \cdot 24$.

Remark 3. A minimal subgroup G for $H = A_4$ yields a central extension $1 \to \mu_k \to G \to A_4 \to 1$ for some k. The corresponding element ξ of $H^2(A_4, \mu_k)$ has, by the minimality of G, the property that ξ does not lie in the image of $H^2(A_4, \mu_d)$ for a proper divisor d of k. Since the order of A_4 in 12, we only have to consider the groups $H^2(A_4, \mu_{2a^2b})$. The minimal groups that we found above correspond to all the cases $(a, b) = (1, r)$. The central extensions with $a \neq 1$ produce, apparently, groups which do not have a faithful representation of degree two.

2.4.3. $H = S_4$

Let $G \subset H_{\text{max}} = \mathbb{C}^* \cdot \xi_4^{SL_2}$ be a minimal group. Consider $G^+ \subset \mathbb{C}^* \times \xi_4^{SL_2}$, the preimage of G under the obvious map $\alpha : \mathbb{C}^* \times \xi_4^{SL_2} \to \mathbb{C}^* \cdot \xi_4^{SL_2}$. The kernel of α is $\{(1, (1, 0)), (-1, (0, -1))\}$. Since $\beta(G) = S_4$, there exists for every $a \in \xi_4^{SL_2}$
an element \((\lambda, a) \in G^+\). Let \(\mu_k := \{\lambda \in \mathbb{C}^* \mid (\lambda, 1) \in G^+\}\). Then we obtain a homomorphism \(h : S_4 \rightarrow \mathbb{C}^*/\mu_k\) given by \(h(a) = \lambda \mod \mu_k\) if \((\lambda, a) \in G^+\). This homomorphism factors as \(S_4 \rightarrow C_2 \rightarrow \mathbb{C}^*/\mu_k\), where \(C_2 = \{1, \sigma\}\) is the quotient of \(S_4\) by its commutator subgroup. If \(h\) is trivial, then \(G^+\) contains \(\{(1, a) \mid a \in S_4\}\) and by minimality \(G = S_4\). According to Theorem 3, the latter group of order 48 is minimal.

Now we suppose that \(h\) is not trivial. Write \(k = ye\) with \(e\) odd. For any \(a \in S_4\) there exists an element \((\lambda, a) \in G^+\) with \(\lambda \in \mu_{2^{r+1}}\). Now \(G^+ \cap (\mu_{2^{r+1}} \times S_4)\) is a subgroup of \(G^+\) mapping surjectively to \(S_4\). The minimality of \(G\) implies that \(\ell = 1\) and \(G^+ \subset \mu_{2^{r+1}} \times S_4\). Define \(\delta : S_4 \rightarrow C_2 \rightarrow \{1, \zeta_{2^{r+1}}\}\) by \(\delta_1(1) = 1\) and \(\delta_1(\sigma) = \zeta_{2^{r+1}}\). All the elements of \(\mu_{2^{r+1}}\) have the form \(\zeta_{2^{r+1}}^e \cdot \lambda\) with \(e \in \{0, 1\}\) and \(\lambda \in \mu_{2^{r}}\). From this it follows that \(G^+ = \{(\delta(a)\lambda, a) \mid a \in S_4, \lambda \in \mu_{2^{r}}\}\) and one concludes that \(G = H_r := \mu_{2^r} \cdot \delta(a)a \in S_4\). The group \(H_r\) has order \(2^r \cdot 48\).

We note that \(H_0\) is equal to \(S_4\) and is minimal.

Let \(r > 0\) and let \(D \subset H_r\) be a subgroup satisfying \(\beta(D) = S_4\). Let \(\tau \in S_4\) be an element with image the permutation \((1, 2) \in S_4\). Then \(D\) contains an element of the form \(d = \pm \lambda \delta(\tau)\tau\) with \(\lambda \in \mu_{2^{r}}\). Then \(d^2 = \lambda^2 \zeta_{2^{r}} \in D \cap \mathbb{C}^*\) has order \(2^r\). Thus \(D\) contains \(\mu_{2^{r}}\) and it follows easily that \(D = H_r\). Hence every \(H_r\) is minimal and we conclude that: There is for every \(r \geq 0\) a unique minimal group of order \(2^r \cdot 48\).

2.4.4. \(H = A_5\)

Let \(G \subset GL_2(\mathbb{C})\) be a minimal for \(H\). Since \(A_5 = [A_5, A_5]\), the group \([G, G]\) also satisfies \(\beta([G, G]) = H\). By minimality \(G = [G, G]\) and thus \(G \subset SL_2(\mathbb{C})\). This implies that \(G \subset A_5^{SL_2}\). Since, by Theorem 3, the latter group is minimal, we find that \(A_5^{SL_2}\) is the only minimal group.

In summary, we obtain the following result.

Theorem 4. The list of all minimal groups, up to conjugation, for each algebraic subgroup \(H \subset PGL_2(\mathbb{C})\) (see Theorem 1 and Section 2.2) is:

1. \(H = PGL_2(\mathbb{C})\): the only minimal group is \(SL_2(\mathbb{C})\).
2. \(H\) is a subgroup of the group \(B\):
 a. \(H = \gamma(B)\): for each pair of integers \((k, l)\) with \(k + l \neq 0\) and \(\gcd(k, l) = 1\) there is a minimal one, namely \(\{(a^kb^l) \mid a^b = 1\}\).
 b. \(H = \gamma(G_m)\): for each pair of integers \((k, l)\) with \(k + l \neq 0\) and \(\gcd(k, l) = 1\) there is a minimal group, namely \(\{(a^kb^l) \mid a^b = 1\}\). Further \((k, l)\) and \((l, k)\) define conjugated groups.
 c. \(H = \gamma(G_a)\): there is only one minimal group, namely \(G_a\).
 d. \(H = \gamma(F_n^r)\): the minimal ones are the \(H(\zeta_n)\), generated by \(\zeta_n \cdot \{(a^2)^b \mid a \in \mathbb{C}\}\) and \(\{(a^2)^b \mid a \in \mathbb{C}\}\), where every prime divisor of the positive integer \(n\) divides \(k\) if \(k\) is odd and divides \(k/2\) if \(k\) is even.
(e) \(H = \gamma (F_2^3) \): the minimal ones are the groups generated by \(\xi_n \cdot (\xi_0^3 0 1) \), where every prime divisor of the positive integer \(n \) divides \(l \) if \(l \) is odd and divides \(l/2 \) if \(l \) is even.

(3) \(H = \gamma (D_{\infty}) \): the minimal groups are \(H_n \) with \(n \geq 0 \), where \(H_n \) is generated by \(\{ (a b) \mid ab = 1 \} \) and \(\xi_{2n+1} \cdot (0 1 0) \) with \(\xi_{2n+1} \) a primitive \(2^{n+1} \)th root of unity.

(4) \(H \) finite:

 (a) \(H = D_n \):

 (i) \(n \geq 3 \) odd: For every \(k \geq 1 \), there is one minimal group
 \[
 \left(\begin{pmatrix} \xi_n & 0 \\ 0 & \xi_n^{-1} \end{pmatrix}, \xi_{2k} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right),
 \]
 with \(\xi_{2k} \) a primitive \(2^k \)th root of unity;

 (ii) \(n > 2 \) even: For \(k \geq 1 \), the minimal ones \(H_{1,k}, H_{2,k}, H_{3,k} \) have the form
 \[
 A = \lambda \begin{pmatrix} \xi_{2n} & 0 \\ 0 & \xi_{2n}^{-1} \end{pmatrix}, \quad B = \mu \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix},
 \]
 for certain roots of unity \(\lambda, \mu \) which are given in the table:

 | \(H_{1,k} \) | \(\lambda \) | \(\mu \) |
 |-------------|-------------|-------------|
 | \(\xi_{2k+1} \) | 1 | \(\xi_{2k+1} \) |
 | \(\xi_{2k+1} \) | \(\xi_{2k+1} \) | 1 |
 | \(\xi_{2k+1} \) | \(\xi_{2k+1} \) | \(\xi_{2k+1} \) |

 They all have order \(2^k \cdot 2n \). Further \(H_{1,k} \) and \(H_{2,k} \) are conjugated. For \(k = 0 \), there is only minimal group, namely the group
 \[
 \left(\begin{pmatrix} \xi_{2n} & 0 \\ 0 & \xi_{2n}^{-1} \end{pmatrix}, \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \right) = D_{n}^{SL_2} \text{ of order } 4n;
 \]

 (iii) \(n = 2 \): As in (ii), but now \(H_{1,k}, H_{2,k}, H_{3,k} \) are all conjugated.

 (b) \(H = A_4 \): there are two minimal groups of order 24. For every \(n > 0 \) there is one minimal group of order \(3^n \cdot 24 \).

 (c) \(H = S_4 \): For every \(n \geq 0 \) there is a minimal group of order \(2^n \cdot 48 \).

 (d) \(H = A_5 \): There is only minimal group, namely \(A_5^{SL_2} \).

REFERENCES

296

(Received April 2008)