Amino acid transport in *Lactobacillus helveticus*

Hadjime Nakajima *, Edmund R.S. Kunji, Bert Poolman, Wil N. Konings

Department of Microbiology, Groningen Biomolecular and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands

Received 16 October 1997; revised 12 November 1997; accepted 18 November 1997

Abstract

Amino acid transport in *Lactobacillus helveticus* was analyzed. Strain specificity of amino acid transport was speculated between *L. helveticus* NCDO2712 and SBT2171. Glucose energized *L. helveticus* NCDO2712 actively transported and accumulated the essential and growth stimulating amino acids (leucine, isoleucine, valine, threonine, lysine, aspartic acid, glutamic acid, tyrosine, arginine, and histidine). Uptake of proline, phenylalanine and tryptophan was not observed. Transport studies in isolated membrane vesicles of *L. helveticus* fused with liposomes to reduce the passive proton permeability revealed that amino acids leucine, isoleucine, valine, threonine, and lysine are transported by a proton motive force coupled system. These results indicated that *L. helveticus* and *Lactococcus lactis* amino acid transport systems are similar.

© 1998 Federation of European Microbiological Societies. Published by Elsevier Science B.V.

Keywords: Amino acid transport; *Lactobacillus helveticus*; Proton motive force

1. Introduction

Lactobacillus helveticus is a Gram-positive, facultatively anaerobic thermotrophic lactic acid bacterium. It is used industrially in dairy starter cultures for fermented milk, sour milk, and Swiss-type cheeses. *L. helveticus* was found to have the highest peptidase activities of 12 lactobacillus species studied [1]. This property makes *L. helveticus* an attractive potential candidate for application in accelerated cheese ripening.

Lactobacilli require many nutrients including several amino acids in the growth media [2]. *L. helveticus* can grow in milk which contains only small quantities of free amino acids and possesses a proteolytic system to release amino acids from the milk protein, casein [3,4].

Recently, the proteinases and peptidases of *L. helveticus* have been studied at both the biochemical and genetic levels [4]. The proteolytic enzymes were found to be similar but not identical to those found in the best studied lactic acid bacterium, *Lactococcus lactis* [4].

Only very limited information is available about the lactobacilli amino acid and peptide transport systems. Strobel et al. [5] reported a proton motive force (pmf) dependence of amino acid transport in *L. casei*. Recently, Stucky et al. [6] cloned a gene encoding a branched amino acids transporter (*brnQ*) from *L. delbruckii* subsp. *lactis*. From *L. helveticus*, we have cloned and sequenced the gene encoding a proton motive force (pmf) coupled di- and
tripeptide transporter [7]. In this report, we describe properties of essential and growth stimulating amino acid transport systems in *L. helveticus*.

2. Materials and methods

2.1. Bacteria

L. helveticus SBT2171 was kindly provided by Snow Brand European Research laboratory (Groningen, The Netherlands). *L. helveticus* NCDO2712 was divided from Institute of Food Research, Reading, UK. Cells were transferred to glucose- or lactose-MRX broth [1] and grown for 16 h at 37°C.

2.2. Amino acid transport assay in whole cells

Preculture (incubated for 16 h at 37°C) was inoculated in 0.5% glucose-MRX broth and incubated for 5 h at 37°C. *L. helveticus* cells were washed twice with 100 mM potassium phosphate (pH 6.5; KPi) and subsequently rapid frozen in liquid nitrogen. The cells were stored at −70°C before use. Amino acid transport was performed as follows. The cells (OD~660nm~ approximately 0.5) were resuspended and incubated for 2 min at 37°C in 100 mM 2-N-morpholinoethanesulfonic acid (Mes)/KOH (pH 6.5) in the presence of 0.75% glucose. Transport was started by the addition of [14C]-labelled amino acid. Samples of 100 μl were taken at certain time points, filtered over 0.45 μm cellulose acetate membranes, followed by washing twice with 2 ml of cold 0.1 M LiCl. The radioactivity on the filters was measured with a liquid scintillation counter.

2.3. Preparation of membrane vesicles

An overnight culture of *L. helveticus* was inoculated into lactose-MRX medium and incubated for 5 h at 37°C (OD~660nm~ approximately 0.5). The cells were washed three times with 100 mM KPi (pH 7.0) and resuspended in the same buffer. After addition of mutanolysin (1600 U/ml final concentration) and lysozyme (10 mg/ml final concentration), the mixture was incubated for 10 min at 37°C. The remaining procedure was performed basically by the method of Driessen et al. [8]. To lyse the cells, saturated K2SO4 was added (1/3 v/v). The suspension was diluted 1.8-fold with 100 mM KPi (pH 7.0). DNase and RNase (100 μg/ml of each enzyme final concentration) were added and the solution further incubated for 20 min at 37°C. Potassium EDTA and MgSO4 were added at final concentrations of 15 mM and 2 mM, respectively. Membrane vesicles and cells were harvested by high speed centrifugation (48,200×g for 30 min) and resuspended in 50 mM KPi (pH 6.5). Unlysed cells were removed by low speed centrifugation (750×g for 60 min) and the supernatant was used as the membrane vesicle fraction.

2.4. Preparation of hybrid membrane vesicles

Phoshatidylethanolamine (PE) was obtained from SIGMA Chemicals and re-extracted as described by Driessen et al. [8]. Re-extracted PE was mixed with egg phosphatidylcholine (PC) in a ratio of 3:1. Liposomes were obtained by ten cycles sonication of intervals of 4 s and 56 s rest at four microns of amplitude at 4°C under a constant stream of nitrogen.

Hybrid membrane vesicles were prepared by mixing the membrane vesicles of *L. helveticus* in 20 mM KPi (pH 6.5) containing 100 mM potassium acetate with PE/PC liposomes in a ratio of 1 to 10 by freeze-thaw-sonication as described by Driessen et al. [8]. Hybrid membrane vesicles were stored in liquid nitrogen before use.

2.5. Energization of transport by artificial ion gradients

Transport in hybrid membrane vesicles was measured as described [9]. Briefly, hybrid membrane vesicles were collected by centrifugation, resuspended in 20 mM KPi containing 100 mM potassium acetate (pH 6.5) and incubated for 1 h on ice. The hybrid membrane vesicles were diluted to 1/100 with 120 mM sodium phosphate (NaPi; pH 6.5) containing 1 μM valinomycin and [14C]-labelled amino acid. At given time intervals, the mixture was filtered immediately through cellulose nitrate membrane (pore diameter 0.45 μm). The filters were washed once with 2 ml of cold 0.1 M LiCl and radioactivity was measured by liquid scintillation. The uptake of radiola-
belled methyl-β-D-thiogalactoside (TMG) was studied for comparisons.

2.6. Miscellaneous

Internal cell volume of *L. helveticus* was estimated as described by Poolman and Konings [10] using non-metabolizable sorbitol ([14C]-labelled) and [3H]-labelled water. All radiolabelled compounds were purchased from Amersham (Buckinghamshire, UK) or New England Nuclear (Dreieich, Germany). Protein was determined by the method of Lowry et al. [11] using bovine serum albumin as a standard.

3. Results and discussion

Fourteen amino acids have been reported to be essential or growth stimulating for *L. helveticus* [2]. The transport of all these amino acids except methionine was studied in whole cells. The transported amino acids may be metabolized during the uptake experiments. Therefore the uptake of amino acids was calculated from the accumulated radioactivity (Fig. 1). In Table 1, the accumulation levels after 8 min are given. These accumulation levels could be calculated after determining the internal volume of the cells. The internal cell volumes of *L. helveticus* SBT2171 and NCDO2712 were found to be

Fig. 1. Amino acid transport in glucose energized *L. helveticus*. Open circles, amino acids transported in industrially used *L. helveticus* SBT2171; closed circles, amino acids transported in *L. helveticus* NCDO2712. A: Alanine (external concentration was 3.25 mM); B: leucine (external concentration, 1.56 mM); C: aspartic acid (external concentration, 2.08 mM); D: histidine (external concentration, 14.4 mM).
2.45 ± 0.44 and 2.50 ± 0.66 ml/mg protein (expressed as mean ± standard deviation of four measurements), respectively.

In the presence of glucose as energy source, the uptake of leucine, aspartic acid and histidine were significantly higher in *L. helveticus* NCDO2712 than in the industrially used strain SBT2171 (Fig. 1). *L. helveticus* NCDO2712 accumulated ten amino acids (leucine, isoleucine, valine, threonine, lysine, aspartic acid, glutamic acid, tyrosine, arginine, and histidine) but not proline, phenylalanine, or tryptophan (Table 1).

To obtain information about the driving force for these amino acid transport processes, studies were performed in hybrid membrane vesicles in which an artificial proton motive force (pmf) of −120 mV was generated. Membrane vesicles from lactose-MRX grown *L. helveticus* were fused with liposomes prepared from *E. coli* phosphatidylethanolamine (PE) and egg phosphatidylcholine (PC) and transport studies were performed as described in Section 2. The transport of ten amino acids which were accumulated by the glucose energized cells was analyzed in these experiments. For comparison, the uptake of lactose analogue TMG was calculated.

The initial rates of uptake for ten amino acids are listed in Table 2. The initial uptake rate of TMG was 2.1 nmol/min/mg. Pmf-driven uptake – by the hybrid membranes – of the amino acids leucine, isoleucine, valine, threonine, and lysine was observed, but not tyrosine, arginine, histidine, aspartic acid, and glutamic acid (Table 2). These results indicated that leucine, isoleucine, valine, threonine, and lysine are transported by a pmf-driven secondary transport system. The driving force of the other amino acids is not known.

These results differ from those obtained by Strobel et al. in *L. casei* [5]; they found at least five distinct amino acid transport systems which are involved in the uptake of glutamine, asparagine, glutamate/aspartate, phenylalanine, and branched chain amino acids. Valine, isoleucine, arginine, cysteine, tyrosine, and tryptophan are actively transported by glucose energized *L. casei*.

Amino acid transport systems of *L. lactis* have been studied in great detail by Poolman [12]. At least five secondary amino acid transporters (branched amino acids, alanine and threonine, serine and threonine, and lysine transporters) and at least three ATP coupled systems (glutamine and glutamate, and asparagine and aspartate systems) were mentioned.

It is of interest that the industrially used *L. helveticus* strain SBT2171, which is highly adapted to growth in milk, accumulates significantly less amino acids than the standard strain NCDO2712. The industrial strain SBT2171 can not grow in chemically defined medium with amino acids as sole nitrogen

Table 1

<table>
<thead>
<tr>
<th>Ext. conc. (μM)</th>
<th>Apparent accumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu 1.56</td>
<td>44.2</td>
</tr>
<tr>
<td>Ile 1.55</td>
<td>31.2</td>
</tr>
<tr>
<td>Val 1.15</td>
<td>10.2</td>
</tr>
<tr>
<td>Thr 2.14</td>
<td>56.5</td>
</tr>
<tr>
<td>Lys 1.71</td>
<td>59.6</td>
</tr>
<tr>
<td>Asp 2.08</td>
<td>56.0</td>
</tr>
<tr>
<td>Glu 0.91</td>
<td>71.6</td>
</tr>
<tr>
<td>Tyr 1.00</td>
<td>20.4</td>
</tr>
<tr>
<td>Pro 3.48</td>
<td>0.79</td>
</tr>
<tr>
<td>Phe 92.5</td>
<td>0.70</td>
</tr>
<tr>
<td>Arg 1.52</td>
<td>6.5</td>
</tr>
<tr>
<td>His 14.4</td>
<td>15.0</td>
</tr>
<tr>
<td>Trp 34.2</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Ext. conc., External concentration. Exponentially grown cells in MRX medium were used for uptake experiments. Amino acid accumulation expresses the ratio of the internal amino acid concentration over the external concentration.

Table 2

<table>
<thead>
<tr>
<th>Ext. conc. (μM)</th>
<th>Initial rate (nmol/min/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val 0.90</td>
<td>0.33</td>
</tr>
<tr>
<td>Leu 0.81</td>
<td>0.24</td>
</tr>
<tr>
<td>Ile 0.80</td>
<td>0.16</td>
</tr>
<tr>
<td>Thr 1.11</td>
<td>0.19</td>
</tr>
<tr>
<td>Lys 0.89</td>
<td>0.17</td>
</tr>
<tr>
<td>Asp 1.20</td>
<td>n.d.</td>
</tr>
<tr>
<td>Glu 1.48</td>
<td>n.d.</td>
</tr>
<tr>
<td>His 1.49</td>
<td>n.d.</td>
</tr>
<tr>
<td>Arg 0.16</td>
<td>n.d.</td>
</tr>
<tr>
<td>Tyr 0.10</td>
<td>n.d.</td>
</tr>
<tr>
<td>TMG 18.0</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Ext. conc., External concentration. n.d., not detected.
sources (Sasaki et al., personal communication). Evi-
dently, this strain has to obtain most of its essential
amino acids from the uptake of peptides [7].

Our amino acid transport experiments indicate the
presence of essential and growth stimulating amino
acid transporters in L. helveticus [13]. Leucine, iso-
leucine, valine, threonine, and lysine are transported
by secondary transport systems in L. helveticus and
L. lactis [12]. Leucine, isoleucine, and valine are trans-
ported by a pmf coupled branched amino acid
transporter (BrnQ) in L. delbruckii subsp. bulgaricus
[6]. The amino acids aspartate, glutamate, histidine,
arginine, and tyrosine are most likely transported by
primary ATP-driven systems [13] as was found for
aspartate and glutamate in L. lactis [12] and L. casei
[5]. L. lactis transports tyrosine and histidine by pmf
coupled transport systems [12]. In some lactic acid
bacteria, histidine, tyrosine and arginine are trans-
ported by a special class of secondary transport sys-
tems, e.g. precursor/product antiporter systems [9].
These amino acids are metabolized internally by
the enzymes histidine decarboxylase, tyrosine decar-
boxylase, and arginine deimidase, respectively. These
enzymes could not be detected in L. helveticus (data
not shown). Recently, Liu et al. [14] reported the
presence of arginine deimidase in hetero-fermentative
lactobacilli. Our results are consistent with this conclusion. For
the third group of amino acids, proline, phenylalanine
and tryptophan, it is far from clear how these amino
acids are transported.

In conclusion, the results presented indicated that
amino acids in L. helveticus are transported via sim-
ilar systems to L. lactis and that during growth in
milk, peptide transport systems may be as important
in L. helveticus as they are in L. lactis [4].

Acknowledgments

This work is financially supported by Snow Brand
Milk Products Co. Ltd. (Tokyo, Japan).

References

parative study on proteolytic activity in various Lactobacillus
[2] Morihisita, T., Deguchi, Y., Yajima, M., Sakurai, T. and
Yura, T. (1981) Multiple nutritional requirements of lactoba-
cilli: Genetic lesions affecting amino acid biosynthetic path-
Konings, W.N. (1995) The proteolytic pathway of Lactococ-
nings, W.N. (1996) The proteolytic systems of lactic acid bac-
70, 123–131.
W.N. (1989) Transport of amino acids in Lactobacillus casei
by proton-motive-force-dependent and non proton motive
Konings, W.N. and Plapp, R. (1995) Cloning and charac-
terization of brnQ, a gene encoding a low-affinity, branched
chain amino acid carrier in Lactobacillus delbruckii subsp.
Escherichia coli of the gene specifying di-, tripeptide transport
63, 2213–2217.
corporation of beef heart cytochrome c oxidase as a proton-
motive force-generating mechanism in bacterial membrane
(1992) Characterization of the proton/glutamates symport
protein of Bacillus subtilis and its functional expression in
Streptococcus lactis and Streptococcus cremoris to amino acid
measurement with the Golin phenol reagent. J. Biol. Chem.
193, 265–275.
ute transport and energy transduction in bacteria. Antonie
(1995) Occurrence of arginine deimidase pathway enzymes in
arginine catabolism by wine lactic acid bacteria. Appl. Envi-
ron. Microbiol. 61, 310–316.