Modeling Affective State using Learning Vector Quantization

de Vries, Jan

IMPORTANT NOTE: You are advised to consult the publisher’s version (publisher’s PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):


de Vries, G.-J., Lemmens, P. and Brokken, D.: 2009, Same or different? recollection of or empathizing with an emotional event from the perspective of appraisal models, 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops (ACII 2009), pp. 1–6.


James, W.: 1884, What is an emotion?, Mind 9(34), 188–205.


support vector machine for facial expression recognition, *Integrated Computer-
Aided Engineering* 16(1), 61–74.

Lisetti, C. L. and Nasoz, F.: 2004, Using noninvasive wearable computers to recog-
niza human emotions from physiological signals, *Journal of Applied Signal Pro-
cessing* 11, 1672–1687.

Lisetti, C. L. and Nasoz, F.: 2005, Affective intelligent car interfaces with emotion
recognition, *Proceedings of the 11th International Conference on Human Computer
Interaction*, Las Vegas, USA, p. 41.

of facial expression extracted automatically from video, *Image and Vision Com-
puting* 24(6), 615–625.

Liu, N., Dellantréa, E., Chen, L., Zhu, C., Zhang, Y., Bichot, C.-E., Bres, S. and Tellez,
B.: 2013, Multimodal recognition of visual concepts using histograms of textual
concepts and selective weighted late fusion scheme, *Computer Vision and Image

Logan, G. and Cowan, W.: 1984, On the ability to inhibit thought and action: A

Lövheim, H.: 2012, A new three-dimensional model for emotions and monoamine

method with gabor features, *The Sixth World Congress on Intelligent Control and

Machajdik, J. and Hanbury, A.: 2010, Affective image classification using features
inspired by psychology and art theory, *Proceedings of the international conference

Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J.
and Schwartz, P. J.: 1996, Heart rate variability standards of measurement,
physiological interpretation, and clinical use, *European Heart Journal* 17(3), 354–381.

Marsella, S., Gratch, J. and Petta, P.: 2010, Computational models of emotion, in K. R.
Scherer, T. Bänziger and E. B. Roesch (eds), *Blueprint for affective computing: A
sourcebook*, Series in Affective Science, Oxford University Press.


van den Broek, E. L., van der Sluis, F. and Dijkstra, T.: 2011, Telling the story and re-living the past: How speech analysis can reveal emotions in post-traumatic stress disorder (ptsd) patients, in J. H. D. M. Westerink, M. Krans and


using psychophysiological signals for improvement of human-computer inter-

Zhang, L. and Tjondronegoro, D.: 2009, Selecting, optimizing and fusing ‘salient’
gabor features for facial expression recognition, in D. Hutchison, T. Kanade,
J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,
C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi,
G. Weikum, C. S. Leung, M. Lee and J. H. Chan (eds), Neural Information Pro-

Zhang, L. and Tjondronegoro, D.: 2010, Improving the performance of facial expres-
sion recognition using dynamic, subtle and regional features, in D. Hutchison,
T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nier-
strasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y.
Vardi, G. Weikum, C. S. Leung, M. Lee and J. H. Chan (eds), Neural Information Pro-
cessing. Models and Applications, Vol. 6444, Springer Berlin Heidelberg,

Zhao, X. and Zhang, S.: 2011, Facial expression recognition based on local binary
patterns and kernel discriminant isomap, Sensors (Basel, Switzerland)
11(10), 9573–9588.

Zhao, X. and Zhang, S.: 2012, Facial expression recognition using local binary pat-
terns and discriminant kernel locally linear embedding, EURASIP Journal on
Advances in Signal Processing 2012(1), 20.

Zhi, R., Flierl, M., Ruan, Q. and Kleijn, W. B.: 2011, Graph-preserving sparse non-
negative matrix factorization with application to facial expression recognition,
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 41(1), 38–
52.

Zhi, R. and Ruan, Q.: 2008, A comparative study on region-based moments for facial
expression recognition, Congress on Image and Signal Processing, 2008. CISP ’08,

Zhi, R., Ruan, Q. and Miao, Z.: 2008, Fuzzy discriminant projections for facial expres-
sion recognition, 19th International Conference on Pattern Recognition, 2008.

for facial expression recognition via combining the curvelet and LDP, in J. Kac-
przyk and R. Lee (eds), Computer and Information Science 2011, Vol. 364, Springer