The infinite jet of the analytic function \(f(q) \) is zero at \(\tau = 0 \), implying that \(f(q^\tau) = f(q) \).

The input–output behaviors of \((\Sigma)\) initialized at \(q \) and \(q^\tau \) are characterized by the noncommutative generating power series (cf. [4])

\[
\begin{align*}
g &= h|_q + \sum^n_{\nu \geq 0} A_{\nu} j^n \nu q y_1 \cdots y_n, \\
g^\tau &= h|_q^\tau + \sum^n_{\nu \geq 0} A_{\nu} j^n \nu q y_1 \cdots y_n,
\end{align*}
\]

and

\[
\begin{align*}
\text{and}
\end{align*}
\]

(provided with a Hamiltonian structure.)

In the sequel we will use the following definition of a nonlinear system with inputs and outputs introduced in [10] and elaborated in [7, 10].

We denote the space of external variables (think of inputs and outputs) by a smooth manifold \(W \) (think of \(W \) as \(U \times Y \)). The state space is given by a smooth manifold \(M \). Finally, there is a bundle \(B \) above \(M \) (with projection \(\pi : B \to M \)) and a smooth function \(f \) such that the diagram

\[
\begin{align*}
B &\rightarrow TM \times W \\
\pi &\rightarrow \pi_M \text{ commutes}
\end{align*}
\]

\[
\begin{align*}
(\pi_B \text{ is the natural projection of } TM \text{ on } M).
\end{align*}
\]

When we denote \(f : B \to TM \times W \) by \(f = (g, h) \) with \(g : B \to TM \) and \(h : B \to W \), then in local coordinates this definition comes down to

\[
\dot{q} = g(x, \tau), \quad \dot{\tau} = h(x, \tau)
\]

with \(x \) coordinates for \(M \), \(\tau \) coordinates for the fibers of \(B \) (to be seen as "dummy" input variables), and \(\omega \) coordinates for \(W \). We will denote the above system by \(\Sigma(M, W, B, f) \).

For the definition of a Hamiltonian system we will need some notions from symplectic geometry, for which we refer to [1].

If \((M, \omega) \) is a manifold with symplectic form \(\omega \), we can also construct a symplectic form on \(TM \) denoted by \(\omega \) (see [6]). Given a function \(H \) : \(M \to R \) we define the Hamiltonian vector field \(X_H \) by \(\omega(x, X_H) = -dH \). Let \(F, H : \(M \to R \) be smooth functions which induce, as above, Hamiltonian vector fields \(X_F \), \(X_H \). Then the Poisson bracket of \(F \) and \(H \) denoted by \(\{ F, H \} \) is again a smooth function given by

\[
\{ F, H \} = \omega(X_H, X_F).
\]

When we denote the vector space of functions on \(M \) by \(C(M) \) and the vector space of vector fields on \(M \) by \(\{ M \} \), then \(C(M) \) equipped with the Poisson bracket is a Lie algebra and the map \(H \to X_H \) by \(\omega(X_H, -1) = -dH \) is a Lie algebra morphism from the Lie algebra of Hamiltonian vector fields \(\{ M \} \) to \(\{ M \} \), i.e. \(\{x, y\} = \{X_x, X_y\} \) (cf. [1]).

Generally, we can multiply a number of vector fields \(X_1, \ldots, X_n \) and \(\omega(X_1, \ldots, X_n) \) is the linear subspace of \(\{ M \} \) spanned by \(X_1, \ldots, X_n \). Analogously, let \(F_1, \ldots, F_n \) be functions on \(M \); then \(\{ F_1, \ldots, F_n \} \) is the linear subspace of \(C(M) \) spanned by \(F_1, \ldots, F_n \).

II. CONTROLLABILITY AND OBSERVABILITY

In [6] the following definition for nonlinear Hamiltonian systems was proposed and elaborated.

Definition 2.1: Let \((M, \omega) \) be a symplectic manifold, denoting the state space. Let \((W, \omega^w) \) be a symplectic manifold denoting the space of external variables (inputs and outputs). A system \(\Sigma(M, W, B, f) \) is called full Hamiltonian if \(f(B) \subset TM \times W \) is a Lagrangian submanifold of the symplectic manifold \(TM \times W \). (\(\pi_1 \), resp. \(\pi_2 \), denotes the projection of \(TM \times W \) on \(TM \), resp. \(W \)).

We now want to specialize Def. 2.1 somewhat further to what we will call affine Hamiltonian systems.

Definition 2.2 (see, e.g., [5]): An affine system is given by a manifold \(M \), together with an affine distribution \(\Delta \) on \(M \) (i.e., \(\Delta(x) \) is in every \(x \in M \) an affine subspace of \(T_xM \)) and a map \(C : M \to Y \), where \(Y \) is the output manifold.
Hence, in local coordinates an affine system is represented by

\[\dot{x} = A(x) + \sum_{i=1}^{m} u_i B_i(x), \quad y_i = C_i(x) \quad j = 1, \cdots, p \]

(2.1)

with \(x \) coordinates for \(M, y = (y_1, \cdots, y_p) \) coordinates for \(Y \), and with \(A \) and \(B_i \) vector fields on \(M \) such that \(\Delta(x) = A(x) + \sum (B_1(x), \cdots, B_m(x)) \).

Definition 2.4: An affine system on a symplectic manifold \((M, \omega)\) is called *Hamiltonian* if in local coordinates it can be represented by

\[\dot{x} = A(x) + \sum_{i=1}^{m} u_i B_i(x), \quad y_i = C_i(x) \quad i = 1, \cdots, m \]

with \(A \) a locally Hamiltonian vector field, i.e., \(L_A \omega = 0 \), and with \(B_i \) Hamiltonian vector fields such that \(\omega(B_i, \cdot) = \partial C_i \), i.e., an affine Hamiltonian system as in Def. 2.4.

We now want to specialize the duality results obtained in [7] for controllability and observability of Hamiltonian systems to affine Hamiltonian systems as above.

First we define accessibility for affine systems (see [8]).

Definition 2.6: Let \(\dot{x} = A(x) + \sum_{i=1}^{m} u_i B_i(x) \) be an affine system on the state space \(M \). Define \(\Gamma_0 = \{ B_1, \cdots, B_m \} \) and \(\Gamma = A + \{ B_1, \cdots, B_m \} \) (an affine subspace of \(V(M) \)). Define further \(\Gamma_1 = [\Gamma, \Gamma_1] - \Gamma_1 \), \(k \geq 1 \) [with \(+ \) denoting the sum of two subspaces of \(V(M) \)]. Finally, let \(K := \cup_{k \geq 1} \Gamma_k \). From the Jacobi identity it follows that \(K \) is a Lie subalgebra of \(V(M) \). Then the system is called *strongly accessible* if \(K(x) = T_x M \) for every \(x \in M \), where \(K(x) \) is the linear subspace of \(T_x M \) spanned by the vector fields in \(K \).

Remark: Throughout we will assume that \(\dim (K) \) is constant.

Local weak observability is defined as follows [4].

Definition 2.7: Let

\[\dot{x} = A(x) + \sum_{i=1}^{m} u_i B_i(x), \quad y_i = C_i(x) \quad j = 1, \cdots, p. \]

(2.2)

Define \(F_2 := \{ C_1, \cdots, C_p \} \) and \(F_0 := L_B F_{2-1} + F_{2-1} \) (with \(\Gamma \) as in Def. 2.6), \(k \geq 1 \). Then the system is locally weakly observable if \(G := \cup_{i \geq 0} F_i \) satisfies \(dG(x) = T_x^* M \) for every \(x \in M \), where \(dG(x) \) is the linear subspace of \(T_x^* M \) spanned by \(dh_x \) with \(\partial h \in G \).

Remark: As above we will assume that \(\dim dG(x) \) is constant.

In the case of Hamiltonian systems the situation becomes particularly nice. Let there be given an affine Hamiltonian system as in Def. 2.4. Because \(L_A \omega = 0 \), there exists (locally) an \(H : M \to \mathbb{R} \) such that \(A = \partial H \) (see [1]). Then we can derive the following proposition.

Proposition 2.8: Define \(F := \{ H + \{ C_1, \cdots, C_p \} \} \) (an affine subspace of \(C(M) \)). Then the \(F_i \)’s defined above satisfy \(F_0 = \{ F, F_{2-1} \} + F_{2-1} \) with \(\{ \cdot, \cdot \} \) the Poisson bracket.

Proof: Elements of \(F_0 \) are sums of functions of the form

\[L_{j_1} L_{j_2} \cdots L_{j_p} C_j \]

(2.3)

with \(f_j = A \) or \(j \) for \(j = 1, \cdots, m \). The Poisson bracket is defined by the equalities

\[\{ N_1, N_2 \} = \omega(C_{N_1}, C_{N_2}) = C_{(N_1, N_2)} \]

and therefore, because \(A = \partial H \) and \(B_i = \partial C_i \), the expressions (2.3) equal

\[\{ h_1, \{ h_2, \cdots, \{ h_k, C_j \} \} \} \]

with \(h_1 = H \) or \(h_j = C_j \) for \(j = 1, \cdots, m \).

Every thing has now been set up for our final results.

Theorem 2.9: Let there be given an affine Hamiltonian system. Let \(\Gamma_1 \) and \(F_0 \) be defined as above; then they are related as follows. The map \(N \to X_n \) (defined by \(\omega(X_n, \cdot) = dN \)) is an isomorphism between \(F_1 \) (modulo \(\mathbb{R} \)) and \(\Gamma_1 \).

Proof: It is easy to see that \(\alpha \) maps constant functions to the zero vector field. Therefore, we will drop for brevity the suffix (modulo \(\mathbb{R} \)). By induction: for \(k = 0 \) it is immediately because

\[\Gamma_0 = \{ B_1, \cdots, B_m \} \quad \text{and} \quad F_0 = \{ C_1, \cdots, C_m \} \quad \text{and} \quad \omega(B_1, \cdot) = \partial C_1 \]

Suppose it is true for \(k-1 \). We will prove it for \(k \). Now \(F_k = \{ F, F_{k-1} \} + F_{k-1} \) (by the induction assumption \(F_{k-1} \) is mapped isomorphically onto \(\Gamma_{k-1} \), and hence we only have to prove that \(\{ F, F_{k-1} \} \) is mapped under \(\alpha \) onto \(\Gamma_{k-1} \)). We have

\[\{ F, F_{k-1} \} = \{ F + F_0, F_{k-1} \} = \{ F, F_{k-1} \} + \{ F_0, F_{k-1} \} \]

and

\[\Gamma_{k-1} = \{ [A + H_0, \Gamma_{k-1}] + [A, \Gamma_{k-1}] \} \]

Because the map \(\alpha \) satisfies \(\alpha (N_1, N_2) = [X_n, X_{n'}] \) (see the Introduction) and, moreover, \(A = \partial H \), \(\alpha (F_0) = F_0 \), and by the induction assumption \(\alpha (F_{k-1}) = \Gamma_{k-1} \), it easily follows that

\[\{ H, F_{k-1} \} = \{ A, \Gamma_{k-1} \} \quad \text{and} \quad \alpha (\{ F_0, F_{k-1} \}) = [\Gamma_0, \Gamma_{k-1}] \]

and therefore \(\alpha (\{ F, F_{k-1} \}) = [\Gamma, \Gamma_{k-1}] \).

Corollary 2.10: An affine Hamiltonian system is locally weakly observable if and only if it is strongly accessible.

Proof: From Theorem 2.9 it follows that \(G \) (see Def. 2.7) is mapped by \(\alpha \) isomorphically onto \(K \) (see Def. 2.6). Therefore, \(dG(x) = T_x^* M \) if \(K(x) = T_x M \).

III. MINIMALITY AND REDUCTION OF THE STATE SPACE

Let us again consider an affine Hamiltonian system (Def. 2.4):

\[\dot{x} = A(x) + \sum_{i=1}^{m} u_i B_i(x), \quad x \in M, \quad (M, \omega) \text{ symplectic manifold} \]

\[y_i = C_i(x) \quad i = 1, \cdots, m. \]

(3.1)

We define the controllability distribution \(D \) by \(D(x) := K(x) \), with \(K \) as in Def. 2.6. Further, we define the observability codistribution \(P \) by \(P(x) := dG(x) \), with \(G \) as in Def. 2.7. When we define the (jovdative) distribution \(\ker P := \{ X \in T^* M | aX = 0 \text{ for every } a \in P \} \), then the leaves of the foliation of \(M \) induced by this distribution represent the “nonobservable spaces” (in [4] the points on a same leaf are called strongly indistinguishable).

Now notice that by Theorem 2.9 we have \(\omega(D, \cdot) = P \) and, therefore, when we define the distribution \(D^\bot \) by

\[D^\bot(x) = \{ X \in T^* M | \omega(X, Y) = 0 \text{ for every } Y \in D(x) \} \]

then it is easy to see that \(\ker P = D^\bot \). This suggests that when we first restrict the system to its “controllable part,” intuitively generated by \(D \), and then factor out by the “nonobservable part,” approximately given by \(D^\bot \), the reduced state space is generated by \(D/D^\bot \ker P = D/D^\bot \) and can be given again a symplectic structure! We will now make this more precise.

Proposition 3.1: Let there be given an affine system (2.2). Suppose there exists an \(x_0 \in M \), such that \(A(x_0) \in D(x_0) \); then an integral manifold \(Q \) of \(D \) through \(x_0 \) satisfies
1) \(A(x) \in T_i Q \), for every \(x \in Q \)
2) the system restricted to \(Q \) is strongly accessible.

Proof. It is clear that \([A, D] \subseteq D\). Therefore, when \(A(x_0) \in D(x_0) \) and \(Q \) is a leaf of \(D \) through \(x_0 \), then \(A(x) \in D(x) \) for every \(x \in Q \) (otherwise \(A \) would not leave the leaves invariant). Because \(TQ = D \), the system restricted to \(Q \) is strongly accessible.

When we are in the situation of Prop. 3.1, we can speak about a "controllable part." By factoring out the "nonobservable part" of an affine Hamiltonian system, we obtain the following nice situation.

Theorem 3.2. Given an affine Hamiltonian system (3.1), suppose it is not strongly accessible, and assume there exists an \(x_0 \in M \) and a \(Q \subseteq M \) such that Prop. 3.1 is satisfied. Then there exists a manifold \(N \) and a submersion \(\pi: Q \rightarrow N \) such that \(\ker \pi_* = D \cap D^\perp \). Moreover, \(N \) has a symplectic form \(\omega \) such that \(\pi^* \omega = \omega \). Furthermore, on \(N \) there is defined an affine Hamiltonian system

\[
\dot{x} = A(x) + \sum_{i=1}^{m} u_i B_i(x), \quad x_i = C_i(x), \quad i = 1, \ldots, m \tag{3.2}
\]

which is locally weakly observable and strongly accessible and which has the same input-output properties as the original system (3.1) restricted to \(Q \).

Proof. First we will show that locally \(Q \) can be factored out as above. Because \(D \cap D^\perp \) is an involutive distribution on \(Q \), we can locally factor out \(Q \) by the leaves of this distribution and obtain a manifold \(N \) and a submersion \(\pi: Q \rightarrow N \) such that \(\ker \pi_* = D \cap D^\perp \). In fact, suppose \([A, D] \subseteq C \), \(i = 1, \ldots, m \), the vector fields \(A \) and \(B_i \) under \(\pi \) and \(\pi_* \) on \(N \), i.e.

\[
\pi_* A = \tilde{A}, \quad \pi_* B_i = \tilde{B}_i, \quad i = 1, \ldots, m.
\]

Because \(D \subseteq \ker \pi_* \), \(i = 1, \ldots, m \), there exist functions \(\tilde{C}_i \) on \(N \) such that \(\pi^* C_i = \tilde{C}_i, i = 1, \ldots, m. \) The equalities \(\omega (B_i, \tilde{A}) = 0 \) then imply

\[
\tilde{\omega} (\tilde{B}_i, \tilde{A}) = 0, \quad i = 1, \ldots, m.
\]

Furthermore, we can see that \(\omega (A, \tilde{A}) = \pi^* \omega (\tilde{A}, \tilde{A}) \) and, therefore, \(\tilde{\omega} (\tilde{A}, \tilde{A}) = 0 \) or, equivalently, \(L_{\tilde{\omega}} = 0 \). We now refer to [4, Theorem 3.9] to conclude that the locally defined new system (3.2) is locally weakly observable and strongly accessible and has the same input-output properties as the original system on \(Q \). Moreover, this last theorem also states that because (3.1) is strongly accessible on \(Q \), we can globally factor out \(D \) by \(D \cap D^\perp \), and hence the local constructions above hold globally.

Acknowledgment

I would like to thank Prof. J. C. Willems and H. Nijmeijer for useful discussions.

References

Control of a Class of Nonlinear Systems by Decentralized Control

S. RICHTER, S. LEFEBVRE, AND R. DeCARLO

Abstract—This correspondence considers the control of a system composed of several interconnected subsystems. Each subsystem is described by a canonical nonlinear state model, with the restriction that interaction between different subsystems is linear. Under very mild additional conditions a decentralized dither feedback control is constructed which will drive the system state to zero. The dither control method is shown to stabilize this system for all initial conditions.

I. Introduction

Recently, considerable interest has arisen in the stability of interconnected systems, in particular, methods of stabilization using decentralized state or output feedback. One method is by direct eigenvalue placement as in [1]-[4] and [9]. Such an approach has the advantage of being able to do more than just stabilize the system, and as seen in [9] to accomplish this with reasonable gains. The main disadvantage of eigenvalue placement is its applicability only to linear time invariant systems, or to small displacements of a nonlinear system from equilibrium. Somewhat different eigenvalue methods can be found in [5] and [6].

The literature also contains much research on variable structure or dither controllers [7]-[9]. This approach stabilizes a system through a fast switching global control which forces the original system to "behave" as a second order time invariant system which can be chosen to be stable.

The method of this correspondence is to combine the ideas of variable structure systems with the methods of eigenvalue placement in a decentralized context. This is done by constructing a decentralized dither controller which will force the original nonlinear interconnected system to behave as a second order interconnected system which has had its eigenvalues placed in the left half plane by the method of [4].

II. Model Formulation

The system to be considered is composed of \(N \) subsystems, where each subsystem is written as an \(n \)-th order state model as

\[
\begin{align*}
S_i & = A_i x_i + B_i u_i + C_i y_i \\
0 & = L_{ij} x_j, \\
A_i & = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
S_i & S_j & S_k & \cdots & S_m \\
\end{bmatrix} \\
B_i & = \begin{bmatrix} 0 \\
\vdots \\
0 \\
1 \\
\end{bmatrix}
\end{align*}
\]

where for each instant of time \(x_i \in \mathbb{R}^n, y_i \in \mathbb{R}^r, \) and \(L_{ij} = [0, L_{ij}^1, \ldots, L_{ij}^r] \in \mathbb{R}^{r \times n}.\) The zero in the first entry of \(L_{ij} \) is a technical condition needed so that each surface as defined in (4) below can be expressed as a linear combination of system state variables. Moreover, feasible computation of the local dither controller also necessitates the condition. This is always possible to do via dynamic compensation—i.e., an extension of each subsystem state space by one. A composite state model will take the form

Manuscript received April 1, 1981; revised September 3, 1981. This work was supported by the U.S. Department of Energy under Contract DE-AC01-76ET29965. The authors are with the School of Electrical Engineering, Purdue University, West Lafayette, IN 47907.