Uniform nomenclature for the mitochondrial contact site and cristae organizing system

Nikolaus Pfanner,1,2 Martin van der Laan,1,2 Paolo Amati,3 Roderick A. Capaldi,4 Amy A. Caudy,5,6 Agnieszka Chacinska,7 Manjula Darshi,8 Markus Deckers,11 Suzanne Hoppins,12 Tateo Icho,13 Stefan Jakobs,14,15 Jianguo Ji,16 Vera Koziak-Pavlovic,17 Chris Meisinger,1,2 Paul R. Ogden,18 Sang Ki Park,19 Peter Rehling,1,15 Andreas S. Reichert,20,21 M. Saeed Sheikh,22 Susan S. Taylor,8,9,10 Nobuo Tsuchida,23 Alexander M. van der Bliek,24 Ida J. van der Klei,25 Jonathan S. Weissman,26,27 Benedikt Westermann,28 Jiping Zha,29 Walter Neupert,30 and Jodi Nunnari31

1Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, and 2BIOSs Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany
2Donnelly Centre for Cellular and Biomolecular Research and 3Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
3The International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
4Howard Hughes Medical Institute, 5Department of Pharmacology, and 6Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
5Department of Biochemistry, Biocenter, University of Würzburg, 97074 Würzburg, Germany
6Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
7Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
8Howard Hughes Medical Institute, 9Department of Pharmacology, and 10Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
9Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
10The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, P.R. China 100871
11Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210
12Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan
13Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
14Molecular Cell Biology, University of Groningen, 9700 CC Groningen, Netherlands
15Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
16The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, P.R. China 100871
17Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210
18Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan
19Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
20Department of Molecular Biology, University of Groningen, 9700 CC Groningen, Netherlands
21Howard Hughes Medical Institute and 22Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
22Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210
23Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
24Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
25Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210
26Department of Molecular Biology, University of Groningen, 9700 CC Groningen, Netherlands
27Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
28Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
29Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
30Crown Bioscience, Inc., Taicang City, Jiangsu Province, P.R. China 215400
31Somechi Orchid Laboratory, Chofu, Tokyo 182-0023, Japan

The mitochondrial inner membrane contains a large protein complex that functions in inner membrane organization and formation of membrane contact sites. The complex was variably named the mitochondrial contact site complex, mitochondrial inner membrane organizing system, mitochondrial organizing structure, or Mitofilin/Fc1 complex. To facilitate future studies, we propose to unify the nomenclature and term the complex “mitochondrial contact site and cristae organizing system” and its subunits Mic10 to Mic60.

Mitochondria possess two membranes of different architecture and function (Palade, 1952; Hackenbrock, 1968). Both membranes work together for essential shared functions, such as protein import (Schatz, 1996; Neupert and Herrmann, 2007; Chacinska et al., 2009). The outer membrane harbors machinery that controls the shape of the organelle and is crucial for the communication of mitochondria with the rest of the cell. The inner membrane harbors the complexes of the respiratory chain, the F1F0-ATP synthase, numerous metabolite carriers, and enzymes of mitochondrial metabolism. It consists of two domains: the inner boundary membrane, which is adjacent to the outer membrane, and invaginations of different shape, termed cristae (Werner and Neupert, 1972; Frey and Mannella, 2000; Hoppins et al., 2007; Pellegrini and Scorrano, 2007; Zick et al., 2009; Davies et al., 2011). Tubular openings, termed cristae junctions (Perkins et al., 1997), connect inner boundary membrane and cristae membranes (Fig. 1, A and B). Respiratory chain complexes and the F1F0-ATP synthase are preferentially located in the cristae membranes, whereas preprotein translocases are enriched in the inner boundary membrane (Vogel et al., 2006; Wurm and Jakobs, 2006; Davies et al., 2011). Contact sites
lost cristae junctions and contain large internal membrane stacks, the respiratory activity is reduced, and mitochondrial DNA nucleoids are altered (Fig. 1 B; John et al., 2005; Hess et al., 2009; Rabl et al., 2009; Mun et al., 2010; Harner et al., 2011; Head et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; Itoh et al., 2013). It has been reported that the complex interacts with a variety of outer membrane proteins, such as channel proteins and components of the protein translocases and mitochondrial fusion machines, and defects impair the biogenesis of mitochondrial proteins (Xie et al., 2007; Darshi et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; An et al., 2012; Bohnert et al., 2012; Körner et al., 2012; Ott et al., 2012; Zerbes et al., 2012; Jans et al., 2013; Weber et al., 2013). The MICOS/MINOS/MitOS/Mitofilin/Fcj1 complex thus plays crucial roles in mitochondrial architecture, dynamics, and biogenesis. However, communication of results in this rapidly developing field has been complicated by several different nomenclatures used for the complex as well as for its subunits (Table 1). To rectify this situation, all authors of this article have agreed on a new uniform nomenclature with the following guidelines. (a) The complex will be called “mitochondrial contact site and cristae organizing system” (MICOS). The protein subunits of MICOS are named Mic10 to Mic60 as listed in Table 1. (b) The names, including the numbers shown in Table 1, will be used in all organisms, e.g., Mitofilin/Fcj1 will be named Mic60 in any organism. In case the name MicX has been given to another gene/protein in an organism or a database requires a longer name, the...
name MiccX will be used in this organism, but the number will not be changed. The use of capital and small letters as well as of italics will follow species-specific conventions, e.g., in budding yeast (Saccharomyces cerevisiae), Mic60 will be used for the protein, and MIC60 will be used for the gene. (c) The current names of MICOS genes and proteins in databases will be renamed according to the uniform nomenclature. This includes the names of mutants when they contain the name of a MICOS gene or protein, e.g., *fcj1Δ* mutant cells will be renamed to *mic60Δ* mutant cells. (d) In case several isoforms of a MICOS subunit are present in an organism, this will usually be indicated by -1, -2, etc. (e) In case new subunits of MICOS will be identified, they will be named MicY. The number Y will be the molecular mass of the identified mature protein in kilodaltons. The same number will be used for orthologues identified in other organisms. (f) The names Mic14, Mic17, and Mic23 (mitochondrial intermembrane space cysteine motif proteins) that are currently used for three non-MICOS yeast proteins (Gabriel et al., 2007; Vögtle et al., 2012) will be changed to Mix14, Mix17, and Mix23 (mitochondrial intermembrane space CX,C motif proteins) in the *Saccharomyces* Genome Database, and the new nomenclature will be used for orthologues identified in other organisms.

The MICOS complex is of central importance for the maintenance of mitochondrial inner membrane architecture and the formation of contact sites between outer and inner membranes and thus is involved in the regulation of mitochondrial dynamics, biogenesis, and inheritance. We expect that the uniform nomenclature will facilitate future studies on mitochondrial membrane architecture and dynamics.

Submitted: 2 January 2014
Accepted: 6 March 2014

Table 1. New nomenclature of MICOS

<table>
<thead>
<tr>
<th>Complex</th>
<th>Standard name</th>
<th>Former names</th>
<th>Yeast ORF</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICOS</td>
<td>MINOS, MitOS, MIB, Mitofilin complex, and Fcj1 complex</td>
<td>Mics10, Mio10, Ms1, and MINOS1</td>
<td>YCL057C-A</td>
<td>Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; An et al., 2012; Bohnert et al., 2012; Ott et al., 2012; Jans et al., 2013; Weber et al., 2013</td>
</tr>
</tbody>
</table>

Subunits

Mic10	Mics10, Mio10, Ms1, and MINOS1	YCL057C-A	Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; Itoh et al., 2013; Jans et al., 2013; Varabyova et al., 2013
Mic12	Aim5, fmp51, and Msc12	YBR262C	Hess et al., 2009; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Varabyova et al., 2013
Mic19	Aim13, Msc19, CHCH3, CHCHD3, and MINOS3	YFR011C	Xie et al., 2007; Hess et al., 2009; Harner et al., 2011; Head et al., 2011; Alkhaja et al., 2012; Ott et al., 2012; Jans et al., 2013; Varabyova et al., 2013
Mic25 (metazoan Mic19 homologue)	CHCHD6 and CHCM1	YGR235C	Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; Itoh et al., 2013; An et al., 2012
Mic26	Msc29, Mio27, and Ms2	YCL058C	Hass et al., 2009; Harner et al., 2011; Head et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Weber et al., 2013
Mic27	Aim27, Msc27, APOOL, and MOMA-1	YNL100W	Hess et al., 2009; Harner et al., 2011; Head et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; Itoh et al., 2013; Varabyova et al., 2013
Mic60	Fcj1, Aim28, Fmp13, Mitofilin, HMP, IMMAT, and MINOS2	YKR016W	Itoh et al., 1994; Odgren et al., 1996; Gieffers et al., 1997; John et al., 2005; Wang et al., 2008; Rabl et al., 2009; Rossi et al., 2009; Mun et al., 2010; Park et al., 2010; Körner et al., 2012; Zerbes et al., 2012; Itoh et al., 2013; Varabyova et al., 2013

References

Chacinska, A., C.M. Koehler, D. Milenkovic, T. Lithgow, and N. Pfanner. 2009. Mitochondrial contact site and cristae organization • Pfanner et al. 1085

Itoh et al., 2013; Jans et al., 2013; Varabyova et al., 2013

Varabyova et al., 2013

Körner et al., 2013; Jans et al., 2013; Zerbes et al., 2012; Itoh et al., 2013; Varabyova et al., 2013

Weber et al., 2013

Xie et al., 2007; Rabl et al., 2009; Darshi et al., 2011; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; An et al., 2012; Bohnert et al., 2012; Ott et al., 2012; Jans et al., 2013; Weber et al., 2013

YCL057C-A

YBR262C

YFR011C

YGR235C

YCL058C

YNL100W

YKR016W

APOOL, apolipoprotein O–like; HMP, heart muscle protein; IMMT, inner mitochondrial membrane protein; MIB, mitochondrial intermembrane space bridging.

Varabyova, A., U. Topf, P. Kwiatkowska, L. Wrobel, M. Kaus-Drobek, and A. Chacinska. 2013. Mia40 and MINOS act in parallel with Ccs1 in the bio-

Vogel, F., C. Bornhiwèd, W. Neupert, and A.S. Reichert. 2006. Dynamic sub-

Wang, Q., Y. Liu, X. Zou, Q. Wang, M. An, X. Guan, J. He, Y. Tong, and J. Ji. 2009. The hippocampus-specific temperature-accelerated mouse: implications of Uch1 and mitofilin in cognitive disorder and mi-

Zick, M., R. Rabl, and A.S. Reichert. 2009. Cristae formation-linking ultrastruc-

Downloaded from jcb.rupress.org on September 18, 2014