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Chapter II

�is chapter is based on a manuscript submitted to the Journal of Open Research So/ware:
W.�ielicke and E.J. Stamhuis
PIVlab � Towards user-friendly, a�ordable and accurate digital particle image velocimetry
in MATLAB
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Digital particle image velocimetry

RATIONALE

Digital Particle Image Velocimetry (DPIV) is a common technique for non-intrusive,
quantitative and qualitative ’ow visualization that will be introduced in short in this
chapter. �e chapter is intended to:

a provide a description of the material and methods used in this thesis
b give an evaluation of the accuracy of these methods
c supply background information for future studies and identify limitations

Description of the material and methods used in this study

One of the most important methods in this thesis is DPIV. At the beginning of the studies
summarized in this thesis, an adequate DPIV tool capable of automatic analysis of huge
amounts of data was not available in the lab. For the compilation of time-resolved, three-
dimensional datasets, automatic analyses are essential. A high degree of automation
can be achieved by tailoring a custom DPIV tool according to the speci�c needs of
the project. Existing DPIV tools are mostly �black boxes�, which make it di+cult to
understand the details of the analysis, to judge the quality of the results and to automate
the analyses. Developing a custom tool enables the automation of analyses, as well as the
understanding of the principles and the challenges of DPIV in detail. Working �behind
the scenes� does also allow tweaking the experimental setup and the analysis methods for
an optimal result. Literature was scanned, and the most promising and suitable principles
were incorporated in the DPIV tool PIVlab� which was developed during the research
presented in this thesis. �e descriptions of the methods in the succeeding research
chapters are kept as short as possible, following the conventional form. However, PIVlab

was developed virtually from scratch, and the choice of adequate methods is crucial for
getting reliable and repeatable results.

Evaluation of the accuracy of these methods

A number of research articles deals with the implementation and optimization of the
DPIV technique (e. g. Keane 2 Adrian, ����; Adrian, ����; Willert 2 Gharib, ����; Buch-
have, ���	; Stamhuis 2 Videler, ����; Willert, ����; Grant, ����; Ra&el et al., 	���). �e
amount of literature dealing with this subject implies that already small di&erences in the
methods may alter the results. DPIV is sensitive to computational details such as image

� available at http:11PIVlab.blogspot.com
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Chapter II

pre-conditioning, di&erent concepts of image correlation, subpixel peak estimators or
data interpolation. �erefore, previous results about DPIV accuracy do not necessarily
apply to the DPIV tool presented in this thesis. �is chapter contains a section on the ac-
curacy of PIVlab that analyses the in’uence of a selection of parameters. �ese accuracy
tests are essential to con�rm the quality of the measurements and results.

Background information for future studies and identi�cation of limitations

�e DPIV tool developed for this project is open source, a rapidly increasing number of
studies uses PIVlab for analysing particle or pattern movements�. All studies that use
PIVlab � including the thesis presented here � need an in-depth analysis of the underlying
principles and an evaluation of the measurement accuracy. Factors that potentially limit
the applicability also need to be determined. �e latter is especially important, as PIVlab

is o/en used for analyses of particle movements in a very di&erent context than it was
originally intended for (e. g. ’ow visualizations within animal cells, deformation of sand
and gravel). �is chapter may therefore serve as a reference for all studies conducted
with PIVlab.

�e order of content of this chapter follows the sequence of a typical DPIV experiment:
First, the physical setup is illustrated, followed by an illustration of the analysis of DPIV
image data. Finally the accuracy of DPIV measurements is evaluated, and further post-
processing techniques are presented and evaluated.

	 e. g. Leong et al. (	���); Booth-Gauthier et al. (	��	); Jiang 2 Towhata (	��	); Piro et al. (	��	); Roy
et al. (	��	); Ryerson 2 Schwenk (	��	); Sanchez et al. (	��	); Todaro et al. (	��	); Cambau et al.
(	���); Chen et al. (	���); Datta et al. (	���); Eriksson et al. (	���); Miller et al. (	���); Panciroli 2
Por�ri (	���); Senatore et al. (	���); Simmons et al. (	���); Sun 2 Hsiao (	���); Taddeucci et al.
(	���); Wang et al. (	���); Zhou et al. (	���); Bloch et al. (	��
); Catarino et al. (	��
); Di Domenica
et al. (	��
); Hartmann et al. (	��
); Heller et al. (	��
); Jalalisendi et al. (	��
); Maxwell et al.
(	��
); Melnikov et al. (	��
); Schlüßler et al. (	��
); Shi et al. (	��
); e Silva et al. (	��
); Sipos
et al. (	��
); Trojanowski et al. (	��
); Wu et al. (	��
); Cabrera et al. (	���)
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Digital particle image velocimetry

IMAGE ACQUISITION

In DPIV, the ’ow is visualized by illuminating a thin sheet of ’uid containing re’ective
and neutrally buoyant tracer particles. A digital image sensor is positioned parallel to the
illuminated sheet, capturing the movement of the particles (see Figure 	.�). In most DPIV
analyses, two images (A and B) of the illuminated plane are captured at t� and t� + �t.
Velocities in the sheet can hence be derived from �t and the distance that the particles
travelled from image A to B (particle displacement). In DPIV, the particle displacement
is calculated for groups of particles by evaluating the cross-correlation of many small
sub images (interrogation areas). �e correlation yields the most probable displacement
for a group of particles travelling on a straight line between image A and image B (Ra&el
et al., 	���).

����
���"

Fluids are in most cases homogeneous, and therefore velocities are hard to measure
directly via optical means. DPIV hence relies on small re’ective particles that are added
to the ’uid. �ese particles have to be of similar density as the ’uid, in order to have
the same inertia and buoyancy as the ’uid under test. When doing measurements in
water, �nding suitable particles is o/en not problematic, whereas measurements in air
require more attention because of the low density of this ’uid (Stamhuis, 	���; Ra&el
et al., 	���). In a continuously accelerating element of ’uid, the velocity lag Us between

Laser

Particle pattern

Camera

Fig. 2.1: Principle of DPIV: A laser sheet illuminates the particles contained in the
fluid. A high-speed camera records the displacement of the particle pattern.
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Chapter II

particle velocity Up and ’uid velocity U can, according to Stokes drag law, be expressed
as (Ra&el et al., 	���):

Us = Up � U = d�
p
�p � �

��µ
a (	.�)

where dp = particle diameter; �p = particle density; � = ’uid density; µ = ’uid dynamic
viscosity; a = acceleration

Minimizing the di&erence between ’uid and particle velocity can therefore be achieved
by reducing particle size, reducing the di&erence in density, increasing dynamic viscosity
of the ’uid or minimizing acceleration. �e latter two factors can hardly be in’uenced
without substantially changing the experimental conditions. Matching particle and ’uid
density is number one choice in liquids but o/en not possible for gaseous ’uids (Ra&el
et al., 	���). Minimizing particle size is the most convenient solution, but decreases the
amount of re’ected light and therefore the signal to noise ratio of the captured images
(Melling, ����). Finding a suitable particle size is hence a tradeo& between a number
of demands. �e measurements in this thesis are conducted in water at 	�� C using
polyamide particles with a diameter of about �� µm and a density of ��
� kg1m�, which
is very close to the density of water, hence Us is expected to be negligible.


����
���
�� ��� ������

Lasers are typically preferred for illumination in DPIV studies (Adrian, ����). Most lasers
deliver very high power, parallel light, which can easily be transformed to a thin sheet
using one or more cylindrical lenses (Stamhuis, 	���). A wide variety of laser types that
use di&erent laser materials and energy pump sources is available on the market. Due
to a very compact size and the high e+ciency, diode pumped solid state lasers (DPSS)
got more and more attention in the DPIV community (Ra&el et al., 	���). Today�s most
important DPSS lasers are Neodym-Yttrium-Aluminium-Garnet (Nd:YAG) lasers. A/er
frequency doubling, the beam that �nally leaves the laser head has a wavelength of ��	 nm.
DPSS lasers can be operated in pulsed mode or in constant wave (CW) mode. Pulsed
lasers achieve very high power peaks during very short pulses and make it possible to
reduce the e&ective exposure time of the camera. Usually, CW lasers require a longer
exposure to meet the light intensity requirements, which can lead to excessive motion
blur. �is can become problematic for the quality of the cross-correlation (Nobach 2
Honkanen, 	���). �e advantage of using CW lasers is a less complicated setup, as
there is no need to synchronize the high-speed camera with the laser pulses. �e DPIV
experiments in this thesis are conducted using a �W CW Nd:YAG DPSS laser (Snoc
electronics co., LTD, Guangdong, China) emitting light with a wavelength of ��	 nm.
�e laser sheet is conditioned using two spherical lenses for adjusting the beam diameter,
and a cylindrical lens to generate the sheet.

In high speed 1 time-resolved DPIV systems, cameras with CMOS imaging sensors
became state of the art, due to the exceptional read-out rate of these sensors (Tian, 	���).
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Digital particle image velocimetry

Silicon imaging devices can usually detect wavelengths between �
� � ���� nm (Gilblom
2 Yoo, 	��
), the highest quantum e+ciency for the camera used in this thesis (A��
k,
Basler AG, Ahrensburg, Germany) is between ��� and ��� nm (Micron Technology,
	��
). Using a Nd:YAG DPSS laser for DPIV therefore guarantees a close to optimal
light detection.
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Chapter II

IMAGE PRE-PROCESSING

In DPIV, it is generally desirable to reduce the amount of erroneous velocity estimates
to ensure the highest measurement quality possible. One common approach is the
enhancement of images before the actual image correlation takes place (Ra&el et al., 	���;
Shavit et al., 	���). �is chapter presents a selected number of promising pre-processing
techniques that are implemented in PIVlab (see Figure 	.	 for examples).

�
"������ �3���
4��
��

Contrast limited adaptive histogram equalization (CLAHE) was introduced by Pizer et al.
(����) for increasing the readability of image data in medical imaging. In the general
histogram equalization, the most frequent intensities of the image histogram are spread
out to the full range of the data (from � to 	�� in �-bit images). �e advantage of CLAHE
is that it does not operate on the histogram of the full image, but on small regions (tiles)
of the image. �is is important, because in DPIV, a uniform exposure of the whole
image can o/en not be guaranteed (Westerweel, ����), due to the Gaussian intensity
distribution of the laser beam. In CLAHE, the contrast of every tile is optimized by
histogram equalization, so that the resulting distribution matches a ’at shaped histogram
ranging from � to 	��. Regions with low exposure and regions with high exposure are
therefore optimized independently. A/er the histogram equalization, all neighbouring
tiles are combined using a bilinear interpolation, resulting in an image without visible
boundaries between the tiles. CLAHE signi�cantly improves the probability of detecting
valid vectors in experimental images by 
.� – �.	*. �is improvement can be observed
for a wide range of DPIV tools and correlation algorithms (Shavit et al., 	���).


����"
�� �
����""

Inhomogeneous lighting, e. g. caused by re’ections from objects or inhomogeneous seed-
ing, strongly a&ects the correlation signal (Ra&el et al., 	���). �is kind of low frequency
background information can be removed by applying a high-pass �lter which mostly
conserves the high frequency information from the particle illumination (Gonzalez 2
Wintz, ����). Such a high-pass is calculated by applying a low-pass �lter to the image
(blurring the image), and subtracting the result from the original image. �e high-pass
�lter emphasizes the particle information in the image, and suppresses any low frequency
information in the images (including all low frequency displacement information).

�	



Digital particle image velocimetry

High-passOriginal CLAHE Intensity capping

Fig. 2.2: The effect of several pre-processing techniques, see text for a description.


����"
�� ����
��

DPIV analyses the displacement of groups of tracer particles contained in one interro-
gation window statistically. �e method assumes that all particles within the window
have the same motion. �is will not be the case in reality, as perfectly uniform ’ow does
hardly exist. Bright particles or bright spots within the area will contribute statistically
more to the correlation signal, which may bias the result in non-uniform ’ows (Shavit
et al., 	���). �e intensity capping �lter proposed by Shavit et al. (	���) circumvents
this problem. An upper limit of the greyscale intensity is selected, and all pixels that
exceed the threshold are replaced by this upper limit. �erefore, unlike CLAHE, only
a small amount of the pixel intensity information is adjusted, limiting the potential
negative impact of image modi�cations (Shavit et al., 	���). Intensity capping improves
the probability of detecting valid vectors in experimental images by �.	 – 	.�*, and is
supposed to outperform CLAHE under certain experimental circumstances (Shavit et al.,
	���). Combining the intensity capping �lter with the CLAHE �lter does additionally
increase the probability of valid vector detection in PIVlab. For both the CLAHE and
the intensity capping technique (used separately or in combination), no signi�cant e&ect
on the trueness and precision of DPIV measurements could be determined.

��
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IMAGE EVALUATION

�e most sensitive part of a DPIV analysis is the cross-correlation. �is part also signi�-
cantly impacts the accuracy of DPIV. Small sub images (interrogation areas) of an image
pair are cross-correlated to derive the most probable particle displacement in the interro-
gation areas. In essence, the cross-correlation is a statistical pattern matching technique
that tries to �nd the particle pattern from interrogation area A back in interrogation area
B. �is statistical technique is implemented with the discrete cross-correlation function
(Huang et al., ����):

C(m,n) =
�

i

�

j

A(i, j)B(i � m, j � n) (	.	)

where A and B are corresponding interrogation areas from image A and image B.
�e discrete cross-correlation function hence measures the agreement of interrogation

area A and interrogation area B for a given shi/ (Ra&el et al., 	���). �e location of the
intensity peak in the resulting correlation matrix C gives the most probable displacement
of the particles from A to B (Huang et al., ����).

�ere are two common approaches to solve equation 	.	. �e most straightforward
approach is to compute the correlation matrix in the spatial domain (see Figure 	.�
for a graphical representation of this correlation). �is approach is either called direct
cross-correlation (DCC, e. g. Okamoto et al., 	���), particle image pattern matching
(PIPM, e. g. Huang et al., ����), or convolution �ltering (e. g. Stamhuis, 	���).

Another approach is to compute the correlation matrix in the frequency domain
(discrete Fourier transform, DFT). �e DFT is calculated using a fast Fourier transform
(FFT, e. g. Soria, ����). Both approaches have advantages as well as some drawbacks;
these will be presented in short in the next sections. More details on the mathematical
background of cross-correlation can be found in e. g. Keane 2 Adrian (���	) and Ra&el
et al. (	���).

�
���� ���""-��������
�� (���)

�e direct cross-correlation computes the correlation matrix in the spatial domain. In
DCC, the interrogation areas A and B can have two di&erent sizes (Stamhuis, 	���).
When B is chosen twice as large as A, a particle displacement of up to half the size of
A will not result in any loss of information and provide a reliable correlation matrix
with low background noise (see Figure 	.�, top middle and Figure 	.
, top). DCC has
been shown to create more accurate results than a standard DFT approach. Both the

�
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Correlation matrix

Shift x = -4, y = 4 Shift x = -2, y = 2

Shift x = -1, y = -1 Shift x = 1, y = -2

Shift x = 0, y = 0

Fig. 2.3: Calculation of the correlation matrix using DCC as it is performed in
MATLAB. Interrogation area A (size 4•4 pixels) is correlated with interrogation area
B (size 8•8 pixels) and yields the correlation matrix (size 9•9 pixels). Adapted from
Raffel et al. (2007).

systematic error and the random error of the calculation decrease substantially using
DCC (Huang et al., ����, also see the results on accuracy in the following sections). �e
disadvantage of DCC is the increased computational cost with respect to a standard DFT
approach, especially with large interrogation areas (Soria, ����; Huang et al., ����; Ra&el
et al., 	���, see Figure 	.�A). However, recent advances in computer technology make it
possible to conduct the calculations in parallel on Graphics Processing Units (GPUs),
which dramatically increases the speed of the calculations (e. g. Tarashima et al., 	���),
and potentially makes the DCC approach a fast and very suitable choice.

�
"����� ����
�� ����"���� (���) ��� ��!����� ��� �����
3��"

�e potential drawback of DCC - the computational cost - can be resolved by calculating
the correlation matrix in the frequency domain (Ra&el et al., 	���) using FFT (see Figure
	.�A). �is approach uses interrogation areas of identical size; therefore every particle
displacement induces some loss of information, which can be noticed by the increasing
amount of background noise in the correlation matrix (see Figure 	.
, bottom). �is

��
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DFT

DCC

0 px
Displacement:

10 px 20 px 30 px 40 px

Fig. 2.4: Correlation matrices of the DCC (top) and the DFT approach (bottom),
interrogation area A is 64•64 pixels for both DCC and DFT. Area B is 128•128 pixels in
DCC and 64•64 pixels in DFT. In DCC, the background noise does not increase up to
a displacement of 32 pixels. In DFT, background noise immediately increases if the
displacement is larger than 0 pixels. A displacement of more than 32 pixels will flip
the correlation peak to the opposite side of the correlation matrix, and thus makes
correct measurements impossible.

background noise complicates the detection of the intensity peak and decreases accuracy.
Another problem is the fact that FFT by de�nition assumes that the input datasets
(interrogation areas) are periodic, hence that they repeat themselves in all directions
(Ra&el et al., 	���). As soon as the displacement of the particles is larger than half the
size of interrogation area, the intensity peak in the correlation matrix is folded back
into the matrix and will appear on the opposite side of the matrix (Ra&el et al., 	���,
see Figure 	.
, bottom right). �erefore, the displacement of the particles obligatory
has to be smaller than half the size of the interrogation area. It is advised to reduce the
displacement further more to about one quarter of the interrogation area, in order to
keep the background noise in the correlation matrix low (Keane 2 Adrian, ����). �is
can be achieved either by increasing the size of the interrogation windows, by decreasing
�t or by reducing the image magni�cation of the camera. �is disadvantage can be o&set
by implementing �repair routines� (Stamhuis, 	���), e. g. by running several passes of
the DFT on the same dataset. Westerweel et al. (����) have shown that the use of several
DFT passes signi�cantly increases the signal to noise ratio. In their modi�cation of the
standard DFT, the integer result of the �rst analysis pass is used to o&set the interrogation
area in the following passes. �e loss of information due to particle displacement is hence
minimized. Scarano 2 Riethmuller (����) further enhanced this approach and proposed
to re�ne the interrogation grid with every pass: �e �rst pass uses large interrogation
areas and can therefore accept large particle displacements. In the following passes, the
area is reduced and displaced at the same time. �is yields a high spatial resolution in
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Fig. 2.5: A: Calculation speed of DCC in comparison with DFT (both calculations
performed in Matlab). For the FFT calculations, FFTW is used (�Fastest Fourier
Transform in the West�, Frigo & Johnson, 2005) which accepts inputs of arbitrary
size, but is slow for sizes that are prime or which have large prime factors (note
the peaks in the graph). Generally, the DFT approach is much faster. B: Principle
of the window deformation technique. Left: After the first interrogation pass,
displacement information is present at nine positions inside the interrogation area.
This information is interpolated to derive the displacement of every pixel of the
interrogation area. Subsequently, interrogation area B is deformed, followed by
several additional interrogation passes.

the �nal vector map, together with a high dynamic velocity range and it increases the
signal to noise ratio.

So far, it was assumed that the particles within the interrogation area have a uniform
motion. �is is hardly the case in real ’ows; the particle patterns will additionally be
sheared and rotated. Non uniform particle motion within the interrogation area will
broaden the intensity peak in the correlation matrix and deteriorate the result. Sev-
eral methods that account for the transformation of the interrogation areas have been
proposed (e. g. Huang et al., ����b; Jambunathan et al., ����; Scarano 2 Riethmuller,
	���). �ese methods can be termed �multiple pass, grid re�nement, window defor-
mation technique�, and in PIVlab the following procedure is implemented: �e analysis
is started with a regular DFT analysis. �e �rst pass yields displacement information
at the centre of each interrogation area. When the areas overlap one another by e. g.
��*, there is additional displacement information at the borders and corners of each
interrogation area (nine positions in total, see Figure 	.�B, le/). �is information is used
to calculate displacement information at every pixel of the interrogation areas via bilinear
interpolation. Next, interrogation area B is deformed according to this displacement
information (see Figure 	.�B, right) using either bilinear interpolation (faster) or spline
interpolation (higher precision, but slower). �e next interrogation pass correlates the
original interrogation area A with the deformed area B. �e remaining displacement
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information of each pass is accumulated. A/er a few passes, the deformed interrogation
area B will look almost identical to the original area A, and the displacement has been
determined with high accuracy. Between the passes, but not a/er the �nal pass, the
velocity information is smoothed and validated and missing information is interpolated.
Data validation can be relatively strict, as any deteriorating e&ect of interpolation and
smoothing will be corrected in the correlation of the following pass.

���# �
��
��

�e choice of the peak �nding technique is - similar to the choice of the cross-correlation
technique - another important factor for the accuracy of DPIV. �e integer displacement
of two interrogation areas can be determined straightforward from the location of the
intensity peak of the correlation matrix. �e location can be re�ned with subpixel
precision using a range of methods (e. g. Lourenco 2 Krothapalli, ����; Roesgen, 	���;
Ra&el et al., 	���). Several of the existing subpixel estimation techniques were tested in
PIVlab, the two most promising methods in terms of accuracy, speed and universality
were implemented. When the integer peak location in the correlation matrix is known, a
Gaussian function can be �tted to the intensity distribution (see Figure 	.�). It is su+cient
to use only the directly adjacent vertical and horizontal pixels (two times a �-point �t
= 	 • �-point �t) and to evaluate the x and y axis separately. A Gaussian function is
an appropriate candidate for the �t, as the individual particle images closely match a
Gaussian intensity distribution, and the cross-correlation of two Gaussian distributions
again yield a correlation matrix with a Gaussian distribution (Lourenco 2 Krothapalli,
����). �e peak of the �tted function is used to determine the particle displacement
with subpixel precision. �is kind of subpixel estimator works very well in practice (e. g.
Forliti et al., 	���) and is the standard in DPIV processing (Nobach 2 Honkanen, 	���).
If the particle displacement within an interrogation area is exposed to shear or rotation
or if the images su&er from excessive motion blur, the displacement peak may have an
elliptical shape (Ra&el et al., 	���). In this case, the Gaussian 	 • �-point subpixel function
can cause bias error. �is can be avoided by �tting a two-dimensional Gaussian function
(�-point �t) as proposed by Nobach 2 Honkanen (	���). However, the application
of the window deformation technique introduced earlier in this chapter reduces shear
and rotation within the interrogation area. �erefore, the added value of using a two-
dimensional Gaussian function is more pronounced in non-deforming methods, such as
DCC and single pass DFT. In PIVlab, both the 	 • �-point and the �-point Gaussian �t
are implemented.

��



Digital particle image velocimetry

Co
rr

el
at

io
n 

m
at

rix
 in

te
ns

ity

Position [px]
0 1 2 3 4 5 6

integer peak location sub-pixel peak location

Fig. 2.6: Principle of the Gaussian 2•3-point fit: Subpixel precision is achieved
by fitting a one-dimensional Gaussian function (solid line) to the integer intensity
distribution of the correlation matrix (dots) for both axes independently (only one
axis is shown here).
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EVALUATION OF THE ACCURACY

�e quality of a measurement is determined by the magnitude of error included in the
measurement. In DPIV, two main sources of error exist: �e bias error (�bias) and the
random error (�rms) both contribute to the total error of a measurement (Ra&el et al.,
	���). �e bias error determines the trueness of displacement estimates. Trueness is
de�ned as the agreement between the mean result of a large series of measurements and
the true displacement (Menditto et al., 	���). �e random error determines the precision
of the displacement estimate. Precision is a measure for the spread of displacement
estimates (Menditto et al., 	���). It may well be that a measurement is very precise,
but the mean value of the measurements is not correct because trueness is low (see
Figure 	.�, top right). Together, trueness and precision determine the accuracy of a
DPIV system. For the determination of the bias and the random error, large numbers of
measurements (Monte Carlo simulation) have to be performed for getting statistically
relevant results. Additionally, the precise di&erence between displacement estimates
and the true displacement has to be known. �e most convenient way to satisfy these
requirements is to use synthetic particle images. �e synthetic images were generated
in PIVlab under known conditions following Ra&el et al. (	���): �e particles have a
Gaussian intensity pro�le with known diameter. A known amount of particles is placed
at random positions within the simulated laser sheet having a Gaussian intensity pro�le.
Simulation parameters may be varied to study their e&ect on accuracy. �e bias error is
calculated following:

�bias =
�
n

n�

i=�

dmeas,i � d (	.�)

where dmeas is the displacement measured by a speci�c DPIV algorithm, d is the true
displacement given by the particle image generator.

�e random error is determined as:

�rms =

���� �
n

n�

i=�

(dmeas � dmeas,i)� (	.
)

where dmeas is the mean measured displacement (see Figure 	.� for an example). Here,
the accuracy of a selection of DPIV algorithms with respect to several experimental
situations is presented (see Table 	.�). All simulations were performed with a sample size
of n � �.� • ���.
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Fig. 2.7: Definition of trueness, precision and accuracy for DPIV systems.

Bias error is caused by the peak-locking e&ect which exists in most cross-correlation
algorithms. �e error is mostly produced by �tting a smooth curve through the integer
intensity distribution of the correlation matrix during peak �nding (Chen 2 Katz, 	���).
�e bias error is a function of the displacement; the magnitude depends mainly on the
correlation algorithm, the subpixel estimation technique and on the particle diameter.
�e calculated subpixel displacement is biased towards integer values and the e&ect
becomes worse for small particle image diameters. Particle image diameters below �
pixels result in a very narrow intensity peak in the correlation matrix, which can not
su+ciently be approximated by a Gaussian �t. �is can clearly be observed in Figure 	.�:
Here, all of the DPIV algorithms tested have a signi�cant lack of accuracy because all rely
on the same 	 • �-point subpixel estimator that is not suitable for very small particle image
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d

d
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Fig. 2.8: Calculation of the bias error �bias and the random error �rms from the true
displacements d and the measured displacements dmeas in a 	 • 	 grid (� n = 
).
This example also shows how the graphs that result from the accuracy tests can be
read.

diameters. �e error decreases substantially for particle image diameters of � pixels (see
Figure 	.��) and for � pixels (see Figure 	.��). �e basic DFT algorithm has the poorest
performance.
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Fig. 2.9: Bias error and random error for particle images with a diameter of 1 pixel.

����
��� �
������

�e DPIV experiments presented in this thesis use particles with a diameter of �� µm.
�ese particles appear in the �nal images with a mean diameter of �.� – �.� pixels
(n = �.� • ���). �e particle size in DPIV experiments generally varies (Huang et al.,
����), and in’uences the accuracy of the analyses. Guezennec 2 Kiritsis (����) found
that the accuracy decreases with particle size for particles with an image diameter larger
than 	 pixels. More detailed studies identi�ed the existence of an optimal particle image
diameter of about �.� pixels (Ra&el et al., 	���). �e in’uence of the particle image
diameter on the accuracy of the analysis depends on the DPIV algorithm used; therefore
the e&ect of particle image diameter has to be studied in PIVlab. �e results (see Figure
	.�	B) show that the random error has a local minimum at a diameter of about �.� to 	
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Fig. 2.10: Bias error and random error for particle images with a diameter of 3 pixels.
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Fig. 2.11: Bias error and random error for particle images with a diameter of 5 pixels.

RM
S 

er
ro

r [
pi

xe
l]

 

 

10-1

100

1 2 3 4 5
Particle image diameter [pixel]

Particle diameter 0.75 px Particle diameter 5.85 px

BA
DCC 1 DFT 1 DFT multi lin DFT multi spl

Fig. 2.12: A: Example of the particle image diameters tested. B: The effect of particle
image diameter on the random error (particle displacement = 3.5 pixels).

pixels for basic DCC and DFT (see Figure 	.�	A for an example of the range of diameters
tested). �e minimum random error is shi/ed towards slightly larger particle image
diameters for window deformation techniques (see Figure 	.�	B). Here, the window
deformation algorithms also have a signi�cantly smaller random error than the basic
DCC and DFT approach (note the logarithmic scaling of the y-axis). �e particle image
diameter used in this thesis (note the dashed line in Figure 	.�	B) is con�rmed to be in the
optimal range of the window deformation algorithms for highly accurate measurements.

����
��� ���"
��

�e density of particles within an interrogation area is important for the quality of an
analysis. Keane 2 Adrian (���	) report that a valid vector detection probability of more
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Fig. 2.13: Example of the particle densities tested. The yellow grid represents the
interrogation areas of 16•16 pixels.
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Fig. 2.14: The effect of particle density on the rate of unsuccessful correlations and
on the random error (particle image diameter = 3 pixels, displacement = 3.5 pixels).

than ��* can be achieved, if the particle density is larger than � particles per interrogation
area. Furthermore, the random error is reported to decrease substantially with increasing
particle density (Huang et al., ����). �e results that are reported in the current chapter
indicate that this is not always the case (see Figure 	.�� for an example of the densities
tested). Particle densities below � particles per interrogation area decrease the amount of
successful correlations (de�ned as a correlation with a clear peak and with a displacement
estimate that deviates less than � pixel from the true displacement), and increase the
random error (see Figure 	.�
). All DPIV algorithms can accept up to about 	� particles
per interrogation area before the amount of unsuccessful correlations increases. �e
maximum amount of unsuccessful correlations within the range of particle densities
tested is however very small (� �*). �e mean particle density in the DPIV experiments
presented in this thesis is �.�� – �.
� particles per interrogation area (n = �.
 • ���). �e
selected particle density is within the optimal range (note the grey line in Figure 	.�
).
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Gaussian white noise variance = 0 Gaussian white noise variance = 0.1

Fig. 2.15: Example of the noise levels tested.

"��"�� ��
"�

It is known that image noise in’uences DPIV analyses (e. g. Guezennec 2 Kiritsis, ����;
Huang et al., ����; Ra&el et al., 	���). �e noise in DPIV images is caused during the
conversion of photons into electric current within the image sensor. Under challenging
lighting conditions, CMOS image sensors su&er from temporal noise. �is is caused by
the thermal noise of the highly integrated circuitry in the image sensor (Tian, 	���).
For the analysis of the e&ect of noise on the rate of successful correlations and on the
random error, the noise is approximated by simulating Gaussian white noise (see Figure
	.�� for an example of the range of noise tested). Window deformation and the basic
DCC algorithms can deal with large amounts of noise before correlations fail (see Figure
	.��). �e basic DFT algorithm fails earlier and also shows a higher random error than
the window deformation algorithms. �e amount of image sensor noise in the DPIV
experiments presented in this thesis can hardly be quanti�ed; visual inspection of the
images implies a noise level with a variance somewhere below �.��, which will hardly
degrade the analyses.

����
��� ��
� ��""

�is thesis includes measurements of the aerodynamics of ’apping wings that typically
generate highly three-dimensional ’ows (e. g. David et al., 	��	). Velocity components
normal to the laser sheet induce a loss of information, as some particle pairs leave
the measurement volume and therefore reduce the correlation between two successive
images. �is reduces the probability of valid displacement estimates (Ra&el et al., 	���).
�e e&ect of out-of-plane motion was simulated by removing random particles from
a synthetic image pair and introducing the same amount of new particles at random
positions. �e analysis allows to estimate the sensitivity of di&erent DPIV algorithms to
out-of-plane motion. �e basic DFT approach is relatively sensitive to particle pair loss
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Fig. 2.16: The effect of Gaussian white noise on the rate of unsuccessful correlations
and on the random error (particle image diameter = 3 pixels, displacement =
3.5 pixels).
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Fig. 2.17: The effect of out-of-plane motion on the rate of unsuccessful correlations
and on the random error (particle image diameter = 3 pixels, displacement =
3.5 pixels).

(see Figure 	.��). When ��* of the particles are replaced, some unsuccessful correlations
can already be observed. Window deformation algorithms are more robust, and also
show a slightly smaller random error. �e result con�rms the adequacy of window
deformation algorithms when analyzing highly three-dimensional ’ow phenomena.

���
�� $���

In the DPIV studies on ’apping wings (see chapters III and IV), the most limiting factors
were the amount of light delivered from the laser and the light sensitivity of the camera. To
capture enough light for reliable DPIV analyses, the exposure time of the camera had to be
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Point�spread function length = 0 px Point�spread function length = 15 px

Fig. 2.18: Example of the level of motion blur tested.

set to a relatively high value. �e particles moved during the exposure, hence the images
show a certain amount of motion blur, and it is likely, that such blurred particle images
in’uence the quality of DPIV analyses: Motion blur distorts the shape of the correlation
peaks, and this hampers the estimation of subpixel accurate displacements (Nobach 2
Honkanen, 	���). �e e&ect of motion blur was simulated by convolving the images
with a one-dimensional �lter of the desired length with equally distributed weights (see
Figure 	.�� for an example of the e&ect of motion blur). Window deformation algorithms
are signi�cantly less a&ected by the presence of motion blur than basic DFT and DCC
algorithms (see Figure 	.��A). �e amount of motion blur in the experimental images is
estimated to correspond to a point-spread function length of 
.� pixels (exposure time =
���� µs; mean ’ow velocity = �	�� pixels1s, the average displacement during exposure is
therefore �.� • ���� s • �	�� px/s � 
.� px, see dashed line in Figure 	.��A). Although
motion blur does slightly degrade the precision of a measurement, window deformation
is a suitable choice for limiting the negative impact.

�����""
�� "����

As mentioned in short earlier in this chapter, a DFT is computationally more e+cient
than a direct computation of the correlation matrix using DCC. However, the use of
�repair routines� introduces signi�cant additional computational load and makes the
advanced DFT slower than the DCC (see Figure 	.��B). �is disadvantage is however
o&set by the large increase in accuracy and robustness of window deformation techniques,
as has been shown in this chapter.

"����

In the introduction about window deformation techniques, the deteriorating e&ect of
shear within the interrogation area was already noted. Window deformation limits the
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Fig. 2.20: Example of the magnitude of shear tested.

negative impact of shear on the accuracy (Huang et al., ����a; Fincham 2 Delerce, 	���).
Shear was simulated by applying a triangle wave displacement to the synthetic particle
images (see Figure 	.	� for an example of the e&ect). �e simulation shows, that the basic
DFT is sensitive to shear as the bias error increases substantially (see Figure 	.	�). �e
window deformation technique using a bilinear interpolation for deforming the images
largely increases the accuracy. DCC is much less prone to shear than DFT. �e highest
accuracy in terms of bias and random error is achieved by the DFT window deformation
technique that uses spline interpolation.
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Fig. 2.21: The effect of shear on the bias error and the random error (particle image
diameter = 3 pixels, triangle wave displacement).

�%���
������ 
����"

In the accuracy tests in the preceding sections, only one parameter was varied at a time.
�is procedure enables to determine the sensitivity of DPIV algorithms with respect to
di&erent parameters, and to optimize the experimental setup accordingly. In real DPIV
experiments, the images will always su&er from a combination of all the properties under
test: �e e&ects of noise, particle density, particle diameter, out-of-plane motion, blur
and shear will all coincide in these experiments. Analyses of experimental images show,
that the window deformation techniques are much more robust under highly challenging
conditions (see Figure 	.		). �e analyses of the experimental images of a ’apping
wing show that DCC su&ers from ��.
 – �.� times more missing correlations under
challenging conditions (n = ���, see Figure 	.	�). �erefore, it is advantageous to use
window deformation algorithms whenever the experimental conditions are suboptimal
and a short processing time is not the main interest.
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DCC DFT window deformation

Fig. 2.22: Comparison of the velocity map calculated using DCC (left) and window
deformation (right) under challenging experimental conditions. Large vectors are
outliers. The window deformation technique reduces the amount of erroneous
correlations.
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Fig. 2.23: Preliminary analyses of DPIV images with very low lighting of a flapping
wing. The amount of unsuccessful correlations is considerably lower when using
window deformation (the periodic peaks result from some reflections of the flapping
wing entering the field of view).
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POST-PROCESSING

���� !��
���
��

Although the advanced cross-correlation algorithms provide very robust velocity esti-
mates within the interrogation areas, bad lighting conditions, strong three-dimensional
’ow or re’ections from objects within the light sheet still cause a certain amount of
erroneous correlations. Post processing of DPIV data is generally required to obtain
reliable results (Nogueira et al., ����). �e dataset of three-dimensional ’ow studies, like
the ones presented in this thesis, readily contains more than 	.� • ��� UVW vectors. In
these experiments, the ’apping wing obscures many interrogation areas and sometimes
re’ects the light of the laser. �e number of erroneous vectors (outliers) will therefore
be considerable, even when using the most advanced image correlation techniques. It
is hence necessary to �nd methods of (semi-) automatic data validation in order to
e&ectively suppress erroneous data. A very basic method to �lter outliers is to choose
thresholds for acceptable velocities (e. g. via graphical selection, see Figure 	.	
). �is
method has to be used with caution, as it is based on the experience of the experimenter,
and therefore has very subjective properties. In the example shown in Figure 	.	
, the
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Fig. 2.24: Scatter plot of u and v velocities in the DPIV analysis of a van KÆrmÆn
wake. Data inside the green rectangle in the centre is supposed to be valid, vectors
outside of the rectangle are supposed to be outliers (0.42% of the total data in this
example).
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choice of the velocity thresholds is based on assumptions on realistic ’ow velocities in
the test section. Velocity thresholds can also be determined semi automatically. Each
velocity component can be compared with a lower threshold and an upper threshold
(tlower and tupper):

tlower = u � n � �u (	.�)

tupper = u + n � �u (	.�)

where u = mean velocity; �u = standard deviation of u.
�e user de�ned constant n determines the strictness of this �lter. Consequently,

velocities that are not in between these thresholds will be rejected. �is simple �lter
works very well in practice, as it adapts to some extent to the nature of the ’ow: In very
turbulent ’ow, the standard deviation will be high, and the �lter is less strict. In laminar
’ow situations, the standard deviation is likely to be small, and the �lter will tend to
reject vectors that deviate little from the mean velocity.

�e data validation techniques described above both require an experienced exper-
imenter - a prerequisite that is unfortunately not always available. A more universal
outlier detection method that automatically adapts to local ’ow situations was proposed
by Westerweel 2 Scarano (	���): �e normalized median test (or local median �lter),
evaluates the velocity ’uctuation with respect to the median in a � • � neighbourhood
around a central vector. �e median of this ’uctuation is then used as normalization for a
more classical median test. �e universality of this test was demonstrated by Westerweel
2 Scarano (	���) for a range of di&erent situations. PIVlab features all three of these
validation techniques, as the total quality of vector validation can be improved by the
combination of several techniques.

���� 
���������
��

A/er the removal of outliers, missing vectors should be replaced by interpolated data
(Nogueira et al., ����). �e interpolation is recommended in all cases, even when it is
desired not to modify the original dataset: Missing vectors become increasingly problem-
atic when derivatives are calculated. Single missing vectors may leave large gaps in the
dataset due to the numerical nature of the derivative calculation (e. g. forward di&erence
or central di&erentiation scheme). Common interpolation techniques all rely on the
data surrounding the missing vector(s) to �ll the gap. One common technique is the
� • � neighbourhood (� • � mean) interpolation. A two-dimensional linear interpolation
is another alternative. Stamhuis 2 Videler (����) propose to use a two-dimensional
spline interpolation to derive missing vectors. PIVlab uses a boundary value solver for
interpolation, which was originally developed for reconstructing images with missing
information. �e approach provides an interpolation that is generally fairly smooth, and
over larger regions with missing data, it will tend towards the average of the boundary
velocities, which prevents overshooting (D�Errico, 	��	). �e performance of the most
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u velocity, original data u velocity, 25% of data removed u velocity, interpolated data

Fig. 2.25: Procedure for testing several interpolation techniques. Left: Original
velocity data. Middle: Data is removed at random positions. Right: Gaps are filled
with interpolation and compared to the original velocity data.

popular interpolation techniques and the boundary value solver are tested: A number of
real and synthetic image pairs are analyzed using standard DPIV (see Figure 	.	�, le/).
An increasing amount of random vectors (�* to ��*) is removed from the resulting
vector matrix (see Figure 	.	�, middle). �e missing data is interpolated using one of the
interpolators (see Figure 	.	�, right), and �nally, the mean absolute di&erence between the
original data and the interpolated data is determined. �is whole procedure is repeated
���� times for each image pair and each level of missing data to get statistically relevant
results.

�e most basic interpolation scheme � the � • � mean neighbourhood interpolation
� performs worst (see Figure 	.	�). A two-dimensional spline interpolation gives very
good results if the amount of missing data is below �*. But if the amount of missing data
increases, and hence the probability and size of connected missing data �islands� increases,
the spline interpolation performs worse than the boundary value solver, because splines
with too few nodes easily overshoot. Between �* and �* of data may typically be missing
in high quality DPIV data under rather optimal conditions (Ra&el et al., 	���). According
to the results (see Figure 	.	�), a two-dimensional spline interpolation might therefore be
perfectly adequate. But when analyzing biogenic ’ows, optimal conditions are sometimes
hard to achieve: �e seeding and the intensity of the laser light must be reduced in order
not to harm any organisms generating the ’ow (Stamhuis, 	���). Challenging conditions
will increase the amount of missing data; the boundary value solver is hence the more
universal interpolator.
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Fig.2.26: Performanceofpopular interpolators. Theboundaryvalue solverperforms
best under the presence of larger amounts (> 10%) of missing data.

���� "�����
��

As has been shown, the cross-correlation of DPIV data is never perfectly precise. A
certain amount of measurement noise will be inevitable (Ra&el et al., 	���). Noise
is o/en not problematic when integral quantities � such as integrals of velocities to
derive the circulation of a vortex � are desired (see Figure 	.	�A, bottom). But when
di&erentials, e. g. vorticity 1 shear 1 strain 1 vortex locators are used to describe a ’ow
�eld, measurement noise quickly becomes a dominating quantity (Nogueira et al., ����,
see Figure 	.	�A, middle). Noise can be e&ectively reduced by applying data smoothing.
Ra&el et al. (	���) propose to perform a convolution of the data with a 	 • 	 or � • �
kernel with equal weights. Another common and e&ective method to smooth DPIV
data is median �ltering. More advanced smoothing algorithms are based on a penalized
least squares method (�Smoothn�, Garcia, 	���). �e performance of the smoothing
algorithms is tested using DPIV data of synthetic particle images. Two Hamel-Oseen
vortices are placed in random locations in a ��	
 •��	
 pixel image. �e arti�cial ’ow �eld
hence consists of regions with very high velocity gradients (in the vicinity of the vortex
cores), and regions with almost constant velocity. �e synthetic images are analyzed,
followed by the application of one of the three smoothing algorithms (�•� mean; �•�
median; �Smoothn�). Finally, the mean absolute di&erence and the maximum absolute
di&erence between the true velocities and the calculated velocities are determined. �e
test is run with 	�� synthetic image pairs for each smoothing algorithm. An exemplary
DPIV analysis of such an image pair is shown in Figure 	.	�B.

Data smoothing � no matter what algorithm is used � always decreases the amount of
noise introduced by the DPIV algorithm and hence increases the quality of the velocity
estimation (see Figure 	.	�). �e application of the �Smoothn� algorithm reduces the
di&erence between analysis and true velocities. It was therefore decided to implement
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Fig. 2.27: A: The effect of measurement noise. Top: Original signal, sine wave
with random noise. Middle: Derived signal, noise dominates. Bottom: Integrated
signal, noise is reduced drastically. All data normalized. B: Exemplary DPIV result
for smoothing algorithm validation. Synthetic image (��	
 • ��	
 pixels), containing
two randomly positioned vortex cores with a maximum particle displacement of 10
pixels. Colours represent particle displacement.
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Fig. 2.28: Validation of smoothing algorithms. Left: Maximum absolute difference
between the calculated velocities and the true velocities in percent of the maximum
true velocity. Right: Mean absolute difference. n = 	��

this algorithm in PIVlab in order to o&er an option to further improve the quality of the
velocity estimation.
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Chapter II

FURTHER DATA PROCESSING

Many DPIV studies reveal relatively complex ’ow patterns. Such a complexity is hard
to describe purely with vector maps, therefore it is necessary to further process and
distil the results. �is section will give a brief overview of common derivatives and their
relevance. �e derivative most o/en used to describe a ’ow �eld is vorticity (for the
mathematical background, see e. g. Stamhuis 2 Videler, ����). Vorticity is o/en used
to visualize vortices. �eoretically, in the core of a vortex (solid body rotation), the
magnitude of vorticity is larger than zero, outside the vortex core (irrotational region),
vorticity equals zero. Care has to be taken when using it as exclusive criterion for the
presence of vortices, as vorticity is also sensitive to shear. Better suited for vortex detection
is the discriminant for complex eigenvalues (vortex locator 1 DCEV, see e. g. Stamhuis
2 Videler, ����). Further derivatives useful to describe a ’ow pattern are divergence (a
measure for out-of-plane ’ow in two-dimensional studies in incompressible ’uids, e. g.
Stamhuis 2 Nauwelaerts, 	���), shear rate and strain rate (see e. g. Stamhuis 2 Videler,
����).

�e dominant ’ow patterns (e. g. vortices) are o/en superimposed by other ’uid
motions. When the superimposed ’ow has a constant velocity, the average ’ow is usually
subtracted to get a better view on vortices. If the velocity of the superimposed ’ow is not
constant and if it varies locally, it can be useful to high-pass the vector �eld to produce a
comprehensive visualization. �is will remove low frequency ’ow patterns, and highlight
local velocity gradients (see Figure 	.	�A and B). Qualitative ’ow visualizations can
also bene�t from the application of line integral convolution (LIC). �e approach was
introduced by Cabral 2 Leedom (����); it is based on a curvilinear �ltering that locally
blurs random noise textures. �e �lter is capable of rendering detail on very complex
vector �elds. �is kind of visualization (see Figure 	.	�C) is in principle comparable to
releasing streamlines at every grid point of the vector �eld. One widespread criterion
for a vortex is that streamlines follow a circular pattern around the core (Robinson et al.,
����), therefore LIC can also be used to assist the identi�cation of vortices, velocity
sources and sinks.

DPIV creates a spatially resolved vector map displaying the velocities detected in a
two-dimensional cross-section through a ’ow �eld. As mentioned earlier, the complex
nature of some ’ow patterns can be better visualized using derived parameters. Another
approach to reduce complexity is to extract data from the two-dimensional velocity map
using a one-dimensional path, or to focus on integral quantities (Ra&el et al., 	���). One-
dimensional data extraction can provide insight into the velocity and vorticity pro�le
of vortex rings (see Figure 	.��A-C), and test whether the morphology of the vortex
ring complies with theory (e. g. Spedding et al., ���
). Furthermore, by determining the
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A C

B

Fig. 2.29: A: Pair of counter rotating vortices in shear flow, coloured with vorticity.
The vectors do not follow the circular path generally assumed for vortices. B:
High-passed vector field. Vectors display the local relative velocity, and reveal two
recirculating regions in the flow. C: Example for line integral convolution: Wake of
an undulating flat plate (flow from right to left), LIC coloured with the v velocity
component. Flow data by courtesy of RenØ Sonntag.

circulation of a vortex, it is possible to apply the Kutta�Joukowski theorem to derive ’uid
dynamic forces (e. g. Henningsson 2 Hedenstroem, 	���). �e circulation (dimension
m�1s) can be measured either by integrating the tangential velocity along a closed loop
around the vortex core, or by integrating vorticity over the area of the vortex core,
depending on the experimental circumstances. �e choice of the integration path or the
integration area is crucial (Ra&el et al., 	���), and sometimes intricate. �e selection of
the optimal integration path can be simpli�ed by calculating tangent velocity integrals
for series of circles with increasing diameter around the centre of a vortical structure
(see red circles in Figure 	.��A). When plotting the circulation over the diameter of
the circles, an asymptotic convergence towards the actual circulation of the vortex can
be observed (Willert 2 Gharib, ����, see Figure 	.��D). �e same procedure can also
be performed with the area integral of vorticity to derive the actual circulation. �ese
features are implemented in PIVlab and greatly simplify the determination of circulation
and the application of the Kutta-Joukowski theorem.
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Fig. 2.30: A: Pair of counter-rotating vortices; coloured with vorticity. B: Normal
velocity component along path x. C: Vorticity along path x. D: Circulation of one
vortex plotted over circle radius.
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SUMMARY

�is chapter introduced the methods and principles that are required to derive accurate
velocity information from two-dimensional cross-sections through a ’uid. It has been
shown that the choice of pre-processing, correlation and post-processing techniques
in’uences the accuracy and the quality of these measurements. DFT with window
deformation outperforms the basic DCC and DFT correlation, especially under chal-
lenging conditions. �e additional computational load is compensated by the increased
robustness and accuracy of the algorithm. Under optimal conditions, the bias error of
the window deformation DPIV algorithms presented here is smaller than �.��� pixels
and the random error is below �.�	 pixels. When the average displacement in a DPIV
study is around � pixels, the displacement error goes below �.
	*. Note that the �nal
interrogation area that was selected in all the accuracy tests is only �� • �� pixels and using
larger interrogation areas will further increase the accuracy (Ra&el et al., 	���).

Several �ltering techniques can be used to reject erroneous vectors and gaps in the
dataset can best be interpolated using a boundary value solver. �e remaining noise in the
velocity map is e+ciently reduced by the application of a penalized least squares smooth-
ing technique. Finally, a selection of related data processing procedures is presented, that
reduce the intricacy of complex vector maps.
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